The energy-momentum relation of the Fröhlich polaron

David Mitrouskas

Institute of Science and Technology Austria (ISTA)

pause

Quantissima in the Serenissima IV

August 2022

Based on joint work with J. Lampart, K. Myśliwy and R. Seiringer

The Fröhlich polaron

An electron moving through a continuous polarizable medium.

On $L^2(\mathbb{R}^3, dx) \otimes \mathcal{F}$ (with \mathcal{F} the bosonic Fock space over $L^2(\mathbb{R}^3)$)

$$H_{\alpha} = -\frac{\Delta_x}{2} + \sqrt{\alpha} \int_{\mathbb{R}^3} \frac{1}{|x-y|^2} (a_y^* + a_y) \, dy + \int_{\mathbb{R}^3} a_y^* a_y \, dy$$

with coupling constant $\alpha > 0$ and the bosonic creation and annihilation operators satisfying the usual CCR

$$[a_y, a_x^*] = \delta(y - x), \quad [a_y, a_x] = 0.$$

It is well understood that H_{α} defines a self-adjoint semi-bounded operator. Mainly interested in the limit $\alpha \to \infty$. This corresponds to

- strong coupling
- semi-classical regime (the field becomes classical)
- adiabatic decoupling (similarly as in Born–Oppenheimer theory).

Note: Rescaling all lengths by $1/\alpha$ one finds $H_{\alpha} \cong \alpha^2 \tilde{H}_{\alpha}$ with

$$\tilde{H}_{\alpha} = -\frac{\Delta_x}{2} + \frac{1}{\alpha} \int_{\mathbb{R}^3} \frac{1}{|x-y|^2} (a_y^* + a_y) \, dy + \frac{1}{\alpha^2} \int_{\mathbb{R}^3} a_y^* a_y \, dy$$

Energy-momentum relation

Due to translation invariance H_{α} commutes with the total momentum

$$P_{\text{tot}} = -i\nabla_x + P_f \text{ with } P_f = d\Gamma(-i\nabla).$$

Hence there is a direct integral decomposition

$$H_{\alpha} \cong \int_{\mathbb{R}^3}^{\oplus} H_{\alpha}(P) \, dP$$

with fiber Hamiltonian

$$H_{\alpha}(P) = \frac{1}{2}(P - P_f)^2 + \sqrt{\alpha} \int_{\mathbb{R}^3} \frac{1}{|y|^2} (a_y^* + a_y) \, dy + \int_{\mathbb{R}^3} a_y^* a_y \, dy$$

Note: $H_{\alpha}(P)$ acts on \mathcal{F} and describes the system at total momentum P.

The energy-momentum relation is defined as

$$P \mapsto E_{\alpha}(P) := \inf \sigma(H_{\alpha}(P)).$$

Effective mass $M_{\alpha}^{\text{eff}} := 1/E_{\alpha}^{\prime\prime}(0).$

Energy-momentum relation

For
$$\alpha = 0$$
 one finds $E_0(P) = \min\{\frac{P^2}{2}, 1\}$

For $\alpha > 0$ the expectation from physics is that $E_{\alpha}(P)$ looks like

Two characteristic regimes

- $E_{\alpha}(P) \approx E_{\alpha}(0) + \frac{1}{2M_{\alpha}^{\text{eff}}}P^2$ for all $P^2 \ll 2M_{\alpha}^{\text{eff}}$ (quasi-particle regime)
- $E_{\alpha}(P) \longrightarrow \inf \sigma_{\mathrm{ess}}(H_{\alpha}(P))$ as $|P| \to \infty$ (radiation regime)

Note: $\sigma_{\text{ess}}(H_{\alpha}(P)) = [E_{\alpha}(0) + 1, \infty)$ as shown by Møller 06

Qualitative results

A non-complete list of known qualitative results

- $E_{\alpha}(0) \leq E_{\alpha}(P)$ (L. Gross 72)
- Domain of analyticity in P and α (J. Fröhlich 74, Spohn 88)
- Monotonicity and concavity of $|P| \rightarrow E_{\alpha}(|P|)$ (Polzer 22)

Our first result proves that P = 0 is the unique global minimum.

