The excitation spectrum for two-dimensional bosons in the Gross-Pitaevskii regime

Cristina Caraci based on joint works with S. Cenatiempo and B. Schlein

Venice 2022 - Quantissima in the Serenissima IV 23rd August 2022

Bose-Einstein Condensation

A *Bose-Einstein condensate* is a state of matter which occurs in dilute gases of bosonic atoms at very low-temperatures.

Roughly speaking \rightsquigarrow a macroscopic fraction of the particles behaving as if they were occupying the same one-particle state.

Final goal: occurrence of BEC in the thermodynamic limit \rightsquigarrow far away from rigorous results.

Mathematical results:

- 3D very well-known (BEC for MF and GP regimes, thermodynamic functions known in several regimes);
- 2D got attention later.

Why 2D?

- Physically relevant for applications;
- Theoretically: critical case for BEC ~→ Mermin-Wagner theorem prevents condensation at finite temperature.

Figure: Absorption imaging of quasi-2D clouds of Rubidium-87 atoms. Yefsah et al. 2011

Mathematical formulation of BEC

- N particle in ℝ², the state is described by the wave function ψ_N ∈ L²_s(ℝ^{2N}), s.t. ||ψ_N||₂ = 1. Energy of the system described by H_N;
- A mathematical formalization of BEC for general interacting system by ONSAGER-PENROSE '56 in terms of one-particle reduced density matrix

$$\gamma_N^{(1)}(x;y) = \int_{\mathbb{R}^{2(N-1)}} \overline{\psi_N(x,x_2,...,x_N)} \psi_N(y,x_2,...,x_N) dx_2 \cdots dx_N$$

for $\psi_N \in L^2_s(\mathbb{R}^{2N})$, $\|\psi_N\|_2 = 1$, can be diagonalized $\gamma_N^{(1)} = \sum_k \lambda_k |\varphi_j\rangle\langle\varphi_j|$ BEC $\Leftrightarrow \qquad \lambda_0 = \max_j \lambda_j$ is of order $\mathcal{O}(1)$, corresponding eigenvector is the condensate wave function φ_0 .

Meaning: all particles, up to a fraction vanishing in the limit $N \to \infty$, are condensated in the one-particle state φ_0 .

Thermodynamic limit vs scaling limits

- Thermodynamic limit: N interacting bosons confined in a box with area L² → N, L → ∞ with the density ρ = N/L² fixed;
- Dilute regimes: address the problem in simpler, but still physically relevant, settings, letting the interaction potential depends on the number of particles N, where N is large.

The N-dependent potential \rightsquigarrow effective description for interactions occurring in large many-particle systems.

Examples of effective theories:

- Hartree theory for weak interactions, i.e. range of the interaction potential much larger than interparticle distance;
- Gross-Pitaevskii theory for strongly interacting systems.

Known results 2D thermodynamic limit

For N bosons interacting through a fixed potential with scattering length \mathfrak{a} , confined in a box with area L^2 , so that $N, L \to \infty$ with the density $\rho = N/L^2$ kept fixed, $b = |\log(\rho \mathfrak{a}^2)|^{-1}$, in the dilute limit $\rho \mathfrak{a}^2 \ll 1$, the g.s. energy per particle is given by

$$\mathbf{e}_0(
ho)=4\pi
ho^2b\Big(1+b\log b+ig(1/2+2\gamma+\log\piig)b+o(b)\Big)\,,$$

with γ the Euler's constant.

- SCHICK '71 predictions for the g.s. energy of 2D gases in the thermodynamic limit (leading order); confirmed by LIEB-YNGVASON '01;
- second order predictions by ANDERSEN '02, PILATI-BORONAT-CASULLERAS-GIORGINI '05, MORA-CASTIN '09;
- Second order recently proved by FOURNAIS-GIRARDOT-JUNGE-MORIN-OLIVIERI '22 (previous results restricting to quasi-free states FOURNAIS-NAPIÓRKOWSKI-REUVERS-SOLOVEJ '19).

