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Quantum System of N Fermions

Hamilton operator of N identical spinless fermions:

HN :=
N∑

i=1
(−∆i) + λ

∑
1≤i<j≤N

V (xi − xj) with V : R3 → R .

Acts on the L2–subspace of antisymmetric wave functions of 3N variables

ψ(xσ(1), xσ(2), . . . , xσ(N)) = sgn(σ)ψ(x1, x2, . . . , xN) ∀σ ∈ SN .

Time evolution is described by Schrödinger equation:

i∂tψt = HNψt

initial data ψ0

}
⇔ ψt = e−iHN tψ0 .
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Mean–Field Scaling Limit = High Density & Weak Interaction

• High density: N fermions, (at least initially) confined by external trapping
potential or fixed–size torus and N → +∞

• Weak interaction? For simplicity consider antisymmetrized elementary tensors

ψ = 1
N!

∑
σ∈SN

sgn(σ)φσ(1) ⊗ · · · ⊗ φσ(N)

of plane waves φj(x) := 1
(2π)3/2 exp (ikj · x) with momenta kj ∈ Z3:

⟨ψ,
N∑

j=1
(−∆j)ψ⟩ =

∑
|k|≤cN1/3

|k|2 ∼ N5/3 c. f. ⟨ψ, λ
∑

1≤i<j≤N
V (xi −xj)ψ⟩ ∼ λN2 .

fermionic mean–field scaling: λ = N−1/3 (bosons: λ = N−1)
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Semiclassical Time Scale

• Velocity ∼ highest momenta k ∼ N1/3.
A particle traverses the torus in a time of order N−1/3.
We consider t = N−1/3τ , where τ ∼ 1:

iN1/3∂τψτ =

 N∑
j=1

−∆xj + 1
N1/3

∑
1≤i<j≤N

V (xi − xj)

ψτ .

• Convention: define effective Planck constant ℏ := N−1/3 and multiply by ℏ2

Fermionic mean–field scaling is naturally a semiclassical scaling:

iℏ∂τψτ =

 N∑
j=1

−ℏ2∆xj + 1
N

∑
1≤i<j≤N

V (xi − xj)

ψτ with ℏ = N−1/3 .
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Goal: Approximate ψτ by simpler initial value problems (effective theories)

• Vlasov equation:
on classical phase space, no quantum effects retained, “semiclassical”

• Hartree–Fock equation:
quantum, only the unavoidable minimum of entanglement due to the
antisymmetry requirement (kinematic entanglement)

• Random Phase Approximation:
quantum, entanglement of particle–hole pairs (leading order of the dynamical
entanglement, i. e., due to the many–body interaction)

{Vlasov,HF,RPA} is not an ordered set (no transitive or antisymmetric relation):

• Simpler equations may permit more precision in computations!
• Do we enlarge or restrict the set of permitted initial data?
• More effects neglected — more mathematical work to estimate them?
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Vlasov Equation



Classical Approximation

• In classical mechanics a system is described by a particle density on phase phase:

f : R3 × R3 → [0,∞) ,
∫

f (x , p)dxdp = 1 .

• Classical mean–field evolution for fτ : Vlasov equation

∂fτ
∂τ

+ 2p · ∇x fτ︸ ︷︷ ︸
free transport

= − F (fτ ) · ∇pfτ︸ ︷︷ ︸
mean–field force

where
F (fτ ) := −∇(V ∗ ρfτ ) , ρfτ (x) :=

∫
fτ (x , p)dp .
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From Quantum to Classical

• From quantum mechanics to phase space:
For ψ ∈ L2(R3)⊗N , define the one–particle reduced density matrix

γψ := N tr2,...,N |ψ⟩⟨ψ|

and then the Wigner transform

Wψ(x , p) := 1
(2π)3

∫
e−ip·y/ℏ γψ

(
x + y

2 ; x − y
2

)
dy .

• Narnhofer–Sewell ’81: Wψτ converges to solution of Vlasov equation for analytic V,
• Spohn ’81: generalization to twice differentiable V ,
• B–Porta–Saffirio–Schlein ’16: with explicit rate estimates,
• Chong–Lafleche–Saffirio ’20–’22: singular V for mixed states as initial data,
• Chen–Lee–Liew 19–’22: Husimi function, mixed norm of two–particle r. d. m.
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Hartree–Fock Approximation



Hartree-Fock Approximation

Restrict to antisymmetrized elementary tensors (Slater determinants)
ψ = A(φ1 ⊗ . . .⊗ φN) and optimize the choice of the φj ∈ L2(R3).