Theorem (Lampart–M–Myśliwy 22) For all $\alpha \ge 0$ and $P \in \mathbb{R}^3$ $E_{\alpha}(0) < E_{\alpha}(P).$

Based on a Perron–Frobenuis argument (motivated by Gerlach–Löwen 91)

In the probabilistic framework this was also shown by Dybalski–Spohn 20 (under a certain technical assumption) and Polzer 22

Corollary: The Fröhlich Hamiltonian H_{α} does not have a ground state. In particular there is no self-trapping at finite α .

Quantitative estimates for large α

From Donsker–Varadhan 83 and Lieb–Thomas 97 we know that

$$E_{\alpha}(0) = \alpha^2 e^{\operatorname{Pek}} + o(\alpha^2) \quad \text{as} \quad \alpha \to \infty$$

with $e^{\text{Pek}} < 0$ the infimum of the semi-classical Pekar energy functional. Our next result gives a parabolic upper bound on $E_{\alpha}(P) = \inf \sigma(H_{\alpha}(P))$

Theorem (M–Myśliwy–Seiringer 22) There exists a C > 0 such that

$$E_{\alpha}(P) \le \alpha^2 e^{\text{Pek}} + \frac{1}{2} \text{Tr}_{L^2}(\sqrt{H^{\text{Pek}}} - 1) + \frac{1}{2\alpha^4 M^{\text{Pek}}}P^2 + C\alpha^{-\frac{1}{2}}$$

for all $|P| \lesssim \alpha^2$, where

- $0 \leq H^{\text{Pek}} \leq 1$ is an explicit operator on $L^2(\mathbb{R}^3)$
- $M^{\text{Pek}} = \frac{2}{3} \|\nabla \varphi\|_2^2$ is the semi-classical effective mass (Lan–Pek 48)

A similar lower bound for $E_{\alpha}(0)$ was obtained by Brooks–Seiringer, hence

$$E_{\alpha}(0) = \alpha^{2} e^{\text{Pek}} + \frac{1}{2} \text{Tr}_{L^{2}}(\sqrt{H^{\text{Pek}}} - 1) + o(1).$$

Excited bound states

Our last result concerns the existence of excited energy bands below the essential spectrum $\sigma_{\text{ess}}(H_{\alpha}(P)) = [E_{\alpha}(0) + 1, \infty).$

Theorem (M–Myśliwy–Seiringer, in prep.) Let $\sigma_{\text{disc}}(H_{\alpha}(P))$ be the discrete part of the spectrum of $H_{\alpha}(P)$. There exists a $\zeta \in (0, 1)$ such that

$$|\sigma_{\rm disc}(H_{\alpha}(P))| \xrightarrow{\alpha \to \infty} \infty$$
 for all $|P| \lesssim \alpha^{2-\zeta}$

Based on upper bounds for the min-max values of $H_{\alpha}(P)$

The existence of excited energy bands was previously not known. In fact there are predictions that such excited bound states would not exist.

Summary

- $P \mapsto E_{\alpha}(P)$ attains its unique global minimum at P = 0
- Optimal parabolic upper bound for $E_{\alpha}(P)$ for large α
- Number of excited energy bands diverges as $\alpha \to \infty$

Many open problems

- Matching parabolic lower bound for $E_{\alpha}(P)$
- Asymptotic formulas for the excited energy bands
- Does $E_{\alpha}(P)$ enter the essential spectrum for large |P|?
- Large α limit of the effective mass $M_{\alpha}^{\text{eff}} \sim \alpha^4 M^{\text{Pek}}$ (Volker's talk)

Thank you for your attention