2D bosons in Gross-Pitaevskii regime

N interacting bosons in a 2D unit box $\Lambda = [-1/2, 1/2]^2$. The energy of the system is described by the Hamiltonian acting on $L_s^2(\Lambda^N)$

$$H_N = \sum_{j=1}^N -\Delta_{x_j} + \sum_{i$$

Remarks:

- Expectation of H_N on a factorized state φ^{⊗N}₀ is of order O(N²);
- The exponential scaling comes from the 2D scattering length \mathfrak{a} of V

$$\frac{2\pi}{\log(R/\mathfrak{a})} = \inf_{\phi \in H^1(B_R)} \int_{B_R} \left[|\nabla \phi|^2 + \frac{1}{2} V |\phi|^2 \right] dx$$

for $R>R_0$, with R_0 range of the potential and with $\phi(x)=1$ for all x with |x|=R.

2D bosons in Gross-Pitaevskii regime

N interacting bosons in a 2D unit box $\Lambda = [-1/2, 1/2]^2$. The energy of the system is described by the Hamiltonian acting on $L_s^2(\Lambda^N)$

$$H_N = \sum_{j=1}^N -\Delta_{x_j} + \sum_{i < j}^N e^{2N} V(e^N(x_i - x_j)),$$

 $\mathcal{O}(N) \qquad \qquad \mathcal{O}(N^2)$

Remarks:

• Expectation of H_N on a factorized state $\varphi_0^{\otimes N}$ is of order $\mathcal{O}(N^2)$;

The exponential scaling comes from the 2D scattering length $\mathfrak a$ of V

$$\frac{2\pi}{\log(R/\mathfrak{a})} = \inf_{\phi \in H^1(B_R)} \int_{B_R} \left[|\nabla \phi|^2 + \frac{1}{2} V |\phi|^2 \right] dx$$

for $R > R_0$, with R_0 range of the potential and with $\phi(x) = 1$ for all x with |x| = R.

2D bosons in Gross-Pitaevskii regime

N interacting bosons in a 2D unit box $\Lambda = [-1/2, 1/2]^2$. The energy of the system is described by the Hamiltonian acting on $L_s^2(\Lambda^N)$

$$H_{N} = \sum_{j=1}^{N} -\Delta_{x_{j}} + \sum_{i < j}^{N} e^{2N} V(e^{N}(x_{i} - x_{j})),$$
$$\underbrace{\mathcal{O}(N)}_{\mathcal{O}(N^{2})} \mathcal{O}(N^{2})$$

Remarks:

- Expectation of H_N on a factorized state $\varphi_0^{\otimes N}$ is of order $\mathcal{O}(N^2)$;
- The exponential scaling comes from the 2D scattering length \mathfrak{a} of V

$$\frac{2\pi}{\log(R/\mathfrak{a})} = \inf_{\phi \in H^1(B_R)} \int_{B_R} \left[|\nabla \phi|^2 + \frac{1}{2} V |\phi|^2 \right] dx$$

for $R > R_0$, with R_0 range of the potential and with $\phi(x) = 1$ for all x with |x| = R.

Scattering equation 2D Gross-Pitaevskii

The unique minimizer satisfies $-\Delta \phi^{(R)} + \frac{1}{2} V \phi^{(R)} = 0$

$$\phi^{(R)}(x) = rac{\log(|x|/\mathfrak{a})}{\log(R/\mathfrak{a})} \quad ext{for } R_0 < |x| \le R \,.$$

By scaling, $\phi_N(x) := \phi^{(e^N R)}(e^N x)$ is such that

$$-\Delta\phi_N+\frac{1}{2}e^{2N}V(e^Nx)\phi_N=0.$$

We have

$$\phi_N(x) = rac{\log(|x|/\mathfrak{a}_N)}{\log(R/\mathfrak{a}_N)} \qquad orall x \in \mathbb{R}^2: e^{-N}R_0 < |x| \le R$$

for all $x \in \mathbb{R}^2$ with $e^{-N}R_0 < |x| \le R$. Here $\mathfrak{a}_N = e^{-N}\mathfrak{a}$. \rightsquigarrow if we consider

$$\int_{B_R} e^{2N} V(e^N x) \phi_N(x) \sim \mathcal{O}\left(\frac{1}{N}\right)$$

