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Bose-Einstein Condensation

A Bose-Einstein condensate is a state of matter which occurs in dilute gases of
bosonic atoms at very low-temperatures.

Roughly speaking ~~ a macroscopic fraction of the particles behaving as if they
were occupying the same one-particle state.

Final goal: occurrence of BEC in the

thermodynamic limit ~~ far away from rigorous
results.

Mathematical results:

m 3D very well-known (BEC for MF and GP . o
. . . . Figure: Absorption imaging of
regimes, thermodynamic functions known in quasi-2D clouds of Rubidium-87

several regimes)- atoms. Yefsah et al. 2011

m 2D got attention later.
Why 2D?
m Physically relevant for applications;

m Theoretically: critical case for BEC ~~ Mermin-Wagner theorem prevents
condensation at finite temperature.




Mathematical formulation of BEC

m N particle in R?, the state is described by the wave function ¥y € L2(R2V),

s.t. |¥n|l2 = 1. Energy of the system described by Hy;
m A mathematical formalization of BEC for general interacting system by

ONSAGER-PENROSE 56 in terms of one-particle reduced density matrix

’7[(\})(va) = /2(N Y 1pN(X7X2a"'7XN)’L/JN(.)/aX2a"'7XN)dX2"'dXN
R2N—

for 1y € L2(R2N), ||[9n]]2 = 1, can be diagonalized 7,(\}) =3 M) (gj]

Ao = max; Aj is of order O(1), corresponding

BEC < eigenvector is the condensate wave function .

Meaning: all particles, up to a fraction vanishing in the limit N — oo, are
condensated in the one-particle state ¢yg.



Thermodynamic limit vs scaling limits

m Thermodynamic limit: N interacting bosons confined in a box with area L2
~ N, L — oo with the density p = N/L? fixed;

m Dilute regimes: address the problem in simpler, but still physically relevant,
settings, letting the interaction potential depends on the number of particles
N, where N is large.

The N-dependent potential ~~ effective description for interactions occurring
in large many-particle systems.

Examples of effective theories:

m Hartree theory for weak interactions, i.e. range of the interaction potential
much larger than interparticle distance;

m Gross-Pitaevskii theory for strongly interacting systems.



Known results 2D thermodynamic limit

For N bosons interacting through a fixed potential with scattering length a,
confined in a box with area L2, so that N, L — oo with the density p = N/L? kept
fixed, b = | log(pa®)| 1, in the dilute limit pa® < 1, the g.s. energy per particle is
given by

eo(p) = 47rp2b(1 + blogb+ (1/24 2y + log )b+ o(b)) ,

with ~ the Euler’s constant.

m SCHICK '71 predictions for the g.s. energy of 2D gases in the
thermodynamic limit (leading order); confirmed by LIEB-YNGVASON *01;

m second order predictions by ANDERSEN ’02,
PILATI-BORONAT-CASULLERAS-GIORGINI 05, MORA-CASTIN ’09;

m Second order recently proved by
FOURNAIS-GIRARDOT-JUNGE-MORIN-OLIVIERI ’22
(previous results restricting to quasi-free states
FOURNAIS-NAPIORKOWSKI-REUVERS-SOLOVEJ '19).



2D bosons in Gross-Pitaevskii regime

N interacting bosons in a 2D unit box A = [~1/2,1/2]?. The energy of the
system is described by the Hamiltonian acting on L2(AN)

N N
Hy=>_ —Ag+> eNV(e"(x - x)),
j=1

i<j
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O(N) O(N?)
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N N
Hy = Z - A+ Z NV (e (x — x7)),
j=1 i<j
~—— ~——
O(N) O(N?)
Remarks:
m Expectation of Hy on a factorized state p§" is of order O(N?);

m The exponential scaling comes from the 2D scattering length a of V

27 1
—— = inf Vo> + =V|o|?| d
log(R/a) ¢e,‘|-/q(BR) /BR [ oF + 2 || } x

for R > Ry, with Ry range of the potential and with ¢(x) = 1 for all x with
|x|] = R.
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Scattering equation 2D Gross-Pitaevskii

The unique minimizer satisfies —A@(R) + %ng(R) =0

PR (x) = ll(2>gg((|;|//c?)) for Ry < x| < R.

