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Bose-Einstein Condensation

A Bose-Einstein condensate is a state of matter which occurs in dilute gases of
bosonic atoms at very low-temperatures.
Roughly speaking  a macroscopic fraction of the particles behaving as if they
were occupying the same one-particle state.

Final goal: occurrence of BEC in the
thermodynamic limit  far away from rigorous
results.

Mathematical results:

3D very well-known (BEC for MF and GP
regimes, thermodynamic functions known in
several regimes);

2D got attention later.

Figure: Absorption imaging of
quasi-2D clouds of Rubidium-87
atoms. Yefsah et al. 2011

Why 2D?

Physically relevant for applications;

Theoretically: critical case for BEC  Mermin-Wagner theorem prevents
condensation at finite temperature.
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Mathematical formulation of BEC

N particle in R2, the state is described by the wave function ψN ∈ L2
s (R2N),

s.t. ‖ψN‖2 = 1. Energy of the system described by HN ;

A mathematical formalization of BEC for general interacting system by
Onsager-Penrose ’56 in terms of one-particle reduced density matrix

γ
(1)
N (x ; y) =

∫
R2(N−1)

ψN(x , x2, ..., xN)ψN(y , x2, ..., xN)dx2 · · · dxN

for ψN ∈ L2
s (R2N), ‖ψN‖2 = 1, can be diagonalized γ

(1)
N =

∑
k λk |ϕj〉〈ϕj |

BEC ⇔ λ0 = maxj λj is of order O(1), corresponding
eigenvector is the condensate wave function ϕ0.

Meaning: all particles, up to a fraction vanishing in the limit N →∞, are
condensated in the one-particle state ϕ0.
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Thermodynamic limit vs scaling limits

Thermodynamic limit: N interacting bosons confined in a box with area L2

 N, L→∞ with the density ρ = N/L2 fixed;

Dilute regimes: address the problem in simpler, but still physically relevant,
settings, letting the interaction potential depends on the number of particles
N, where N is large.

The N-dependent potential  effective description for interactions occurring
in large many-particle systems.

Examples of effective theories:

Hartree theory for weak interactions, i.e. range of the interaction potential
much larger than interparticle distance;

Gross-Pitaevskii theory for strongly interacting systems.
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Known results 2D thermodynamic limit

For N bosons interacting through a fixed potential with scattering length a,
confined in a box with area L2, so that N, L→∞ with the density ρ = N/L2 kept
fixed, b = | log(ρa2)|−1, in the dilute limit ρa2 � 1, the g.s. energy per particle is
given by

e0(ρ) = 4πρ2b
(

1 + b log b +
(
1/2 + 2γ + log π

)
b + o(b)

)
,

with γ the Euler’s constant.

Schick ’71 predictions for the g.s. energy of 2D gases in the
thermodynamic limit (leading order); confirmed by Lieb-Yngvason ’01;

second order predictions by Andersen ’02,
Pilati-Boronat-Casulleras-Giorgini ’05, Mora-Castin ’09;

Second order recently proved by
Fournais-Girardot-Junge-Morin-Olivieri ’22
(previous results restricting to quasi-free states
Fournais-Napiórkowski-Reuvers-Solovej ’19).
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2D bosons in Gross-Pitaevskii regime

N interacting bosons in a 2D unit box Λ = [−1/2, 1/2]2. The energy of the
system is described by the Hamiltonian acting on L2

s (ΛN)

HN =
N∑
j=1

−∆xj +
N∑
i<j

e2NV (eN(xi − xj)),

{ {

O(N) O(N2)

Remarks:

Expectation of HN on a factorized state ϕ⊗N0 is of order O(N2);

The exponential scaling comes from the 2D scattering length a of V

2π

log(R/a)
= inf
φ∈H1(BR )

∫
BR

[
|∇φ|2 +

1

2
V |φ|2

]
dx

for R > R0, with R0 range of the potential and with φ(x) = 1 for all x with
|x | = R.
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Scattering equation 2D Gross-Pitaevskii

The unique minimizer satisfies −∆φ(R) + 1
2Vφ

(R) = 0

φ(R)(x) =
log(|x |/a)

log(R/a)
for R0 < |x | ≤ R .

By scaling, φN(x) := φ(eNR)(eNx) is such that

−∆φN +
1

2
e2NV (eNx)φN = 0.