Previous results

- LIEB-SEIRINGER-YNGVASON '01,'06, LIEB-SEIRINGER '01,'02 for bosons confined by external trapping potentials:
 - the ground state energy E_N of H_N is such that

$$E_N = 2\pi N (1 + O(N^{-1/5})); \qquad (1)$$

BEC in the zero-momentum mode $\varphi_0(x) = 1$ for all $x \in \Lambda$, for any approximate ground state $\psi_N \in L^2_s(\Lambda^N)$ with $||\psi_N|| = 1$ and

$$\lim_{N \to \infty} \frac{1}{N} \langle \psi_N, H_N \psi_N \rangle = 2\pi,$$
(2)

the one-particle reduced density matrix $\gamma_{\it N}^{(1)}={\rm tr}_{2,...,{\it N}}|\psi_{\it N}\rangle\langle\psi_{\it N}|$ is such that

$$1 - \langle \varphi_0, \gamma_N^{(1)} \varphi_0 \rangle \le C N^{-\bar{\delta}}$$
 suff. small $\bar{\delta} > 0$. (3)

 SCHNEE - YNGVASON '06 g.s. energy at leading order and BEC for 3d bosons in a trap strongly confined in one direction.

Almost optimal rate for BEC

Theorem (C.-Cenatiempo-Schlein '21)

Let $V \in L^3(\mathbb{R}^2)$, spherically symmetric, compactly supported and pointwise non-negative. Consider a sequence $\psi_N \in L^2_s(\Lambda^N)$ with $\|\psi_N\| = 1$ and s.t. $\langle \psi_N, H_N \psi_N \rangle < 2\pi N + K$ for K > 0.

Then the reduced density matrix $\gamma_N^{(1)} = \text{tr}_{2,...,N} |\psi_N\rangle \langle \psi_N |$ is s.t.

$$1 - \langle \varphi_0, \gamma_N^{(1)} \varphi_0 \rangle \leq rac{C(1+K)}{N}$$
 $N \in \mathbb{N}$ large enough.

Remarks:

- We have bounds (first order) for g.s.e. $2\pi N C \leq E_N \leq 2\pi N + C \log N$
- expected order of the correction for the lower bound, but logarithmic correction for the upper bound;
- convergence of 1-p.d. matrix expected to be **optimal**, but we need to choose $K = C \log N$ to have $\langle \psi_N, H_N \psi_N \rangle \leq 2\pi N + K$;
- the condition $V \in L^3(\mathbb{R}^2)$ comes from properties of scattering equation.

Almost optimal rate for BEC

Theorem (C.-Cenatiempo-Schlein '21)

Let $V \in L^3(\mathbb{R}^2)$, spherically symmetric, compactly supported and pointwise non-negative. Consider a sequence $\psi_N \in L^2_s(\Lambda^N)$ with $\|\psi_N\| = 1$ and s.t. $\langle \psi_N, H_N \psi_N \rangle < 2\pi N + K$ for K > 0.

Then the reduced density matrix $\gamma_N^{(1)} = \text{tr}_{2,...,N} |\psi_N\rangle \langle \psi_N |$ is s.t.

$$1 - \langle \varphi_0, \gamma_N^{(1)} \varphi_0 \rangle \leq rac{C(1+K)}{N}$$
 $N \in \mathbb{N}$ large enough.

Remarks:

- We have bounds (first order) for g.s.e. $2\pi N C \leq E_N \leq 2\pi N + C \log N$
- expected order of the correction for the lower bound, but logarithmic correction for the upper bound;
- convergence of 1-p.d. matrix expected to be **optimal**, but we need to choose $K = C \log N$ to have $\langle \psi_N, H_N \psi_N \rangle \leq 2\pi N + K$;

• the condition $V \in L^3(\mathbb{R}^2)$ comes from properties of scattering equation.

