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The Frohlich polaron

An electron moving through a continuous polarizable medium.

On L*(R3 dz) ® F (with F the bosonic Fock space over L?(R?))
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with coupling constant a > 0 and the bosonic creation and annihilation
operators satisfying the usual CCR
lay,a3] =0(y — ), [ay,as] =0.

It is well understood that H, defines a self-adjoint semi-bounded operator.

Mainly interested in the limit o — oo. This corresponds to
- strong coupling
- semi-classical regime (the field becomes classical)

- adiabatic decoupling (similarly as in Born-Oppenheimer theory).

Note: Rescaling all lengths by 1/« one finds H, &2 o’ H, with
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Energy-momentum relation

Due to translation invariance H, commutes with the total momentum
Piot = —iVy + P with Py =dI'(—iV).

Hence there is a direct integral decomposition
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with fiber Hamiltonian
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Note: Ho(P) acts on F and describes the system at total momentum P.
The energy-momentum relation is defined as
P Eo(P) :=info(Ha(P)).

Effective mass MST .= 1/E: (0).



Energy-momentum relation

For o = 0 one finds Eo(P) = min{l%z7 1}
For o > 0 the expectation from physics is that E4(P) looks like

Two characteristic regimes
® Eo(P) & Eq(0) + 5y P? for all P? < 2ME* (quasi-particle regime)
e Fo(P) — inf oess(Ha(P)) as |P| — o0 (radiation regime)

Note: Oess(Ha(P)) = [Ea(0) + 1,00) as shown by Mgller 06



Qualitative results

A non-complete list of known qualitative results
e E,(0) < Eo(P) (L. Gross 72)
e Domain of analyticity in P and « (J. Frohlich 74, Spohn 88)
e Monotonicity and concavity of |P| — E4(|P|) (Polzer 22)

Our first result proves that P = 0 is the unique global minimum.

Theorem (Lampart-M-My$liwy 22) For all & > 0 and P € R?
E+(0) < Eo(P).

Based on a Perron—Frobenuis argument (motivated by Gerlach-Lowen 91)

In the probabilistic framework this was also shown by Dybalski-Spohn 20
(under a certain technical assumption) and Polzer 22

Corollary: The Frohlich Hamiltonian H, does not have a ground state.

In particular there is no self-trapping at finite a.



Quantitative estimates for large «

From Donsker—Varadhan 83 and Lieb—Thomas 97 we know that
Eo(0) = o®e" ™ 4+ 0(a?) as a— o0

with eFek

< 0 the infimum of the semi-classical Pekar energy functional.
Our next result gives a parabolic upper bound on E,(P) = inf o(H(P))
Theorem (M-Mysliwy—Seiringer 22) There exists a C' > 0 such that
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for all |P| < o2, where
- 0 < HP®k <1 is an explicit operator on L?(R?)

- MP* = 2| Vyl||3 is the semi-classical effective mass (Lan-Pek 48)

A similar lower bound for E,(0) was obtained by Brooks-Seiringer, hence

Fa(0) = o€ 4 LTr o (VEAP* — 1) + o(1).



Excited bound states

Our last result concerns the existence of excited energy bands below the
essential spectrum oess(Hao(P)) = [Ea(0) + 1, 00).

Theorem (M-My$liwy—Seiringer, in prep.) Let odisc(Ha(P)) be the
discrete part of the spectrum of H,(P). There exists a ¢ € (0,1) such that

|odisc (Ha (P))] 220 5o for all |P| < a?¢

Based on upper bounds for the min-max values of Hu(P)

The existence of excited energy bands was previously not known. In fact

there are predictions that such excited bound states would not exist.



Summary

e P E,(P) attains its unique global minimum at P = 0
e Optimal parabolic upper bound for E, (P) for large «

e Number of excited energy bands diverges as o — oo

Many open problems

e Matching parabolic lower bound for Eq(P)
e Asymptotic formulas for the excited energy bands
e Does E,(P) enter the essential spectrum for large |P|?

e Large o limit of the effective mass MST ~ o* MYk (Volker’s talk)
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