The interchange model on two-block graphs

Jakob E. Björnberg

Chalmers and University of Gothenburg

Joint work with Hjalmar Rosengren and Kieran Ryan

The model

General form of Hamiltonian:

$$
H_{n}=-\sum_{1 \leq i<j \leq n} \alpha_{i, j} T_{i, j}, \quad \alpha_{i, j} \in \mathbb{R}
$$

where $T_{i, j}=$ transposition of i and j tensor factors in $\left(\mathbb{C}^{r}\right)^{\otimes n}$

$$
T_{i, j}|\varphi\rangle \otimes|\psi\rangle=|\psi\rangle \otimes|\varphi\rangle(\text { and } r=2 S+1)
$$

The model

General form of Hamiltonian:

$$
H_{n}=-\sum_{1 \leq i<j \leq n} \alpha_{i, j} T_{i, j}, \quad \alpha_{i, j} \in \mathbb{R}
$$

where $T_{i, j}=$ transposition of i and j tensor factors in $\left(\mathbb{C}^{r}\right)^{\otimes n}$

$$
T_{i, j}|\varphi\rangle \otimes|\psi\rangle=|\psi\rangle \otimes|\varphi\rangle(\text { and } r=2 S+1)
$$

Specific cases of interest:

- Spin $\frac{1}{2}$ (i.e. $r=2$): $T_{i, j}=2 \vec{S}_{i} \cdot \vec{S}_{j}+\frac{1}{2}$ (Heisenberg model)

The model

General form of Hamiltonian:

$$
H_{n}=-\sum_{1 \leq i<j \leq n} \alpha_{i, j} T_{i, j}, \quad \alpha_{i, j} \in \mathbb{R}
$$

where $T_{i, j}=$ transposition of i and j tensor factors in $\left(\mathbb{C}^{r}\right)^{\otimes n}$

$$
T_{i, j}|\varphi\rangle \otimes|\psi\rangle=|\psi\rangle \otimes|\varphi\rangle(\text { and } r=2 S+1)
$$

Specific cases of interest:

- Spin $\frac{1}{2}$ (i.e. $r=2$): $T_{i, j}=2 \vec{S}_{i} \cdot \vec{S}_{j}+\frac{1}{2}$ (Heisenberg model)
- Spin 1 (i.e. $r=3$): $T_{i, j}=\left(\vec{S}_{i} \cdot \vec{S}_{j}\right)^{2}+\vec{S}_{i} \cdot \vec{S}_{j}-1$

The model

General form of Hamiltonian:

$$
H_{n}=-\sum_{1 \leq i<j \leq n} \alpha_{i, j} T_{i, j}, \quad \alpha_{i, j} \in \mathbb{R}
$$

where $T_{i, j}=$ transposition of i and j tensor factors in $\left(\mathbb{C}^{r}\right)^{\otimes n}$

$$
T_{i, j}|\varphi\rangle \otimes|\psi\rangle=|\psi\rangle \otimes|\varphi\rangle(\text { and } r=2 S+1)
$$

Specific cases of interest:

- Spin $\frac{1}{2}$ (i.e. $r=2$): $T_{i, j}=2 \vec{S}_{i} \cdot \vec{S}_{j}+\frac{1}{2}$ (Heisenberg model)
- Spin 1 (i.e. $r=3$): $T_{i, j}=\left(\vec{S}_{i} \cdot \vec{S}_{j}\right)^{2}+\vec{S}_{i} \cdot \vec{S}_{j}-1$
- Generally: $T_{i, j}=$ polynomial in $\vec{S}_{i} \cdot \vec{S}_{j}$

Probabilistic representation for ferromagnet

If all $\alpha_{i, j} \geq 0$ then $-H_{n}$ is a generator for a Markov chain:

Probabilistic representation for ferromagnet

If all $\alpha_{i, j} \geq 0$ then $-H_{n}$ is a generator for a Markov chain:

Random independent transpositions rate $\alpha_{i, j}$ per pair $\{i, j\}$ time β

Probabilistic representation for ferromagnet

If all $\alpha_{i, j} \geq 0$ then $-H_{n}$ is a generator for a Markov chain:

Random independent transpositions rate $\alpha_{i, j}$ per pair $\{i, j\}$
time β
Partition function
$Z_{n}=\operatorname{tr}\left[e^{-\beta H_{n}}\right]=c \mathbb{E}\left[r^{\# \text { cycles }}\right]$
(Tóth '93)

Probabilistic representation for ferromagnet

If all $\alpha_{i, j} \geq 0$ then $-H_{n}$ is a generator for a Markov chain:

Random independent transpositions

 rate $\alpha_{i, j}$ per pair $\{i, j\}$ time βPartition function
$Z_{n}=\operatorname{tr}\left[e^{-\beta H_{n}}\right]=c \mathbb{E}\left[r^{\# \text { cycles }}\right]$
(Tóth '93)
Our choice of couplings:

$$
\alpha_{i, j}=\frac{1}{n} \begin{cases}a, & i, j \in A=\{1,2, \ldots, m\}, \\ b, & i, j \in B=\{m+1, \ldots, n\}, \\ c, & i \in A, j \in B .\end{cases}
$$

Probabilistic representation for ferromagnet

If all $\alpha_{i, j} \geq 0$ then $-H_{n}$ is a generator for a Markov chain:

Random independent transpositions

 rate $\alpha_{i, j}$ per pair $\{i, j\}$ time βPartition function
$Z_{n}=\operatorname{tr}\left[e^{-\beta H_{n}}\right]=c \mathbb{E}\left[r^{\# \text { cycles }}\right]$
(Tóth '93)
Our choice of couplings:

$$
\alpha_{i, j}=\frac{1}{n} \begin{cases}a, & i, j \in A=\{1,2, \ldots, m\}, \\ b, & i, j \in B=\{m+1, \ldots, n\}, \\ c, & i \in A, j \in B .\end{cases}
$$

If $a=b=c:$ complete graph (B.-Fröhlich-Ueltschi '19)

Result I: free energy

From now on $a, b, c \in \mathbb{R}$ and

$$
H_{n}=-\frac{1}{n}\left(a \sum_{1 \leq i<j \leq m} T_{i, j}+b \sum_{m+1 \leq i<j \leq n} T_{i, j}+c \sum_{1 \leq i \leq m<j \leq n} T_{i, j}\right)
$$

Result I: free energy

From now on $a, b, c \in \mathbb{R}$ and

$$
H_{n}=-\frac{1}{n}\left(a \sum_{1 \leq i<j \leq m} T_{i, j}+b \sum_{m+1 \leq i<j \leq n} T_{i, j}+c \sum_{1 \leq i \leq m<j \leq n} T_{i, j}\right)
$$

Theorem
As $n \rightarrow \infty$ with $m / n \rightarrow \rho \in(0,1)$,

$$
\frac{1}{n} \log \operatorname{tr}\left[e^{-\beta H_{n}}\right] \rightarrow \max _{(x ; y) \in \Omega_{\rho}}(\mathcal{H}(x ; y)+\beta \mathcal{E}(x ; y))+c s t
$$

Result I: free energy

From now on $a, b, c \in \mathbb{R}$ and

$$
H_{n}=-\frac{1}{n}\left(a \sum_{1 \leq i<j \leq m} T_{i, j}+b \sum_{m+1 \leq i<j \leq n} T_{i, j}+c \sum_{1 \leq i \leq m<j \leq n} T_{i, j}\right)
$$

Theorem
As $n \rightarrow \infty$ with $m / n \rightarrow \rho \in(0,1)$,

$$
\frac{1}{n} \log \operatorname{tr}\left[e^{-\beta H_{n}}\right] \rightarrow \max _{(x ; y) \in \Omega_{\rho}}(\mathcal{H}(x ; y)+\beta \mathcal{E}(x ; y))+c s t
$$

where
$\Omega_{\rho}=\left\{\left(x_{1}, \ldots, x_{r} ; y_{1}, \ldots, y_{r}\right): x_{i}, y_{i} \geq 0, \sum x_{i}=1-\sum y_{i}=\rho\right\}$