Almost optimal rate for BEC

Theorem (C.-Cenatiempo-Schlein '21)

Let $V \in L^3(\mathbb{R}^2)$, spherically symmetric, compactly supported and pointwise non-negative. Consider a sequence $\psi_N \in L^2_s(\Lambda^N)$ with $\|\psi_N\| = 1$ and s.t. $\langle \psi_N, H_N \psi_N \rangle < 2\pi N + K$ for K > 0.

Then the reduced density matrix $\gamma_N^{(1)} = \text{tr}_{2,...,N} |\psi_N\rangle \langle \psi_N |$ is s.t.

$$1 - \langle \varphi_0, \gamma_N^{(1)} \varphi_0 \rangle \leq rac{C(1+K)}{N}$$
 $N \in \mathbb{N}$ large enough.

Remarks:

- We have bounds (first order) for g.s.e. $2\pi N C \leq E_N \leq 2\pi N + C \log N$
- expected order of the correction for the lower bound, but logarithmic correction for the upper bound;
- convergence of 1-p.d. matrix expected to be **optimal**, but we need to choose $K = C \log N$ to have $\langle \psi_N, H_N \psi_N \rangle \leq 2\pi N + K$;
- the condition $V \in L^3(\mathbb{R}^2)$ comes from properties of scattering equation.

The excitation spectrum & second order corrections

Theorem (C.-Cenatiempo-Schlein '22)

Let $V \in L^3(\mathbb{R}^2)$ as before. The g.s.e. E_N of H_N is such that, as $N \to \infty$,

$$egin{split} E_{\mathcal{N}} &= 2\pi(\mathcal{N}-1) + \pi \log(2\mathfrak{a}^2) \ &+ rac{1}{2} \sum_{p \in 2\pi \mathbb{Z}^2 \setminus \{0\}} \left[\sqrt{p^4 + 8\pi p^2} - p^2 - 4\pi + rac{(4\pi)^2}{2p^2} ig(1 - J_0(|p|/\sqrt{2})ig)
ight] \ &+ \mathcal{O}(\mathcal{N}^{-rac{1}{10} + \delta}) \end{split}$$

for any $\delta > 0$. Moreover, the spectrum of $H_N - E_N$ below a threshold $\zeta > 0$ consists of eigenvalues having the form

$$\sum_{p\in 2\pi\mathbb{Z}^2\setminus\{0\}} n_p \sqrt{p^4+8\pi p^2} + \mathcal{O}(N^{-rac{1}{10}+\delta}(1+\zeta^{17})) \quad orall \delta>0\,.$$

Remarks:

- J_0 is the zero-th order Bessel function of the first kind
- $n_p \in \mathbb{N}$ for all $p \in 2\pi \mathbb{Z}^2 \setminus \{0\}$, $n_p \neq 0$ for finitely many $p \in 2\pi \mathbb{Z}^2 \setminus \{0\}$ only.

- Use techniques developed in BOCCATO-BRENNECKE-CENATIEMPO-SCHLEIN '19-'20 for 3D bosons in Gross-Pitaevskii regime;
- work in the Fock space and through the action of unitary operators we renormalize the Hamiltonian H_N to get the correct energy expectation. How?

 $e^{-A}e^{-B}U_NH_NU_N^*e^Be^A=\mathcal{R}_N= ext{Const}+Q_\mathcal{R}+\mathcal{C}_\mathcal{R}+\mathcal{H}_N+\mathcal{E}_\mathcal{R}$

 e^B unitary operator, B quadratic, whose coefficient takes into account correlation [ERDÖS-SCHLEIN-YAU '08, BENEDIKTER-DE OLIVEIRA-SCHLEIN '15]. It is defined through the modified scattering equation

 $\left(-\Delta + \frac{1}{2}V(x)\right)f_{\ell}(x) = \lambda_{\ell} f_{\ell}(x) \qquad |x| \le e^{N}\ell$

 $f_\ell(x)=1$ when $|x|=e^N\ell$, with $\ell=N^{-lpha}$;

e^A unitary, A cubic in terms of creation and annihilation operators;

- Use techniques developed in BOCCATO-BRENNECKE-CENATIEMPO-SCHLEIN '19-'20 for 3D bosons in Gross-Pitaevskii regime;
- work in the Fock space and through the action of unitary operators we renormalize the Hamiltonian H_N to get the correct energy expectation. How?