• Approximate time evolution

e−iHNτ/ℏA(φ1,0 ⊗ . . .⊗φN,0) ≃ A(φ1,τ ⊗ . . .⊗φN,τ )

• Hartree-Fock equations, for i = 1, 2, . . .N:

iℏ∂τφi ,τ = −ℏ2∆φi ,τ + 1
N

N∑
j=1

(
V ∗ |φj,τ |2

)
φi ,τ

− 1
N

N∑
j=1

(
V ∗ (φi ,τφj,τ )

)
φj,τ

Dirac–Frenkel principle:

Submanifold M ⊂ H .
1
i HNψτ

Tψτ M

Pτ 1
i Hψτ

ψτ

M

Pτ = orthog. projection on Tψτ M

[Lubich ’08, B–Sok–Solovej ’18]
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Rigorous Error Estimates

• Erdős–Elgart–Schlein–Yau ’04: Convergence from Schrödinger equation to
Hartree–Fock equation for short times, τ < τ0. Analytic V .

• Hartree–Fock equation for scalings with weaker interaction or shorter time scale:
• Bardos–Golse–Gottlieb–Mauser ’03
• Fröhlich–Knowles ’11
• Pickl–Petrat ’14
• Bach–Breteaux–Petrat–Pickl–Tzaneteas ’16.

• B–Porta–Schlein ’14: V ∈ L1(R3) with
∫

|V̂ (p)|(1 + |p|)2dp < ∞, arbitrary τ .

• generalizations: mixed states B–Jakšić–Porta–Saffirio–Schlein ’16,
singular interactions: Porta–Rademacher–Saffirio–Schlein ’17,
Chong–Lafleche–Saffirio ’21–’22
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Theorem (B–Porta–Schlein ’14)

Let V ∈ L1(R3) with
∫

|V̂ (p)|(1 + |p|)2dp < ∞.

Let {φj}∞
j=1 be an orthonormal basis in L2(R3).

Let ψ0 = A(φ1 ⊗ . . .⊗ φN). Assume semiclassical commutator bounds

∥[xi , γψ0 ]∥tr ≤ CNℏ , ∥[iℏ∂i , γψ0 ]∥tr ≤ CNℏ , ∀i = 1, 2, 3.

Let
• γψt : one–particle reduced density matrix of the solution of the Schrödinger

equation with initial data ψ0,
• γHF

t : solution of the Hartree–Fock equation with initial data γψ0 .

Then

∥γψt − γHF
t ∥tr ≤ CN1/6ecec|t| (compare to tr γψt = N = tr γHF

t ) .
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Construction of Semiclassical Initial Data

We require an ℏ–gain in commutators with position and momentum:

∥[xi , γψ0 ]∥tr ≤ CNℏ , ∥[iℏ∂i , γψ0 ]∥tr ≤ CNℏ .

Verified for non–interacting fermions in different situations:

• translation invariant state: plane waves on torus (stationary under the HF
evolution even when the interaction is switched on)

• in general trapping potentials [Fournais–Mikkelsen ’19]: by semiclassical analysis
• in a harmonic oscillator: by explicit computation [B’ 22]

Experimentally: quantum quench, i. e., prepare non–interacting trapped fermions in
ground state, than switch on the interaction (and optionally switch off the trap).
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Random Phase Approximation



Excitations over the Fermi ball

Start from the Fermi ball of the Hamiltonian on the torus. The Fermi ball is stationary
under HF evolution. We study the evolution of its b excitations.

Split off the stationary Fermi ball by a particle–hole transformation:

R a∗
k R∗ :=

{
a∗

k |k| > ( 3
4π )1/3N1/3

ak |k| ≤ ( 3
4π )1/3N1/3 .

Expand R∗HNR and normal–order

R∗HNR = Epw
N + ℏ2 ∑

p∈Bc
F

p2a∗
pap − ℏ2 ∑

h∈BF

h2a∗
hah

︸ ︷︷ ︸
=: Hkin

+
∑

h∈BF

X

︸ ︷︷ ︸
exchange term,

negligible

+
∑

h∈BF

Q

︸ ︷︷ ︸
interaction, quartic in

operators a∗ and a

Try to find a quadratic approximation to the excitation Hamiltonian Hkin + Q.

(Quadratic Hamiltonians can be diagonalized by Bogoliubov transformations.) 11



Bosonization of the Interaction

Observe: if we introduce collective pair operators

b∗
k :=

∑
p∈Bc

F
h∈BF

δp−h,ka∗
pa∗

h
p “particle” outside the Fermi ball
h “hole” inside the Fermi ball

then
Q = 1

N
∑

k∈Z3

V̂ (k)
(
2b∗

kbk + b∗
kb∗

−k + b−kbk
)

+ O
(N 2

N
)
.

This is convenient because the b∗
k and bk have approximately bosonic commutators:

[b∗
k , b∗

l ] = 0 , [bl , b∗
k ] = δk,ln2

k + E(k, l) .

But how to express Hkin through pair operators?

12



Bosonization of the Interaction

Observe: if we introduce collective pair operators

b∗
k :=

∑
p∈Bc

F
h∈BF

δp−h,ka∗
pa∗

h
p “particle” outside the Fermi ball
h “hole” inside the Fermi ball

then
Q = 1

N
∑

k∈Z3

V̂ (k)
(
2b∗

kbk + b∗
kb∗

−k + b−kbk
)

+ O
(N 2

N
)
.