Result I: free energy

From now on $a, b, c \in \mathbb{R}$ and

$$
H_{n}=-\frac{1}{n}\left(a \sum_{1 \leq i<j \leq m} T_{i, j}+b \sum_{m+1 \leq i<j \leq n} T_{i, j}+c \sum_{1 \leq i \leq m<j \leq n} T_{i, j}\right)
$$

Theorem
As $n \rightarrow \infty$ with $m / n \rightarrow \rho \in(0,1)$,

$$
\frac{1}{n} \log \operatorname{tr}\left[e^{-\beta H_{n}}\right] \rightarrow \max _{(x ; y) \in \Omega_{\rho}}(\mathcal{H}(x ; y)+\beta \mathcal{E}(x ; y))+c s t
$$

where
$\Omega_{\rho}=\left\{\left(x_{1}, \ldots, x_{r} ; y_{1}, \ldots, y_{r}\right): x_{i}, y_{i} \geq 0, \sum x_{i}=1-\sum y_{i}=\rho\right\}$ $\mathcal{H}(x ; y)=-\sum_{i=1}^{r}\left(x_{i} \log x_{i}+y_{i} \log y_{i}\right) \geq 0$

Result I: free energy

From now on $a, b, c \in \mathbb{R}$ and

$$
H_{n}=-\frac{1}{n}\left(a \sum_{1 \leq i<j \leq m} T_{i, j}+b \sum_{m+1 \leq i<j \leq n} T_{i, j}+c \sum_{1 \leq i \leq m<j \leq n} T_{i, j}\right)
$$

Theorem
As $n \rightarrow \infty$ with $m / n \rightarrow \rho \in(0,1)$,

$$
\frac{1}{n} \log \operatorname{tr}\left[e^{-\beta H_{n}}\right] \rightarrow \max _{(x ; y) \in \Omega_{\rho}}(\mathcal{H}(x ; y)+\beta \mathcal{E}(x ; y))+c s t
$$

where
$\Omega_{\rho}=\left\{\left(x_{1}, \ldots, x_{r} ; y_{1}, \ldots, y_{r}\right): x_{i}, y_{i} \geq 0, \sum x_{i}=1-\sum y_{i}=\rho\right\}$ $\mathcal{H}(x ; y)=-\sum_{i=1}^{r}\left(x_{i} \log x_{i}+y_{i} \log y_{i}\right) \geq 0$
$\mathcal{E}(x ; y)=\frac{1}{r} \sum_{1 \leq i<j \leq r} Q\left(x_{i}-x_{j}, y_{i}-y_{j}\right)$

Result I: free energy

From now on $a, b, c \in \mathbb{R}$ and

$$
H_{n}=-\frac{1}{n}\left(a \sum_{1 \leq i<j \leq m} T_{i, j}+b \sum_{m+1 \leq i<j \leq n} T_{i, j}+c \sum_{1 \leq i \leq m<j \leq n} T_{i, j}\right)
$$

Theorem
As $n \rightarrow \infty$ with $m / n \rightarrow \rho \in(0,1)$,

$$
\frac{1}{n} \log \operatorname{tr}\left[e^{-\beta H_{n}}\right] \rightarrow \max _{(x ; y) \in \Omega_{\rho}}(\mathcal{H}(x ; y)+\beta \mathcal{E}(x ; y))+c s t
$$

where

$$
\begin{aligned}
& \Omega_{\rho}=\left\{\left(x_{1}, \ldots, x_{r} ; y_{1}, \ldots, y_{r}\right): x_{i}, y_{i} \geq 0, \sum x_{i}=1-\sum y_{i}=\rho\right\} \\
& \mathcal{H}(x ; y)=-\sum_{i=1}^{r}\left(x_{i} \log x_{i}+y_{i} \log y_{i}\right) \geq 0 \\
& \mathcal{E}(x ; y)=\frac{1}{r} \sum_{1 \leq i<j \leq r} Q\left(x_{i}-x_{j}, y_{i}-y_{j}\right) \\
& Q(\xi, \eta)=\frac{1}{2}\left(a \xi^{2}+b \eta^{2}+2 c \xi \eta\right)
\end{aligned}
$$