 $e^{-A}e^{-B}U_{N}H_{N}U_{N}^{*}e^{B}e^{A} = \mathcal{R}_{N} = \text{Const} + Q_{\mathcal{R}} + \mathcal{C}_{\mathcal{R}} + \mathcal{H}_{N} + \mathcal{E}_{\mathcal{R}}$

■ e^B unitary operator, B quadratic, whose coefficient takes into account correlation [ERDÖS-SCHLEIN-YAU '08, BENEDIKTER-DE OLIVEIRA-SCHLEIN '15]. It is defined through the modified scattering equation

$$\left(-\Delta+\frac{1}{2}V(x)\right)f_{\ell}(x)=\lambda_{\ell}f_{\ell}(x) \qquad |x|\leq e^{N}\ell$$

 $f_\ell(x) = 1$ when $|x| = e^N \ell$, with $\ell = N^{-lpha}$;

 \bullet e^A unitary, A cubic in terms of creation and annihilation operators;

- Use techniques developed in BOCCATO-BRENNECKE-CENATIEMPO-SCHLEIN '19-'20 for 3D bosons in Gross-Pitaevskii regime;
- work in the Fock space and through the action of unitary operators we renormalize the Hamiltonian H_N to get the correct energy expectation. How?

$$e^{-A}e^{-B}U_{N}H_{N}U_{N}^{*}e^{B}e^{A} = \mathcal{R}_{N} = \text{Const} + Q_{R} + \mathcal{C}_{R} + \mathcal{H}_{N} + \mathcal{E}_{R}$$

■ e^B unitary operator, B quadratic, whose coefficient takes into account correlation [ERDÖS-SCHLEIN-YAU '08, BENEDIKTER-DE OLIVEIRA-SCHLEIN '15]. It is defined through the modified scattering equation

$$\left(-\Delta+\frac{1}{2}V(x)
ight)f_{\ell}(x)=\lambda_{\ell}\,f_{\ell}(x)\qquad |x|\leq e^{N}\ell$$

 $f_{\ell}(x) = 1$ when $|x| = e^{N}\ell$, with $\ell = N^{-\alpha}$; e^{A} unitary, A cubic in terms of creation and annihilation operators;

- Use techniques developed in BOCCATO-BRENNECKE-CENATIEMPO-SCHLEIN '19-'20 for 3D bosons in Gross-Pitaevskii regime;
- work in the Fock space and through the action of unitary operators we renormalize the Hamiltonian H_N to get the correct energy expectation. How?

$$e^{-A}e^{-B}U_NH_NU_N^*e^Be^A=\mathcal{R}_N= ext{Const}+Q_\mathcal{R}+\mathcal{C}_\mathcal{R}+\mathcal{H}_N+\mathcal{E}_\mathcal{R}$$

■ e^B unitary operator, B quadratic, whose coefficient takes into account correlation [ERDÖS-SCHLEIN-YAU '08, BENEDIKTER-DE OLIVEIRA-SCHLEIN '15]. It is defined through the modified scattering equation

$$\left(-\Delta+\frac{1}{2}V(x)
ight)f_{\ell}(x)=\lambda_{\ell}f_{\ell}(x) \qquad |x|\leq e^{N}\ell$$

 $f_\ell(x) = 1$ when $|x| = e^N \ell$, with $\ell = N^{-lpha}$;

• e^A unitary, A cubic in terms of creation and annihilation operators;

- Use techniques developed in BOCCATO-BRENNECKE-CENATIEMPO-SCHLEIN '19-'20 for 3D bosons in Gross-Pitaevskii regime;
- work in the Fock space and through the action of unitary operators we renormalize the Hamiltonian H_N to get the correct energy expectation. How?

