The spin 1 bilinear-biquadratic Heisenberg model on the complete graph

Kieran Ryan

University of Vienna Quantissima 2022

August 23, 2022

- 1. Classical model
- 2. Quantum model
- 3. Ground state phase diagram in 3d

4. Ground state and finite temperature phase diagrams on the complete graph

$$H = H_G(\sigma) = -\sum_{x,y} \sigma_x \cdot \sigma_y$$

x,y neighbouring vertices in finite graph G $\sigma_x \in \mathbb{S}^2$

Measure with density :
$$\frac{1}{Z}e^{-\beta H}$$

 $Z = \int_{(\mathrm{S}^2)^G} e^{-eta H(\sigma)} d\sigma$

$$H = H_{G,\phi} = -\sum_{x,y} \cos(\phi) \frac{\sigma_x \cdot \sigma_y}{\sigma_x \cdot \sigma_y} + \sin(\phi) \frac{(\sigma_x \cdot \sigma_y)^2}{(\sigma_x \cdot \sigma_y)^2}$$

(1)

x, y neighbours in G; $\sigma_x \in \mathbb{S}^2$; measure density $\frac{1}{Z}e^{-\beta H}$ $\phi \in [0, 2\pi)$

$$H = H_G = -\sum_{x,y} \left| \mathbf{S}_x \cdot \mathbf{S}_y \right|$$

x, y neighbours in G H an explicit matrix, acts on Hilbert space $\bigotimes_{x \in G} \mathbb{C}^{2S+1}$ S $\in \frac{1}{2}\mathbb{N}$ the spin number

$$\frac{1}{Z}e^{-\beta H}, \qquad Z = Z(\beta, G) = \mathrm{Tr}e^{-\beta H}$$

Quantum bilinear-biquadratic model

$$H = H_{G,\phi} = -\sum_{x,y} \cos(\phi) \mathbf{S}_x \cdot \mathbf{S}_y + \sin(\phi) (\mathbf{S}_x \cdot \mathbf{S}_y)^2$$

$$\phi \in [0, 2\pi); \ H \text{ acts on } \bigotimes_{x \in G} \mathbb{C}^{2S+1}$$

Set $S = 1$: Most general $SU(2)$ -invariant system

$$H = H_{G,\phi} = -\sum_{x,y} \cos(\phi) \frac{\mathbf{S}_x \cdot \mathbf{S}_y}{\mathbf{S}_x \cdot \mathbf{S}_y} + \sin(\phi) \frac{(\mathbf{S}_x \cdot \mathbf{S}_y)^2}{(\mathbf{S}_x \cdot \mathbf{S}_y)^2}$$

$$H = H_{G,\phi} = -\sum_{x,y} \cos(\phi) \frac{\mathbf{S}_x \cdot \mathbf{S}_y}{\mathbf{S}_x \cdot \mathbf{S}_y} + \sin(\phi) \frac{(\mathbf{S}_x \cdot \mathbf{S}_y)^2}{(\mathbf{S}_x \cdot \mathbf{S}_y)^2}$$

 $\phi = \pi/4$ Björnberg

$$H = H_{G,\phi} = -\sum_{x,y} \cos(\phi) \frac{\mathbf{S}_x \cdot \mathbf{S}_y}{\mathbf{S}_x \cdot \mathbf{S}_y} + \sin(\phi) \frac{(\mathbf{S}_x \cdot \mathbf{S}_y)^2}{(\mathbf{S}_x \cdot \mathbf{S}_y)^2}$$

 $\phi = \pi/4$ Björnberg

Probabilistic representations: Tóth, Aizenman-Nachtergaele, Ueltschi, others

$$H = H_{G,\phi} = -\sum_{x,y} \cos(\phi) \frac{\mathbf{S}_x \cdot \mathbf{S}_y}{\mathbf{S}_x \cdot \mathbf{S}_y} + \sin(\phi) \frac{(\mathbf{S}_x \cdot \mathbf{S}_y)^2}{(\mathbf{S}_x \cdot \mathbf{S}_y)^2}$$

$$\phi = \pi/4$$
 Björnberg

Probabilistic representations: Tóth, Aizenman-Nachtergaele, Ueltschi, others Random walk on S_n or Brauer algebra: Alon-Kozma, Berestycki-Kozma, others