Result II: phase transition

Proposition

- If $Q \leq 0$ (i.e. $a, b \leq 0, a b \geq c^{2}$) then for all $\beta \geq 0$, maximum attained only at $\omega_{0}=\left(\frac{\rho}{r}, \ldots, \frac{\rho}{r} ; \frac{1-\rho}{r}, \ldots, \frac{1-\rho}{r}\right)$

Result II: phase transition

Proposition

- If $Q \leq 0$ (i.e. $a, b \leq 0, a b \geq c^{2}$) then for all $\beta \geq 0$, maximum attained only at $\omega_{0}=\left(\frac{\rho}{r}, \ldots, \frac{\rho}{r} ; \frac{1-\rho}{r}, \ldots, \frac{1-\rho}{r}\right)$
- Otherwise, there is $\beta_{\mathrm{c}}>0$ s.t. ω_{0} is not the unique maximizer if $\beta>\beta_{\mathrm{c}}$ (but is if $\beta<\beta_{\mathrm{c}}$)

Result II: phase transition

Proposition

- If $Q \leq 0$ (i.e. $a, b \leq 0, a b \geq c^{2}$) then for all $\beta \geq 0$, maximum attained only at $\omega_{0}=\left(\frac{\rho}{r}, \ldots, \frac{\rho}{r} ; \frac{1-\rho}{r}, \ldots, \frac{1-\rho}{r}\right)$
- Otherwise, there is $\beta_{\mathrm{c}}>0$ s.t. ω_{0} is not the unique maximizer if $\beta>\beta_{\mathrm{c}}$ (but is if $\beta<\beta_{\mathrm{c}}$)

For $r=2$ (i.e. spin $\frac{1}{2}$):

- we have a formula for β_{c}
- the phase transition is continuous

Result II: phase transition

Proposition

- If $Q \leq 0$ (i.e. $a, b \leq 0, a b \geq c^{2}$) then for all $\beta \geq 0$, maximum attained only at $\omega_{0}=\left(\frac{\rho}{r}, \ldots, \frac{\rho}{r} ; \frac{1-\rho}{r}, \ldots, \frac{1-\rho}{r}\right)$
- Otherwise, there is $\beta_{\mathrm{c}}>0$ s.t. ω_{0} is not the unique maximizer if $\beta>\beta_{\mathrm{c}}$ (but is if $\beta<\beta_{\mathrm{c}}$)

For $r=2$ (i.e. spin $\frac{1}{2}$):

- we have a formula for β_{c}
- the phase transition is continuous

For $r \geq 3$ (i.e. spin ≥ 1) and a certain subset of parameters a, b, c :

- we have a formula for β_{c}
- the phase transition is discontinuous (phase coexistence at β_{c})

Result III: spin-density Laplace transform

Let $W=\operatorname{diag}\left(w_{1}, \ldots, w_{r}\right)$ where $w_{1}, \ldots, w_{r} \in \mathbb{C}$ and $W_{i}=\mathbb{I} \otimes \cdots \otimes W \otimes \cdots \otimes \mathbb{I}$.

Given $(x ; y) \in \Omega_{\rho}$ write $X=\operatorname{diag}\left(x_{1}, \ldots, x_{r}\right)$ and $Y=\operatorname{diag}\left(y_{1}, \ldots, y_{r}\right)$.

Result III: spin-density Laplace transform

Let $W=\operatorname{diag}\left(w_{1}, \ldots, w_{r}\right)$ where $w_{1}, \ldots, w_{r} \in \mathbb{C}$ and $W_{i}=\mathbb{I} \otimes \cdots \otimes W \otimes \cdots \otimes \mathbb{I}$.

Given $(x ; y) \in \Omega_{\rho}$ write $X=\operatorname{diag}\left(x_{1}, \ldots, x_{r}\right)$ and $Y=\operatorname{diag}\left(y_{1}, \ldots, y_{r}\right)$.
Theorem
Whenever the maximizer $\omega=(x ; y)$ is unique we have

$$
\lim _{n \rightarrow \infty}\left\langle\exp \left(\frac{1}{n} \sum_{j=1}^{n} W_{i}\right)\right\rangle_{\beta, n}=\int_{\mathcal{U}(r)} d U e^{\operatorname{tr}\left[W U(X+Y) U^{*}\right]}
$$

where $\mathcal{U}(r)$ is the group of unitary $r \times r$ matrices and $d U$ is uniform probability measure.

