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[Crooks ’99] etc )



Entropic
fluctuations in

quantum two-time
measurement
framework

Annalisa Panati,
CPT, Université

de Toulon

Plan

Context: classical
to quantum
statistical
mechanics
Transient and Steady
Fluctuation relation

Two-time
measurement statistics

Our proposal
Results

Proof

Conclusions

Context: classical to quantum statistical
mechanics
Fluctuation relations (following [JPR11])

Classical case: [Evans-Cohen-Morris ’93] numerical experiences
[Evans-Searls ’94] [Gallavotti Cohen ’94] theoretical explanation

( work in driven system [Bochkov-Kuzovlev ’70s], [Jaryzinski ’97],
[Crooks ’99] etc )



Entropic
fluctuations in

quantum two-time
measurement
framework

Annalisa Panati,
CPT, Université

de Toulon

Plan

Context: classical
to quantum
statistical
mechanics
Transient and Steady
Fluctuation relation

Two-time
measurement statistics

Our proposal
Results

Proof

Conclusions

Context: classical to quantum statistical
mechanics
Fluctuation relations (following [JPR11])

Classical case: [Evans-Cohen-Morris ’93] numerical experiences
[Evans-Searls ’94] [Gallavotti Cohen ’94] theoretical explanation

( work in driven system [Bochkov-Kuzovlev ’70s], [Jaryzinski ’97],
[Crooks ’99] etc )



Entropic
fluctuations in

quantum two-time
measurement
framework

Annalisa Panati,
CPT, Université

de Toulon

Plan

Context: classical
to quantum
statistical
mechanics
Transient and Steady
Fluctuation relation

Two-time
measurement statistics

Our proposal
Results

Proof

Conclusions

Context: classical to quantum statistical
mechanics
Fluctuation relations (following [JPR11])

Classical case: [Evans-Cohen-Morris ’93] numerical experiences
[Evans-Searls ’94] [Gallavotti Cohen ’94] theoretical explanation

( work in driven system [Bochkov-Kuzovlev ’70s], [Jaryzinski ’97],
[Crooks ’99] etc )



Entropic
fluctuations in

quantum two-time
measurement
framework

Annalisa Panati,
CPT, Université

de Toulon

Plan

Context: classical
to quantum
statistical
mechanics
Transient and Steady
Fluctuation relation

Two-time
measurement statistics

Our proposal
Results

Proof

Conclusions

Context: classical to quantum statistical
mechanics
Fluctuation relations (following [JPR11])

Classical case: [Evans-Cohen-Morris ’93] numerical experiences
[Evans-Searls ’94] [Gallavotti Cohen ’94] theoretical explanation

( work in driven system [Bochkov-Kuzovlev ’70s], [Jaryzinski ’97],
[Crooks ’99] etc )

Statistical refinement of thermodynamics second law



Entropic
fluctuations in

quantum two-time
measurement
framework

Annalisa Panati,
CPT, Université

de Toulon

Plan

Context: classical
to quantum
statistical
mechanics
Transient and Steady
Fluctuation relation

Two-time
measurement statistics

Our proposal
Results

Proof

Conclusions

Context: classical to quantum statistical
mechanics
Fluctuation relations (following [JPR11])

Classical case: [Evans-Cohen-Morris ’93] numerical experiences
[Evans-Searls ’94] [Gallavotti Cohen ’94] theoretical explanation

( work in driven system [Bochkov-Kuzovlev ’70s], [Jaryzinski ’97],
[Crooks ’99] etc )

If PS,cl
t (s) is the law of the random variable Σt corresponding to

average entropy production rate et P̄S,cl
t (s) = PS,cl

t (−s).
Under general hypothesis (example: ρ Gibbs, TRI )

dP̄S,cl
t

dPS,cl
t

(ts) = e−ts
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Fluctuation relations (following [JPR11])

Classical case: [Evans-Cohen-Morris ’93] numerical experiences
[Evans-Searls ’94] [Gallavotti Cohen ’94] theoretical explanation