$$e^{-A}e^{-B}U_NH_NU_N^*e^Be^A = \mathcal{R}_N = ext{Const} + Q_\mathcal{R} + \mathcal{C}_\mathcal{R} + \mathcal{H}_N + \mathcal{E}_\mathcal{R}$$

■ e^B unitary operator, B quadratic, whose coefficient takes into account correlation [ERDÖS-SCHLEIN-YAU '08, BENEDIKTER-DE OLIVEIRA-SCHLEIN '15]. It is defined through the modified scattering equation

$$\left(-\Delta+\frac{1}{2}V(x)
ight)f_{\ell}(x)=\lambda_{\ell}f_{\ell}(x) \qquad |x|\leq e^{N}\ell$$

 $f_\ell(x) = 1$ when $|x| = e^N \ell$, with $\ell = N^{-lpha}$;

• e^A unitary, A cubic in terms of creation and annihilation operators;

Using a-priori knowledge on the number of the excitations we can reduce the renormalized Hamiltonian

$$\mathcal{R}_N = \text{Const.} + \mathcal{Q}_{\mathcal{R}} + \mathcal{V}_N + \mathcal{E}_N$$

Upper bound

- $\mathcal{V}_N = \frac{1}{2} \sum_{\substack{p,q \in \Lambda^*_+, r \in \Lambda^*: \\ r \neq -p, -q}} \widehat{\mathcal{V}}(r/e^N) a^*_{p+r} a^*_q a_p a_{q+r}$ is of order $\mathcal{O}(1)$, cannot be neglected;
- apply another renormalization $e^{-D}\mathcal{R}_N e^D$, quartic in terms of creation and annihilation operators \rightsquigarrow reduction to $\mathcal{V}_N^{(H)}$ that can be controlled on low-excited states.
- $e^{B_{\tau}}$ Bogoliubov-type transformation, that diagonalizes $e^{-D}\mathcal{R}_N e^D$.

Lower bound

- \mathcal{V}_N can be neglected because it is non-negative $\rightsquigarrow \mathcal{R}_N \ge \text{Const.} + \mathcal{Q}_{\mathcal{R}} + \mathcal{E}_N$;
- $e^{B_{\nu}}$ Bogoliubov-type transformation to diagonalize [SEIRINGER '00]
- localization on errors of the form N²/N (cannot obtain bounds for power of N due to large contribution from the cubic) [NAM-TRIAY '21, HAINZL-SCHLEIN-TRIAY '22, (before LEWIN-NAM-SERFATY-SOLOVEJ '15,)]

Thank you!

Lower bound

- \mathcal{V}_N can be neglected because it is non-negative $\rightsquigarrow \mathcal{R}_N \ge \text{Const.} + \mathcal{Q}_{\mathcal{R}} + \mathcal{E}_N$;
- $e^{B_{\nu}}$ Bogoliubov-type transformation to diagonalize [SEIRINGER '00]
- localization on errors of the form N²/N (cannot obtain bounds for power of N due to large contribution from the cubic) [NAM-TRIAY '21, HAINZL-SCHLEIN-TRIAY '22, (before LEWIN-NAM-SERFATY-SOLOVEJ '15,)]

Thank you!

The excitation Hamiltonian is defined as $\mathcal{L}_N := U_N H_N U_N^* : \mathcal{F}_+^{\leq N} \to \mathcal{F}_+^{\leq N}$, with

