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@ General setup of loop ensembles.

@ Specific examples: the Symanzik and Ginibre loop ensembles.
@ Setup of many-body quantum theory.

© Statement of our results.
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Loop ensembles

Let Q0 = loop space.

Definition (Loop ensemble)

A loop ensemble @ is a random point process on (2.
— a random, locally finite collection of elements of (.

IL = single-loop measure. — a (finite) positive measure on (.

Definition (Noninteracting loop ensemble)

The noninteracting loop ensemble associated with 1L is the Poisson point
process on §2 with intensity measure L.
— a random, locally finite collection of elements of ().

The loop configuration wy, ..., w, carries the weight

1
7 o Ldw) - Lidwn), 2= Z / (dwy) - - L(dw,) .

nGN

Z-normalisation, n!-comes from permuting the w;.
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Interacting loop ensembles

@ Two-loop interactionis V : Q@ x Q — R.
® n-loop interaction potentialis V (wi, ..., wn) := 5 > 7 V(wi,w;).

@ Boltzmann factor: ¢V (@en

Definition (Interacting loop ensemble)
Interacting loop ensemble ®: Loop configuration w, . . . ,w, carries weight

~ L(dwr) -+ L(dwp) o~V @)

Zl' / d(.(}l ]L(dwn)(\7\7(;\......&',
nen v

Z
Z =
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p-loop correlations

Characterise ® by p-loop correlations ~,, p ¢ N*.
For all f > 0 symmetric

/f(wl, s wp) Yplwr, . wy) L(dwy) - - - L(dwp) = E[ Z flwr,... .,wp)] ,
Z = sum over distinct p-tuples of loops.
w1 .,UJP
We obtain -, (w. ..., ) = el fwhere

Z(wl,.‘., Z o / (den) - - L(dwy,) 7‘/(“’1""’”9’&’1""’@’"),

neN

Z = 7(0).

— For the noninteracting loop ensemble v, =1 Vp € N*.
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@ Fix d, L € N* and work on the finite lattice A := [~ L/2,L/2)% Nz
@ Discrete Laplacian: for f : A — C consider

Af(z):= Y (fly)— f(z)) (with periodic b.c.)

yily—z|=1

e O -setofw: [0, 7] — A with w(0) =z, w(T) = y.

Y,x

(assume w is ‘cadlag’: right-continuous with left limits).

@ Define
Or = U of . Q::UQT.
z,yEA T=>0
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@ PI' = the law on Q7 of the continuous-time random walk starting at x
(Markovian jump process with generator A/2). On Q. define

Wi, (dw) = 1)y PL (dw) , W7 (dw) := /A dz W7 (dw).

@ Lety! =c!®/2 Forf: A" 5 C,0<t; <---<t,<T

/ Wgw(dw) flw(t),...,w(t,)) = /n dzy - -da, " (2 — )

X 1/)25241 (2 —@1)- - wtnitn*l (T — Tp-1) UJT?tn (Y =) f(1,.. ., 20)

@ W7 path measure for closed paths (loops).
e W : path measure for open paths from z to y.
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Example 1: The Symanzik loop ensemble

The Symanzik loop ensemble has single-loop measure

ge el efHT
LY (dw) := / dT W (dw) .
0 T

@ ~ > 0 (the negative chemical potential)
e T suppresses long loops.

@ 1/T-compensate overcounting for choice of origin in [0, 7]

@ L (dw) is not finite (from small T contribution).
— Consider an appropriate regularisation.

@ Two-loop interaction: Given a two-body interaction potential v : A — R,

let
T(w) T'(a B
VY (w, @) / dt / dtv(w(t) — o)) .
Forw e Qf ., write 7'(w) —
@ n-loop interaction potential: Vd( Swn) =5 0y Vi wi, wj).
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Interacting Euclidean field theories

The loop ensemble was introduced by Symanzik (1968) to describe
interacting Euclidean field theories.
@ ¢ : A — C distributed according to complex Gaussian measure with mean
zero and covariance (—A + x/2) ™!

! o(6(8/2-R)8)
Al det(—A/2 + k)1

(= Agry2)-1 (de) =

@ Relative (classical) partition function

el ._ //J(—A/QJrn)*l(dCb)ei% Jade [y dylo(@)? v(e—y) [6w))*
@ Classical p-point correlation function

. 1 g P B p
(C)ny = g [ #i-aszen-+(06) [T 00 [ ot
: i=1 =1
% o3 Jadz [ dylo(@)® v(z—y) [¢(y)*
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Interacting Euclidean field theories

. 1 P p
(Tp)xy = Zd /N(fA/Qﬂz)*l(d(f’) [T6w) [ o)
i=1 1=1
« e~ % [adz [ dy (@) v(z—y) [6(y)|*

Symanzik’s observation: We can write

p P
(FCI = <H/ dT e ) (H/Wgw(i)vf”i (dwl)> fyzc)l(wh s 7w1)) )
TESy i=1

7;1 (w1,...,wp): p-loop correlation functions of the loop ensemble.
— Consider p open paths wi, ..., w,,.
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Example 2: The Ginibre loop ensemble

Fix parameters v, k, A > 0. The Ginibre loop ensemble has single-loop

measure
L""(dw) :==v Z (dw) .
TevN*
— Riemann sum approximation of I(dw) = [~ ¢ %/ WT (dw).