We have

φN(x) =
log(|x |/aN)

log(R/aN)
∀x ∈ R2 : e−NR0 < |x | ≤ R ,

for all x ∈ R2 with e−NR0 < |x | ≤ R. Here aN = e−Na.
 if we consider ∫

BR

e2NV (eNx)φN(x) ∼ O
(

1
N

)
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Previous results

Lieb-Seiringer-Yngvason ’01,’06 , Lieb-Seiringer ’01,’02 for
bosons confined by external trapping potentials:

the ground state energy EN of HN is such that

EN = 2πN
(
1 + O(N−1/5)

)
; (1)

BEC in the zero-momentum mode ϕ0(x) = 1 for all x ∈ Λ, for any
approximate ground state ψN ∈ L2

s (ΛN) with ‖ψN‖ = 1 and

lim
N→∞

1
N
〈ψN ,HNψN〉 = 2π, (2)

the one-particle reduced density matrix γ
(1)
N = tr2,...,N |ψN〉〈ψN | is such that

1− 〈ϕ0, γ
(1)
N ϕ0〉 ≤ CN−δ̄ suff. small δ̄ > 0 . (3)

Schnee -Yngvason ’06 g.s. energy at leading order and BEC for 3d
bosons in a trap strongly confined in one direction.
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Almost optimal rate for BEC

Theorem (C.-Cenatiempo-Schlein ’21)

Let V ∈ L3(R2), spherically symmetric, compactly supported and pointwise
non-negative. Consider a sequence ψN ∈ L2

s (ΛN) with ‖ψN‖ = 1 and s.t.

〈ψN ,HNψN〉 ≤ 2πN + K for K > 0.

Then the reduced density matrix γ
(1)
N = tr2,...,N |ψN〉〈ψN | is s.t.

1− 〈ϕ0, γ
(1)
N ϕ0〉 ≤ C(1+K)

N N ∈ N large enough.

Remarks:
We have bounds (first order) for g.s.e. 2πN − C ≤ EN ≤ 2πN + C log N

expected order of the correction for the lower bound, but logarithmic correction for the
upper bound;

convergence of 1-p.d. matrix expected to be optimal, but we need to choose K = C log N
to have 〈ψN ,HNψN〉 ≤ 2πN + K ;

the condition V ∈ L3(R2) comes from properties of scattering equation.
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The excitation spectrum & second order corrections

Theorem (C.-Cenatiempo-Schlein ’22)

Let V ∈ L3(R2) as before. The g.s.e. EN of HN is such that, as N →∞,

EN = 2π(N − 1) + π log(2a2)

+
1

2

∑
p∈2πZ2\{0}

[√
p4 + 8πp2 − p2 − 4π +

(4π)2

2p2

(
1− J0(|p|/

√
2)
)]

+O(N−
1

10 +δ)

for any δ > 0. Moreover, the spectrum of HN − EN below a threshold ζ > 0
consists of eigenvalues having the form∑

p∈2πZ2\{0}

np
√
p4 + 8πp2 +O(N−

1
10 +δ(1 + ζ17)) ∀δ > 0 .

Remarks:
J0 is the zero-th order Bessel function of the first kind

np ∈ N for all p ∈ 2πZ2 \ {0}, np 6= 0 for finitely many p ∈ 2πZ2 \ {0} only.
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Highlights of the proof of BEC & Bogoliubov theory

Use techniques developed in
Boccato-Brennecke-Cenatiempo-Schlein ’19-’20 for 3D bosons in
Gross-Pitaevskii regime;

work in the Fock space and through the action of unitary operators we
renormalize the Hamiltonian HN to get the correct energy expectation. How?

e−Ae−BUNHNU
∗
Ne

BeA = RN = Const + QR + CR +HN + ER

eB unitary operator, B quadratic, whose coefficient takes into account
correlation [Erdös-Schlein-Yau ’08, Benedikter-de
Oliveira-Schlein ’15]. It is defined through the modified scattering
equation (

−∆ + 1
2V (x)

)
f`(x) = λ` f`(x) |x | ≤ eN`

f`(x) = 1 when |x | = eN`, with ` = N−α;

eA unitary, A cubic in terms of creation and annihilation operators;
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Highlights of the proof of Bogoliubov theory