( work in driven system [Bochkov-Kuzovlev ’70s], [Jaryzinski ’97],
[Crooks ’99] etc )

If PS,cl
t (s) is the law of the random variable Σt corresponding to

average entropy production rate et P̄S,cl
t (s) = PS,cl

t (−s).
Under general hypothesis (example: ρ Gibbs, TRI )

dP̄S,cl
t

dPS,cl
t

(ts) = e−ts

This is called classical transient (ES) fluctuation relation
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Fluctuation relations: classical case
general version, following [JPR11]

Classical transient (ES) fluctuation relation

dP̄S,cl
t

dPS,cl
t

(s) = e−ts .

equivalent to
ecltr,t(α) = ecltr,t(1− α)

with

ecltr,t(α) =
1
t

log

∫
e−tαsdPS,cl

t (ts) =
1
t

logω(e−αtΣt )

ecltr,+(α) := limt→∞
1
t e

cl
tr,t(α) used in large deviations theory
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Fluctuation relations: classical case
general version, following [JPR11]

Classical steady(GC) fluctuation relation
The initial state of the system is a non-equilibrium steady state
non-equilibrium steady state (NESS) (existence assumed).

Define similarly as before

eclste,t(α) :=
1
t

logωNESS(e−αtΣt )

eclste,+(α) := lim
t→∞

eclste,t(α)

Symmetries:

I in general eclste,t(α) 6= eclste,t(1− α) for t finite
I typically under strong ergodic hypotesis and ifM compact

eclste,+(α) = eclste,+(1− α) and eclste,+(α) = ecltr,+(α)
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Quantization of fluctuation relations
Quantum case ?? Transient case

Attempt 1: "Naive quantization"
Underlying idea :

—attempted in work related litterature [Bochkov-Kuzovlev
’70s-’80s])
—attempted in the ’90, called "naive quantization"

leads to NO-fluctuation relation!!!!

Attempt 2: Measurement has been neglected. Associate to S the
two-time measurment statistics PS

t defined as difference between
two measurement
—Key result by [Kurchan’00]

leads to fluctuation relation

At the level of averages and variances, there is no difference!

The success of TTM come with a price: unexpected phenomena
(with no classical countepart) due to the invasive role of
measurement [Benoist-P.Raquépas19, Benoist-P.Pautrat 20] and
now
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Two-time measurment statistics
Two-time measurment statistics

Full (Counting) Statistics [Lesovik, Levitov ’93][Levitov,
Lee,Lesovik ’96]

Confined systems: described by (H,H, ρ) dimH <∞
Given an observable A: A =

∑
j ajPaj where aj ∈ σ(A) Paj

associated spectral projections
In confined system:

PA,t(φ) =

∑
ak−aj=φ

tr(ρPaj )tr(e−itHρame
itHPak )

with
ρam =

1
tr(ρPaj )

PajρPaj .

Fact/Problem: the measurement perturbes the state, the initial
state reduces to ρam
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Full (Counting) Statistics [Lesovik, Levitov ’93][Levitov,
Lee,Lesovik ’96]

Confined systems: described by (H,H, ρ) dimH <∞
Given an observable A: A =

∑
j ajPaj where aj ∈ σ(A) Paj

associated spectral projections
Protocol:
- t = 0, we measure A (outcome aj)
- evolve for time t
- measure again at time t (outcome ak)

In confined system:

PA,t(φ) =

∑
ak−aj=φ

tr(ρPaj )tr(e−itHρame
itHPak )

with
ρam =

1
tr(ρPaj )

PajρPaj .