@ Two-loop interaction:

VM w, @) : %1/ ZlKTW)'/Z 1.

sevN sev!

1 .
xf/o dtv(w(s+1t) —@(5+1)).

v,

@ For )\ = 12, view as discretisation of

T(w) (&)
Nw, @) = tv(w(t) —a(t)) .
Viwa) = [ [ dioe) —a)
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Comparing the Symanzik and Ginibre loop ensemble

FIGURE. Left: Symanzik loop ensemble. Right: Ginibre loop ensemble.
Full lines: random loops, Dotted lines: interaction V(w, ©).
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The interacting Bose gas at positive temperature

The loop ensemble was introduced by Ginibre (1964) to describe interacting
Bose gases at positive temperatures.

@ System of n spinless bosons of mass m > 0 confined to A, governed by
the Hamiltonian

n

H,, == —

5 SRE
i= 1 1,j=1
acting on H,, = L2, (A"™).

@ Grand canonical ensemble at positive temperature. Equilibrium state
described by sequence (p,,),

Pn = ! e AlHn—pn) == Z Tr(e*ﬂ(H"”m)) .

neN

@ 3 > 0: inverse temperature.
@ . < 0: chemical potential.
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The interacting Bose gas at positive temperature

Set 8 = 1. Replace m, u with

1
vi=—>0, Ki=—um >0.
m

Rewrite grand canonical ensemble as

1 VA ; VAL
plrllh AL 67<H"’ er/n)7 :V,n,A - § TT(67<H"’ Jr/-u/n)) 7

HI/,R,)\
neN

and Hamiltonian as
HA :_—fZA + = Z v(z; — ;).
1,j=1
The reduced p-particle density matrix of the grand canonical ensembile is

N (p + n)' VKA
F;, " — Z ] Trpt1,... ptn (prn ) .
neN

p+n: the partial trace in zpq1, ..., Tpin.

V. Sohinger (Warwick) Loop ensembles talk Quantissima, August 23, 2022. 14/26



Comparing the Ginibre and Symanzik representation

(T1)x - operator kernel of I'%.

M wi, - w,): correlation funct|on of Ginibre loop ensemble.

Ginibre representation: Ginibre (1964)

VP (D5 )y =

p
> (HV > e )(H/Wyw(),“ ) YR W)

meSy \i=1 T;evN*

— Compare with the Symanzik representation

— Reduce to comparing /" (wi. .. wy)and 3wy wp)-
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The mean-field (classical field) limit

Mean-field limit: » — 0, A\ = v? and « > 0 is fixed. Recall

1
v=—>0, k=—um>0. ()
m
— Interpret as large mass + large chemical potential limit or high

temperature + high density limit.

Theorem 1: Fréhlich, Knowles, Schlein, S. (Preprint, 2020).

Let v : A — R be pointwise nonnegative and of positive type (¢ > 0 pointwise).
Then the following limits hold.
(i) lim,_ 2"~ = Z°,

2

(ii) lim, o P (T4 )y = (Tg)x,y forallp € N* and x,y € AP,

— Previously shown by other methods Knowles (PhD Thesis, 2009).
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The large-mass (classical particle) limit

Large-mass limit: v — 0,\ = 1,x = =2 > 0 for fixed o > 0.

1
v=—>0, k=—um>0. (%)
m

— Interpret as large mass limit for fixed chemical potential.

Theorem 2: Fréhlich, Knowles, Schlein, S. (Preprint, 2020).

Let v : A — IR be pointwise nonnegative . Then the following limits hold.
(|) limy_>0 Zl’-ﬁu/’/yl = Zlm-

(ii) Tim, o v? (Ty"™/"")y = (1)), for all p € N* and x,y € A”.

The results extend to the presence of a hard core, i.e. R > 0 s.t. v(z) = oo for
lz| < R.
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The large-mass (classical particle) limit

We describe (1), .

Interpretation: Ensemble of interacting stationary loops of integer time
length.

Single-loop measure:

e*/ﬂgk}

D™ (dw) = Y

keN*

| /A dz Dk (dw)

where DI = atomic measure on Q7" at the constant loop w(t) = z.
Two-loop interaction:

VI (4, &) =

> > /1dtu( (k+1) — ok +1)) .

0<h<T (w) 0<k<T (@)
ey = ([T 3 et 0 [ 1000 ) ).
i=1k; EN ’

— Paths collapse to points.
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The infinite-volume limit

Recall A = Ap = [-L/2,L/2)? N Z. We are interested in taking L — oo.
Fix v € ¢1(Z%) nonnegative and of positive type. Consider

vl AL 5 R, vl (z) = Z v(z+ k).
ke(LZ)d

Specific (relative) Gibbs potential of the Bose gas: gV := L+ log ZV ML,

AL
Classical specific (relative) Gibbs potential: g*-* := ‘ AlL‘ log Z°E,

Theorem 3: Fréhlich, Knowles, Schlein, S. (Preprint, 2020).