$$\begin{split} \mathcal{L}_{N}^{(0)} &= \frac{1}{2} \widehat{V}(0) (N-1) (N-\mathcal{N}_{+}) + \frac{1}{2} \widehat{V}(0) \mathcal{N}_{+} (N-\mathcal{N}_{+}) \\ \mathcal{L}_{N}^{(2)} &= \mathcal{K} + N \sum_{p \in \Lambda_{+}^{*}} \widehat{V}(p/e^{N}) a_{p}^{*} a_{p} \left(1 - \frac{\mathcal{N}_{+}}{N}\right) + \frac{N}{2} \sum_{p \in \Lambda_{+}^{*}} \widehat{V}(p/e^{N}) \left[b_{p}^{*} b_{-p}^{*} + \text{h.c.} \right] \\ \mathcal{L}_{N}^{(3)} &= \sqrt{N} \sum_{\substack{p,q \in \Lambda_{+}^{*}: p + q \neq 0}} \widehat{V}(p/e^{N}) \left[b_{p+q}^{*} a_{-p}^{*} a_{q} + \text{h.c.} \right] \\ \mathcal{L}_{N}^{(4)} &= \frac{1}{2} \sum_{\substack{p,q \in \Lambda_{+}^{*}: r \in \Lambda^{*}: \\ r \neq -p, -q}} \widehat{V}(r/e^{N}) a_{p+r}^{*} a_{q}^{*} a_{p} a_{q+r} = \mathcal{V}_{N} \, . \end{split}$$

- One can notice that $\langle \Omega, \mathcal{L}_N \Omega \rangle$ is of order $\mathcal{O}(N^2)$.
- **b_p^*, b_p** are modified creation and annihilation operators, such that

$$U_N^*b_\rho^*U_N=a_
ho^*rac{a_0}{\sqrt{N}},\qquad U_N^*b_
ho U_N=rac{a_0^*}{\sqrt{N}}a_
ho,$$

 $\rightsquigarrow b_p^*$ creates a particle with momentum $p \in \Lambda_+^* = 2\pi \mathbb{Z}^2 \setminus \{0\}$ and annihilates a particle from the condensate;

Quadratic and cubic renormalization

- We take into account correlations through properties of the scattering function;
- from f_{ℓ} we define the coefficients

$$\check{\eta}(x) = -N ig(1-f_\ell(e^N x)ig) \quad \rightsquigarrow \quad \|\check{\eta}\|_{L^2}^2 = \|\eta\|_{L^2}^2 \leq C\ell^2$$
;

• we choose $\ell = N^{-\alpha}$, so that the norm $\mathcal{O}(N^{-\alpha})$;

• with η_p , Fourier coefficients of $\check{\eta}(x)$, we introduce generalized Bogoliubov transformation through the anti-symmetric operator

$$B = rac{1}{2} \sum_{m{
ho} \in \Lambda^*_+} \left(\eta_{m{
ho}} b^*_{m{
ho}} b^*_{-m{
ho}} - ar\eta_{m{
ho}} b_{m{
ho}} b_{-m{
ho}}
ight) \, ,$$

with $\eta_{-p} = \eta_p$ for all $p \in \Lambda^*_+$, b^*_p , b_p are modified creation and annihilation operators $\rightsquigarrow a_p, a^*_p$ do not ensure that the truncated Fock space is kept invariant [ESY '08, BDS '15, BS '19];

cubic phase is defined as

$$A := \frac{1}{\sqrt{N}} \sum_{r,v \in \Lambda^*_+} \eta_r \big[b^*_{r+v} a^*_{-r} a_v - \text{h.c.} \big];$$

Quartic renormalization and final diagonalization

Upper bound

quartic phase is defined as

$$D := \frac{1}{4N} \sum_{r \in \Lambda^*_+, v, w \in P_L} \eta_r \big[a^*_{r+v} a^*_{w-r} a_v a_w - \text{h.c.} \big];$$

final last Bogoliubov-type transformation that rotates the g.s. vector

$$B_{\tau} = \frac{1}{2} \sum_{p \in P_L} \left(\tau_p b_p^* b_{-p}^* - \bar{\tau}_p b_p b_{-p} \right)$$

Lower bound

- Neglect \mathcal{V}_N by positivity
- apply B_{ν} , like B_{τ} with a different kernel [SEIRINGER '00]
- localize on sectors of N^2/N , assorbing errors in the kinetic energy operator (for a lower bound we have errors at most errors of this form).

Beyond condensation and Bogoliubov theory

- Norm-approximation for low-energy states ~→ and compute the condensate depletion;
- investigate fluctuations of observables measured on the ground state ~→ validity of a central limit theorem for one particle observables measured on the condensate RADEMACHER-SCHLEIN '19, RADEMACHER '20 ;