Aharonov–Casher theorem on domains with boundary

M. Fialová

talk based on my PhD thesis advised by J.P. Solovej

Quantissima August, 2022

Institute of Science and Technology Austria

Problem: A relativistic massless charged particle in a plane region Magnetic field $\vec{B} = (0, 0, B)$ (parts $B_0; B_1, B_2, ...$) Vector potential $\vec{a} = (a_x, a_y, 0)$, $(\vec{\nabla} \times \vec{a} = \vec{B}, \operatorname{div} \vec{a} = 0)$ Flux $\Phi = \int \vec{B} \cdot \mathrm{d}\vec{S} = \oint \vec{a} \mathrm{d}\vec{s}$

Figure: \mathbb{R}^2 with holes

Figure: A disc with holes

(Formal) Hamiltonian for a particle in a plane region

Dirac operator

$$D_a = \sigma^1(-\mathrm{i}\partial_x - a_x) + \sigma^2(-\mathrm{i}\partial_y - a_y)$$

On \mathbb{C}^2 valued square integrable functions

Pauli operator

(non-relativistic limit, taking the interaction spin-mag. field into account)

$$D_a^2 = H_a = -\sum_{j \in \{x,y\}} (\partial_j - ia_j)^2 I + B\sigma^3$$

$$\sigma^{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma^{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma^{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Boundary conditions

Let M be a manifold with compact boundary ∂M Let V be a "suitable" vector space Let D be a Dirac operator, $D_{max} \subset L^2(M, V)$ its maximal domain Denote by ∂_n the inward normal vector field on ∂M Rewrite locally: $D = \sigma(\partial_n + A)$, where $\sigma : \partial M \to \operatorname{End}(V)$, A is a Dirac operator on ∂M

 $dom(D) = \{u \in dom(D_{max}) \mid u|_{\partial M} \in a \text{ spectral subspace } \mathsf{BC} \text{ of a boundary operator } \}$

BC is called boundary condition

APS boundary condition on circular boundaries

Gauge invariance

We can choose the fluxes inside the holes so that $\Phi_{1,2,...,N} \in 2\pi \left[-\frac{1}{2}, \frac{1}{2}\right).$ astitute of nce and Fechnology Austria イロト イヨト イヨト イヨト

N is the number of the holes

 $\lfloor y \rfloor$... the biggest integer strictly smaller then *y*, Φ ... the total flux of the magnetic field *a*, ZM= zero modes.

Theorem

Let D_a be the Dirac operator on $\mathbb{R}^2 \setminus \bigcup_{k \leq N} \Omega_k$ with the magnetic field a in the AC gauge. Then if $\left|\frac{\Phi}{2\pi}\right| > 1$, the number of ZM of D_a with the APS boundary condition is $\left|\frac{|\Phi|}{2\pi}\right|$.

Theorem

Let D_a be the Dirac operator on $\Omega_{out} \setminus \bigcup_{k \leq N} \Omega_k$ with the magnetic field a in the AC gauge. Then the number of ZM of D_a with the APS boundary condition is $\left| \left\lfloor \frac{\Phi}{2\pi} + \frac{1}{2} \right\rfloor \right|$.

If $\Phi > 0 \Rightarrow$ ZM have spin up. If $\Phi < 0 \Rightarrow$ ZM have spin down.

Proof idea [Aharonov–Casher 1979]

$$D_{a} \begin{pmatrix} u^{+} \\ u^{-} \end{pmatrix} = 0$$
, Ansatz: $u^{\pm} = e^{\pm h}g^{\pm}$. Then
 $0 = \left[\partial_{\overline{z}} - \frac{ia}{2}\right]u^{+} = e^{h}\left[\partial_{\overline{z}} + \partial_{\overline{z}}h(z) - \frac{ia}{2}\right]g^{+}$,
 $0 = \left[\partial_{z} - \frac{i\overline{a}}{2}\right]u^{-} = e^{-h}\left[\partial_{z} - \partial_{z}h(z) - \frac{i\overline{a}}{2}\right]g^{-}$
 $\Rightarrow \partial_{\overline{z}}g^{+} = 0 \Rightarrow g^{+}(z) = \sum_{k\geq 0} d_{k}z^{k}$
Aharonov–Casher gauge: $\partial_{\overline{z}}h(z) = \frac{ia}{2} \xrightarrow{\text{div}a=0} -\Delta h = B \in C_{0}^{\infty}$,
Choose $h(z) = \frac{-1}{2\pi}\int \log|z - z'|B(z') \, dz' \, d\overline{z}'$, $z \notin \text{supp}B$.
 $u^{+} = e^{h}g^{+}(z) = |z|^{-\Phi/2\pi}(1 + \mathcal{O}(|z|^{-1})) \sum_{k_{0}\geq k\geq 0} d_{k}z^{k}$, as $|z| \to \infty$

Extending the Aharonov-Casher idea to the case with boundary

Using the APS boundary condition

- ▶ problem: function g^+ is analytic only outside of the holes, we have Laurent series $g^+(z) = \sum_{k \in \mathbb{Z}} d_k z^k$
- **solution**: use the boundary condition to find out if d_k vanish for some k
- means: multiply u⁺ by a convenient function e^G whose restriction to the boundary cancels the exponential term in the boundary condition. The exponential e^{G+h} turns out to be analytic inside Ω₁

$$\begin{split} \mathrm{e}^{G} u^{+} &= \mathrm{e}^{G+h} g^{+} \quad \text{by Aharonov-Casher ansatz} \\ u^{+} \big|_{\partial \Omega_{1}} &= \sum_{k > \frac{\Phi_{1}}{2\pi} - \frac{1}{2}} d'_{k} \begin{pmatrix} \mathrm{e}^{\mathrm{i}\varphi k} \\ 0 \end{pmatrix} \quad \times \mathrm{e}^{\mathrm{i} \int_{0}^{\varphi} \vec{a}(s) \, \mathrm{d}\vec{s} - \mathrm{i} \frac{\Phi_{1}}{2\pi} \varphi} \,, \qquad d'_{k} \in \mathbb{C} \end{split}$$

Sphere with N holes

Stereographic projection Conformal transformation of the Dirac operator with the APS boundary condition All the fluxes sum to zero

Theorem

Let D_a be the Dirac operator on $\mathbb{S}^2 \setminus \bigcup_{k \leq N} \Omega_k$ with magnetic field a such that $\int_{\mathbb{S}^2} B = 0$. Denote $\widehat{\Phi} = \Phi'_2 + \cdots + \Phi'_N + \Phi_0$ with $[-\pi, \pi) \ni \Phi'_k = \Phi_k + 2\pi m_k$, $k = 2, \ldots, N$ and Φ_0 the flux in the bulk. Then there are $\left| \left| \frac{\widehat{\Phi}}{2\pi} + \frac{1}{2} \right| \right|$

ZM of the operator D_a with the APS boundary conditions.

If $\widehat{\Phi} > 0 \Rightarrow$ ZM have spin up. If $\widehat{\Phi} < 0 \Rightarrow$ ZM have spin down.

Figure: Setting of the bounded region with magnetic field.

Concluding remarks

- Dirac operator
- Atiyah–Patodi–Singer boundary condition
- Zero modes (Aharonov–Casher theorem, Index theorem)
- Anomalies in QFT, Domain-Wall-Fermions