By scaling, én(x) := ¢(¢"R)(eNx) is such that

—Aoy + %ezN V(eNx)pn = 0.
We have log(Ix/an)
og(|x|/an s _N
= 7 V. R~ : R <R
¢N(X) Iog(R/aN) X € e 0 < |X| < s

for all x € R? with e VR < |x| < R. Here ay = e Na
~~ if we consider

/ NV(Mx)dn(x) ~ O (L)
Br

N



Previous results

m LIEB-SEIRINGER- YNGVASON ’01,’06 , LIEB-SEIRINGER '01,’02 for
bosons confined by external trapping potentials:

m the ground state energy Ey of Hy is such that
En =27N(1+ O(N~Y%)); (1)

m BEC in the zero-momentum mode @o(x) =1 for all x € A, for any
approximate ground state 1y € LZ(A") with |[1n|| = 1 and

L1 _
NIl_}moo v {(Un, Hvyw) = 2m, (2)
the one-particle reduced density matrix 'y,(vl) = tra,....n|¥n) (Yn| is such that
1— (go,7Ppo) < CN~?  suff. small 5> 0. 3)

m SCHNEE -YNGVASON ’06 g.s. energy at leading order and BEC for 3d
bosons in a trap strongly confined in one direction.



Almost optimal rate for BEC

Theorem (C.-Cenatiempo-Schlein '21)

Let V € L3(R?), spherically symmetric, compactly supported and pointwise
non-negative. Consider a sequence 1y € L2(AV) with ||¢n|| = 1 and s.t.

(hn, Huon) < 27N+ K for K > 0.

Then the reduced density matrix 7(1) =tro, . n|tn)(Un] is s.t.

N
(1)

1 — (o, v o) < % N € N large enough.

Remarks:

m We have bounds (first order) for g.s.e. 2rN — C < Ey < 27N + Clog N

m expected order of the correction for the lower bound, but logarithmic correction for the
upper bound;
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Let V € L3(R?), spherically symmetric, compactly supported and pointwise
non-negative. Consider a sequence 1y € L2(AV) with ||¢n|| = 1 and s.t.

(hn, Huon) < 27N+ K for K > 0.

Then the reduced density matrix fyfvl) =tro, . n|tn)(Un] is s.t.

1- <9007’Y,(\/1)<P0) < w N € N Jarge enough.

Remarks:
m We have bounds (first order) for g.s.e. 2rN — C < Ey < 27N + Clog N

m expected order of the correction for the lower bound, but logarithmic correction for the
upper bound;

m convergence of 1-p.d. matrix expected to be optimal, but we need to choose K = Clog N
to have <¢N7 HNQﬁN) <27N+ K;

m the condition V € L3(R?) comes from properties of scattering equation.



The excitation spectrum & second order corrections

Theorem (C.-Cenatiempo-Schlein '22)

Let V € L3(R?) as before. The g.s.e. En of Hy is such that, as N — oo,
En = 27(N — 1) + 7 log(2a?)

1
- E 4 2 _
+ > [ p* + 8mp
pe2r72\{0}

O (4~ (/D)

+ O(N~119)

for any § > 0. Moreover, the spectrum of Hy — Ey below a threshold ¢ > 0
consists of eigenvalues having the form

ST /Pt +8rp2 + O(NTHH(1+¢YT)) W8> 0.

pe2rn 72\ {0}

Remarks:
m Jy is the zero-th order Bessel function of the first kind
m np €N for all p € 2772\ {0}, np # 0 for finitely many p € 27Z2 \ {0} only.
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Highlights of the proof of BEC & Bogoliubov theory

m Use techniques developed in
BoCCATO-BRENNECKE-CENATIEMPO-SCHLEIN '19-’20 for 3D bosons in

Gross-Pitaevskii regime;
m work in the Fock space and through the action of unitary operators we
renormalize the Hamiltonian Hy to get the correct energy expectation. How?
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Highlights of the proof of BEC & Bogoliubov theory

m Use techniques developed in
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Gross-Pitaevskii regime;
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renormalize the Hamiltonian Hy to get the correct energy expectation. How?

e BUNyHN U} P

= ef unitary operator, B quadratic, whose coefficient takes into account

correlation [ERDOS-SCHLEIN-YAU ’08, BENEDIKTER-DE
OLIVEIRA-SCHLEIN ’15]. It is defined through the modified scattering

equation
(= A+ 3V(X)fu(x) = A fi(x) x| < eMNe

fo(x) = 1 when |x| = eV¢, with £ = N=2;
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Highlights of the proof of Bogoliubov theory