Suppose that ||v||,: is sufficiently small. Then the following limits hold.

. . o . ,2 a
i) im0 imy o0 g~ L = limy_, oo gL
—0 g g

(i) lim, o limy, o0 vP (D" L) = limp oo T for all p € N*

We prove an analogous result in the infinite-volume large-mass limit.
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Overview of the literature

@ Mean-field limit in the continuum for d < 3.
e Lewin-Nam-Rougerie (J. E. Polytéchnique 2015, JMP 2018, Inventiones
2020).
@ Frohlich-Knowles-Schlein-S. (CMP 2017, AIM 2019, JSP 2020, JAMS 2021).
o S. (Preprint 2019, to appear in IMRN).
o Rout-S. (Preprint 2022).
On the lattice, we do not need to Wick order for d = 2, 3.

@ Salmhofer (CMP 2021): Regularised coherent state functional integrals
on the lattice.

@ Random walk representation. In classical spin systems,
Brydges-Frdhlich-Spencer (CMP 1982), Brydges-Frohlich-Sokal (CMP
1983).

@ Classical Gibbs state/Gibbs measure for the nonlinear Schrédinger
equation and its invariance: Bourgain (CMP 1994), ....
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Derivation of the Symanzik representation

For fixed = > 0, we consider the regularised single-loop measure
o] e—/»:,T
L (dw) = / dTTWT(dw).

— A finite measure. Recall that

1 . )
V@) = 3 Z VWi, wjp), &= (wi,...,Wn),

where V! (w,@) == [T ar [T dfv(w(t) — &(D))
zehe = Z p /I[fl8 L(lg(dwn)exp( VCI(LU)) eXp(Kg),

n=0
e dr
K* = —/ d—e_"’T /WT(dw).
. T

Claim: 2 = lim,_,, Z°b=.

where
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Derivation of the Symanzik representation

@ Fix v : A — R of positive type (0 > 0).
@ Obtain positive quadratic form f — (f,vf) = [dz [ dyf(z)v(z —y) f(y).
@ ,, = Gaussian measure on R* with covariance v.

/' 1o(do) 0(z) o (y) = v(z — ).

Hubbard-Stratonovich transformation. For f : A — R, we have
oS uh) — / 1 (dor) ) |
The Feynman-Kac formula. For w : A — C,¢ > 0, we have

(et(A/2—u) /W dw e fo dsw(w(s ))
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Derivation of the Symanzik representation

Apply Hubbard-Stratonovich transformation with / = 0| to write

ZCI — /,LL( AJ24r) 1(d¢) (\7% _[\(Ir h(]j/‘()(,r} 21'(.1‘*1/)‘(7(1/)‘“)
_ K)—

:/ i(-a/2n)-1 (d0) < / o (do) mu)

Use Fubini’s theorem and evaluate a Gaussian integral:
ol _ /M(da) / H a2y -1 (dp) €1 42 @IO@F
= /,,Lv(da) det(—A/2+ K —i0) "' det(—A/2+ k).
Note that, for a fixed field o (by det A = exp{Trlog A})
det(=A/2+ & —i0) " det(—A/2 + k)

= cxp{fTrlog(fA/Q + K- i(r) + Trlog(fA/Q + h:)} .
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Derivation of the Symanzik representation

Fora,b € C,Rea,Reb > 0, we have loga —logh = — [ dt (e7ta — e~ P).
Using this identity and the Feynman-Kac formula, we get

— Trlog(—A/2+ k —io) + Trlog(—A/2 + k)
/.\ ar / W (dw) T (Ci JFdto(w(t) _ 1) _
JO T .

(*)

Recall K¢ = — [ 4 e " [WT(dw) and write () as

g

/‘]LCLE(dCU) ei]‘(;"dto(w(t)) +K6+/ d?TefﬂT /WT(dw) (ei./‘(;" dto(w(t)) _ 1) .
. JO .

Smallas e — 0.

Obtain 2 = lim. ., Z°"¢, where

ZN(‘,LE — //Jv(dO') exp{/L“l’E(dw) ol fOT dt o(w(t)) +I(€}.
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Derivation of the Symanzik representation

Expand the exponential

ZNCI.a _ //L,;(d(f) exp{/]Ld’E(dw) (JIJOT dt o(w(t)) —‘—KE}

-3 / L (dwy) -+~ L (dwy) ( / 1o (dor) € S dww») exp(K°).

n!

Apply the Hubbard-Stratonovich transformation with
n T
f(z) = Z / dt §(x — w;(t))
i—1 Y0

(= Inthis case Y7, [, dto(w (1)) = (f,0).)
Deduce that

. — 1 [ . . ol e cle
Zhe=%" = /ILCI‘*(dwl) - L (dwy) exp(=V(@)) exp(K°) = 2°.
n=0 -

Conclusion: 2 = lim._,, Z2°¢.0
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Thank you for your attention!
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