Fact/Problem: the measurement perturbes the state, the initial
state reduces to ρam
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Quantum steady entropic functional: our proposal
How to quantize steady FR? Difficulties:
I A measurement would destroy the steady state
I steady state exists only in the thermodynamic limit
I non-normality of the steady state (to the initial state)in the

thermodynamic limit

Setting: Reservoirs R1,R2, . . .RM

coupled directly or through a small system S, dimHS = N

Notation

Reservoirs R1,R2, . . .RM

(Oj , τRj ,t , ωβj ), where ωβj is βj KMS state for τ jt

Small system S, dimHS = N
(OS , τSj ,t , ωS), where is ωS some state

Initial state: ω := ωS ⊗ (ωβj ⊗ . . . ωβM
) = ωS ⊗ ωR

Free Dynamics: τ0
t (A) := τS,t ⊗ (τR1,t ⊗ . . . τRM ,t) =: τS,t ⊗ τR,t

with generator δ0

Perturbed dynamics: τt(A) with generator δ0 = δ0 + [−,V ]
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Quantum steady entropic functional: our proposal

ωNESS as an idealization of ωT at an unknown very large time (see
remark about classical case)

Two time measurement framework (start with finite dimensional
approximation dimH = n)
– start with ω initial state as in the transient case
– perform the first measurment at an unknown very large time T
– let the system evolve for time t
– perform the measurment at an unknown very large time T + t
This defines

P(n)
T ,t , eT ,t(α)(n) =

1
t

log

∫
e−tαsdP(n)

T ,t(s)
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Quantum steady entropic functional: our proposal

Proposition (Thermodynamic limit .
(T.Benoist, L.Bruneau, V.Jakšić, C.-A.Pillet 21))

It is possible to rewrite eT ,t(α)(n) in term of algebraic objects that
survive the limit. Under standard hypothesis,
eT ,t(α) := lim(n)→∞ eT ,t(α)(n) is well defined correspond to the
same formal expression.

–exact form eT ,t(α) shown in the proof

Definition

este,t(α) := lim
T→∞

eT ,t(α)
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Theorem (direct coupling, no S, T.Benoist, L.Bruneau,
V.Jakšić, A.P., C.-A.Pillet ’22? )

Let assume the reservoirs are coupled directly (no S); assume the
dynamics τ0

R,t is ergodic. Then

eT ,t(α) = e0,t(α) =: etr,t(α)

for all T ∈ R.

Consequences:
I este,t(α) = etr,t(α)

I If the symmetry true for etr,t(α), then for the steady
functional este,t(α) also satisfy the symmetry AT FINITE
TIME t;

I if este,+(α), e0,+(α) exists, they are equal.
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Theorem (coupling through S,
T.Benoist, L.Bruneau, V.Jakšić, A.P., C.-A.Pillet 22?)

Let assume the reservoirs are through a small system S; assume
the dynamics τ0

R,t is ergodic. Then

este,+(α) = e0,+(α) =: etr,+(α)

Remark
In both theorems:
1. No additional hypothesis on the perturbed dynamics
2. Underlying mechanism: invasive measurment role
3. General proof, with algebraic methods (no need for resonance

analysis model by model)
4. Need for thermodynamic limit
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Hint of the proofs

Consider the GNS representation associated to ω; (Hω, πω,Ω)

Liouvillean: any operator such that πω(τt(A)) = e itLπω(A)e−itL

not uniquely defined.
L∞ such that L∞Ω = Ω
Lα deformed Liovillean
L0 liouvillean for the free dynamics

e0,t(α) =
1
t

log(Ω, e−itLαΩ)

eT ,t(α) =
1
t

log(Ω, e iTL∞1{0}(−βL0)e−itLαΩ)

Direct coupling: If the dynamics on R is ergodic, 0 is a simple
eigenvalue for L0 and 1{0}(L0) = |Ω〉〈Ω|
Coupling through a small system S: If the dynamics on R is
ergodic, 0 is a simple eigenvalue for L0 and
ker(L) = ker(LS)⊗ ΩR; equality is attained in in the long time
limit t →∞
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Conclusions
I we have introduced a proposal for quantum steady (GC)

entropic functional este,+(α)

I we have shown este,+(α) = etr,+(α) under very weak
ergodicity hypothesis

I direct measurement on infinitely extended reservoir is an
idealization. We are able to write similar (less general) results
ins the framework of an "ancilla" measurement using
resonance theory .
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Thank you for your attention !
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