This is convenient because the b∗
k and bk have approximately bosonic commutators:

[b∗
k , b∗

l ] = 0 , [bl , b∗
k ] = δk,ln2

k + E(k, l) .

But how to express Hkin through pair operators?

12



Bosonization of the Kinetic Energy

Fermi ball BF

ωα

[Benfatto–Gallavotti ’90]
[Haldane ’94]

[Fröhlich–Götschmann–Marchetti ’95]

[Kopietz et al. ’95]

Localize to M = M(N) patches near the Fermi surface,

b∗
α,k := 1

nα,k

∑
p∈Bc

F ∩Bα
h∈BF ∩Bα

δp−h,ka∗
pa∗

h

with nα,k chosen to normalize ∥b∗
α,kΩ∥ = 1.

Linearize kinetic energy around patch center ωα:

[Hkin, b∗
α,k ] ≃ 2ℏ|k · ω̂α|b∗

α,k .

We approximate

Hkin ≃
∑

k∈Z3

M∑
α=1

2ℏuα(k)2b∗
α,kbα,k , uα(k)2 := |k·ω̂α| .
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Decomposing the Interaction over Patches

Recall
Q = 1

N
∑

k∈Z3

V̂ (k)
(
2b∗

kbk + b∗
kb∗

−k + b−kbk
)

Decompose

b∗
k =

M∑
α=1

nα,kb∗
α,k + lower order .

Normalization:
n2
α,k = #p-h pairs in patch Bα with momentum k

≃ 4πN2/3

M |k · ω̂α| = 4πN2/3

M uα(k)2 .

kωα

Effective Quadratic Bosonic Hamiltonian

Heff= ℏ
∑

k∈Z3

[∑
α

uα(k)2b∗
α,kbα,k+ V̂ (k)

M
∑
α,β

(
uα(k)uβ(k)b∗

α,kbβ,k+uα(k)uβ(k)b∗
α,kb∗

β,−k+h.c.
)]
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Bogoliubov Diagonalization

Quadratic Hamiltonians can be diagonalized by a Bogoliubov transformation

T = exp
( ∑

k∈Z3

M∑
α,β=1

K (k)α,βb∗
α,kb∗

β,−k − h.c.
)
.

Expanding into commutators we find

T ∗bα,kT ≃
M∑
β=1

cosh(K (k))α,βbβ,k +
M∑
β=1

sinh(K (k))α,βb∗
β,−k .

Choose the M × M–matrix K (k) to make b∗b∗– and bb–terms vanish from T ∗HeffT :

T ∗HeffT ≃ ERPA
N + ℏ

∑
k∈Z3

M∑
α,β=1

E (k)α,βb∗
α,kbβ,k .

In particular, the ground state of Heff is ξgs ≃ TΩ, and therefore the ground state of
HN is approximately RTΩ. Now add bosonic excitations and follow their evolution!
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Effective Bosonic Evolution

Note that this is an (approximately) bosonic second quantization:

T ∗HeffT ≃ ERPA
N + ℏ

∑
k∈Z3

M∑
α,β=1

E (k)α,βb∗
α,kbβ,k

≃ ERPA
N + dΓbosonic

(
ℏ
⊕
k∈Z3

E (k)
︸ ︷︷ ︸

=: HB

)
.

Consider a one–boson state

η ∈
⊕
k∈Z3

CM (M was the number of patches) .

The time–evolution in the (first quantized) one–boson space is

ηt := e−iHBτ/ℏη0 .
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For a one–boson state η ∈
⊕
k∈Z3

CM define: b∗(η) :=
∑

k∈Z3

M∑
α=1

b∗
α,kη(k)α .

Theorem (B–Nam–Porta–Schlein–Seiringer ’21)

Assume that V̂ (p) is compactly supported and non–negative. Let

ξ0 := 1
Zm

b∗(η1) · · · b∗(ηm)Ω , ξt := 1
Zm

b∗(η1,τ ) · · · b∗(ηm,τ )Ω .

Then
∥e−iHNτ/ℏRT ξ0 − e−i(Epw

N +ERPA
N )τ/ℏRT ξτ∥ ≤ Cm,Vℏ1/15|τ | .

If HBηi = eiηi (ei ∈ R) then we have constructed an approximate eigenstate of the
many–body Hamiltonian, evolving up to times |τ | ≪ N1/45 just with a phase:

e−iHNτ/ℏRT ξ0 ≃ e−i
(

Epw
N +ERPA

N +
∑m

j=1 ej
)
τ/ℏRT ξ0 .
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Spectrum of the bosonic effective theory [B ’20, Christiansen–Hainzl–Nam ’22]
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• plasmon mode (collective oscillation) emerges for long–range interaction
• bulk of the spectrum almost unchanged

Robustness of the bulk of the spectrum as an indicator of Fermi liquid behavior?
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