Using a-priori knowledge on the number of the excitations we can reduce the
renormalized Hamiltonian

Ry = Const. + Qr + Vn + En
Upper bound

mVy = %Zp,qui,reA*: \7(r/e"’)a§+,aj§apaq+, is of order O(1), cannot be
r#£—p,—q
neglected;
m apply another renormalization e"PRyeP, quartic in terms of creation and
annihilation operators ~~ reduction to V,(VH) that can be controlled on
low-excited states.

m eB7 Bogoliubov-type transformation, that diagonalizes e " PR yeP.



Highlights of the proof of Bogoliubov theory

Lower bound
m Vy can be neglected because it is non-negative ~» Ry > Const. + Or + & ;
m eB Bogoliubov-type transformation to diagonalize [SEIRINGER ’00]

m localization on errors of the form A?/N (cannot obtain bounds for power of
N due to large contribution from the cubic) [NAM-TRIAY 21,
HAINZL-SCHLEIN-TRIAY 22, (before LEWIN-NAM-SERFATY-SOLOVEJ
'15,)]

13/13



Highlights of the proof of Bogoliubov theory

Lower bound
m Vy can be neglected because it is non-negative ~» Ry > Const. + Or + & ;
m eB Bogoliubov-type transformation to diagonalize [SEIRINGER ’00]

m localization on errors of the form N2/N (cannot obtain bounds for power of
N due to large contribution from the cubic) [NAM-TRIAY 21,
HAINZL-SCHLEIN-TRIAY 22, (before LEWIN-NAM-SERFATY-SOLOVEJ
'15,)]

Thank you!
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The excitation Hamiltonian is defined as Ly := UyHyUj : FEV — FEV, with

£80 = LU(0)(N = 1)(N — A% ) + L V(0N (N — A%
E(,i) =K+ N Z V(p/eN)aZap< - —) Z V(p/eV) [bpb* , +h.c.]

pENT pPENT

£(I\?) = VN Z V(p/e") [b [bpqa” pag +hoc.]

P,qENT:p+q#0

4) _ 1 v Ny * * _
Ly =35 E V(r/e")ap. azapagrr = Vn -
P,qENL,reN™:
r#—p,—q

m One can notice that (Q, LyQ) is of order O(N?).
[ b;, b, are modified creation and annihilation operators, such that

*

a
UnbsU *a— Uib,Uy = —2=a,,
N N \/* NPpYN \/NP

~+ b creates a particle with momentum p € A%} = 27Z*\ {0} and
annihilates a particle from the condensate;



Quadratic and cubic renormalization

m We take into account correlations through properties of the scattering
function;
m from f, we define the coefficients

i(x) = =N(1 = fi(e"x))  ~ |illf = [Inllf- < C¢2;

m we choose / = N~ %, so that the norm O(N~%);
m with 77,, Fourier coefficients of 7j(x), we introduce generalized Bogoliubov
transformation through the anti-symmetric operator

1 * [k =
B=3 Z (npbjb* , — Tipbpb_)p)
pENT

with n_, =mn, for all p € A%, b, b, are modified creation and annihilation
operators ~~ ap, a; do not ensure that the truncated Fock space is kept
invariant [ESY ’08, BDS ’15, BS ’19];

m cubic phase is defined as

A=5 > melbr,at,a —hel;
r,veNy



Quartic renormalization and final diagonalization

Upper bound

m quartic phase is defined as

1
D = m Z nr I:at+vatv,ravaw - hc]r

reNt,v,weP;

m final last Bogoliubov-type transformation that rotates the g.s. vector

1 * ok =
B =15 > (rpbjb*, — Tobpb_p)
pEPL

Lower bound
m Neglect Vy by positivity
m apply B,, like B; with a different kernel [SEIRINGER ’00)]

m localize on sectors of N2/ N, assorbing errors in the kinetic energy operator
(for a lower bound we have errors at most errors of this form).
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Beyond condensation and Bogoliubov theory

m Norm-approximation for low-energy states ~~ and compute the condensate
depletion;

m investigate fluctuations of observables measured on the ground state ~~
validity of a central limit theorem for one particle observables measured on
the condensate RADEMACHER-SCHLEIN 19, RADEMACHER ’20 ;
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