Complete graph results

$$H = H_{G,\phi} = -\sum_{x,y} \cos(\phi) \frac{\mathbf{S}_x \cdot \mathbf{S}_y}{\mathbf{S}_x \cdot \mathbf{S}_y} + \sin(\phi) \frac{(\mathbf{S}_x \cdot \mathbf{S}_y)^2}{(\mathbf{S}_x \cdot \mathbf{S}_y)^2}; \quad G = K_n$$

$$H = H_{G,\phi} = -\sum_{x,y} \cos(\phi) \frac{\mathbf{S}_x \cdot \mathbf{S}_y}{\mathbf{S}_x \cdot \mathbf{S}_y} + \sin(\phi) \frac{(\mathbf{S}_x \cdot \mathbf{S}_y)^2}{(\mathbf{S}_x \cdot \mathbf{S}_y)^2}; \quad G = K_n$$

Explicit formula for the free energy: $\lim_{n \to \infty} \frac{1}{n} \log \operatorname{Tr} \left[e^{-\frac{\beta}{n}H} \right]$

$$H = H_{G,\phi} = -\sum_{x,y} \cos(\phi) \frac{\mathbf{S}_x \cdot \mathbf{S}_y}{\mathbf{S}_x \cdot \mathbf{S}_y} + \sin(\phi) \frac{(\mathbf{S}_x \cdot \mathbf{S}_y)^2}{(\mathbf{S}_x \cdot \mathbf{S}_y)^2}; \quad G = K_n$$

Explicit formula for the free energy: $\lim_{n\to\infty} \frac{1}{n} \log \operatorname{Tr} \left| e^{-\frac{p}{n}H} \right|$

Ground state and finite temperature phase diagrams; critical temperatures

$$H = H_{G,\phi} = -\sum_{x,y} \cos(\phi) \frac{\mathbf{S}_x \cdot \mathbf{S}_y}{\mathbf{S}_x \cdot \mathbf{S}_y} + \sin(\phi) \frac{(\mathbf{S}_x \cdot \mathbf{S}_y)^2}{(\mathbf{S}_x \cdot \mathbf{S}_y)^2}; \quad G = K_n$$

Explicit formula for the free energy: $\lim_{n\to\infty} \frac{1}{n} \log \operatorname{Tr} \left[e^{-\frac{\beta}{n}H} \right]$

Ground state and finite temperature phase diagrams; critical temperatures Magnetisation, total spin

$$H = H_{G,\phi} = -\sum_{x,y} \cos(\phi) \frac{\mathbf{S}_x \cdot \mathbf{S}_y}{\mathbf{S}_x \cdot \mathbf{S}_y} + \sin(\phi) (\mathbf{S}_x \cdot \mathbf{S}_y)^2; \quad G = K_n$$

Explicit formula for the free energy: $\lim_{n\to\infty} \frac{1}{n} \log \operatorname{Tr} \left[e^{-\frac{\beta}{n}H} \right]$

Ground state and finite temperature phase diagrams; critical temperatures Magnetisation, total spin

$$\Phi(\beta, \phi, h) = \lim_{n \to \infty} \frac{1}{n} \log \operatorname{Tr} \left[\exp \left(-\frac{\beta}{n} H + h \sum_{x} S_{x}^{(i)} \right) \right]$$
$$m = m(\beta, \phi) = \frac{\partial \Phi}{\partial h}|_{h=0}$$

Ground state phase diagram on the complete graph

Ground states: \mathbb{Z}^3 vs the complete graph

Ground state and finite temperature diagrams

$$H = H_{G,\phi} = -\sum_{x,y} \cos(\phi) \frac{\mathbf{S}_x \cdot \mathbf{S}_y}{\mathbf{S}_x \cdot \mathbf{S}_y} + \sin(\phi) \frac{(\mathbf{S}_x \cdot \mathbf{S}_y)^2}{(\mathbf{S}_x \cdot \mathbf{S}_y)^2}$$

_ . _ .

On the complete graph

$$H = H_{G,\phi} = -\sum_{x,y} \cos(\phi) \frac{\mathbf{S}_x \cdot \mathbf{S}_y}{\mathbf{S}_x \cdot \mathbf{S}_y} + \sin(\phi) \frac{(\mathbf{S}_x \cdot \mathbf{S}_y)^2}{(\mathbf{S}_x \cdot \mathbf{S}_y)^2}$$

Theorem (R. 2020)

Let $G = K_n$.

$$\lim_{n \to \infty} \frac{1}{n} \log \operatorname{Tr} \left[e^{-\frac{\beta}{n}H} \right] = \max_{(x,y) \in \Delta} \frac{\beta}{2} \left(\sin(\phi) \sum_{i=1}^{3} x_i^2 + (\cos(\phi) - \sin(\phi))y^2 \right) - \sum_{i=1}^{3} x_i \log x_i$$

where $\Delta = \{ (x_1, x_2, x_3, y) \in [0, 1]^4 : \sum x_i = 1, \ x_i \ge x_{i+1}, \ y \le x_1 - x_3 \}$