Using a-priori knowledge on the number of the excitations we can reduce the
renormalized Hamiltonian

RN = Const. +QR + VN + EN

Upper bound

VN = 1
2

∑
p,q∈Λ∗

+,r∈Λ∗:
r 6=−p,−q

V̂ (r/eN)a∗p+ra
∗
qapaq+r is of order O(1), cannot be

neglected;

apply another renormalization e−DRNe
D , quartic in terms of creation and

annihilation operators  reduction to V(H)
N that can be controlled on

low-excited states.

eBτ Bogoliubov-type transformation, that diagonalizes e−DRNe
D .
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Highlights of the proof of Bogoliubov theory

Lower bound

VN can be neglected because it is non-negative  RN ≥ Const. +QR + EN ;

eBν Bogoliubov-type transformation to diagonalize [Seiringer ’00]

localization on errors of the form N 2/N (cannot obtain bounds for power of
N due to large contribution from the cubic) [Nam-Triay ’21,
Hainzl-Schlein-Triay ’22, (before Lewin-Nam-Serfaty-Solovej
’15,)]

Thank you!
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The excitation Hamiltonian is defined as LN := UNHNU
∗
N : F≤N+ → F≤N+ , with

L(0)
N = 1

2 V̂ (0)(N − 1)(N −N+) + 1
2 V̂ (0)N+(N −N+)

L(2)
N = K + N

∑
p∈Λ∗

+

V̂ (p/eN)a∗pap
(

1− N+

N

)
+ N

2

∑
p∈Λ∗

+

V̂ (p/eN)
[
b∗pb
∗
−p + h.c.

]
L(3)
N =

√
N

∑
p,q∈Λ∗

+:p+q 6=0

V̂ (p/eN)
[
b∗p+qa

∗
−paq + h.c.

]
L(4)
N = 1

2

∑
p,q∈Λ∗

+,r∈Λ∗:
r 6=−p,−q

V̂ (r/eN)a∗p+ra
∗
qapaq+r = VN .

One can notice that 〈Ω,LNΩ〉 is of order O(N2).

b∗p , bp are modified creation and annihilation operators, such that

U∗Nb
∗
pUN = a∗p

a0√
N
, U∗NbpUN =

a∗0√
N
ap,

 b∗p creates a particle with momentum p ∈ Λ∗+ = 2πZ2 \ {0} and
annihilates a particle from the condensate;
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Quadratic and cubic renormalization

We take into account correlations through properties of the scattering
function;
from f` we define the coefficients

η̌(x) = −N
(
1− f`(e

Nx)
)
 ‖η̌‖2

L2 = ‖η‖2
L2 ≤ C`2 ;

we choose ` = N−α, so that the norm O(N−α);
with ηp, Fourier coefficients of η̌(x), we introduce generalized Bogoliubov
transformation through the anti-symmetric operator

B =
1

2

∑
p∈Λ∗

+

(
ηpb
∗
pb
∗
−p − η̄pbpb−p

)
with η−p = ηp for all p ∈ Λ∗+, b∗p , bp are modified creation and annihilation
operators  ap, a

∗
p do not ensure that the truncated Fock space is kept

invariant [ESY ’08, BDS ’15, BS ’19];
cubic phase is defined as

A := 1√
N

∑
r ,v∈Λ∗

+

ηr
[
b∗r+va

∗
−rav − h.c.

]
;
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Quartic renormalization and final diagonalization

Upper bound

quartic phase is defined as

D :=
1

4N

∑
r∈Λ∗

+,v ,w∈PL

ηr
[
a∗r+va

∗
w−ravaw − h.c.

]
;

final last Bogoliubov-type transformation that rotates the g.s. vector

Bτ =
1

2

∑
p∈PL

(
τpb
∗
pb
∗
−p − τ̄pbpb−p

)
Lower bound

Neglect VN by positivity

apply Bν , like Bτ with a different kernel [Seiringer ’00]

localize on sectors of N 2/N, assorbing errors in the kinetic energy operator
(for a lower bound we have errors at most errors of this form).

3 / 4



Beyond condensation and Bogoliubov theory

Norm-approximation for low-energy states  and compute the condensate
depletion;

investigate fluctuations of observables measured on the ground state  
validity of a central limit theorem for one particle observables measured on
the condensate Rademacher-Schlein ’19, Rademacher ’20 ;
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