Result III: spin-density Laplace transform

Let $W=\operatorname{diag}\left(w_{1}, \ldots, w_{r}\right)$ where $w_{1}, \ldots, w_{r} \in \mathbb{C}$ and $W_{i}=\mathbb{I} \otimes \cdots \otimes W \otimes \cdots \otimes \mathbb{I}$.

Given $(x ; y) \in \Omega_{\rho}$ write $X=\operatorname{diag}\left(x_{1}, \ldots, x_{r}\right)$ and $Y=\operatorname{diag}\left(y_{1}, \ldots, y_{r}\right)$.
Theorem
Whenever the maximizer $\omega=(x ; y)$ is unique we have

$$
\lim _{n \rightarrow \infty}\left\langle\exp \left(\frac{1}{n} \sum_{j=1}^{n} W_{i}\right)\right\rangle_{\beta, n}=\int_{\mathcal{U}(r)} d U e^{\operatorname{tr}\left[W U(X+Y) U^{*}\right]}
$$

where $\mathcal{U}(r)$ is the group of unitary $r \times r$ matrices and $d U$ is uniform probability measure.

Note: RHS trivial if $\beta<\beta_{\mathrm{c}}$

Result III: spin-density Laplace transform

Let $W=\operatorname{diag}\left(w_{1}, \ldots, w_{r}\right)$ where $w_{1}, \ldots, w_{r} \in \mathbb{C}$ and $W_{i}=\mathbb{I} \otimes \cdots \otimes W \otimes \cdots \otimes \mathbb{I}$.

Given $(x ; y) \in \Omega_{\rho}$ write $X=\operatorname{diag}\left(x_{1}, \ldots, x_{r}\right)$ and $Y=\operatorname{diag}\left(y_{1}, \ldots, y_{r}\right)$.

Theorem

Whenever the maximizer $\omega=(x ; y)$ is unique we have

$$
\lim _{n \rightarrow \infty}\left\langle\exp \left(\frac{1}{n} \sum_{j=1}^{n} W_{i}\right)\right\rangle_{\beta, n}=\int_{\mathcal{U}(r)} d U e^{\operatorname{tr}\left[W U(X+Y) U^{*}\right]}
$$

where $\mathcal{U}(r)$ is the group of unitary $r \times r$ matrices and $d U$ is uniform probability measure.

Note: RHS trivial if $\beta<\beta_{\mathrm{c}}$
Interpretation: extremal Gibbs states indexed by the orbit of $X+Y$ under $\mathcal{U}(r)$.

Result IV: ground-state phase diagrams $(\beta \rightarrow \infty)$

Picture depends on sign of $c(=$ coupling across the blocks $A, B)$.

Result IV: ground-state phase diagrams $(\beta \rightarrow \infty)$

Picture depends on sign of $c(=$ coupling across the blocks $A, B)$.
For $c>0$:

F : ferromagnetic
D : disordered
E_{1} : ferromagnetic in block A, partly disordered in B $b=\frac{-c \rho}{\rho^{\prime}} E_{2}$: vice versa

Result IV: ground-state phase diagrams $(\beta \rightarrow \infty)$

For $c<0$, with $r=5$ (i.e. spin 2):

A: antiferromagnetic
D : disordered
B_{k} : intermediate
C_{k} : partly disordered

Method: Schur-Weyl duality

Write

$$
H_{n}=-\frac{1}{n}\left((a-c) \sum_{1 \leq i<j \leq m} T_{i, j}+(b-c) \sum_{m+1 \leq i<j \leq n} T_{i, j}+c \sum_{1 \leq i<j \leq n} T_{i, j}\right)
$$

Method: Schur-Weyl duality

Write

$$
H_{n}=-\frac{1}{n}\left((a-c) \sum_{1 \leq i<j \leq m} T_{i, j}+(b-c) \sum_{m+1 \leq i<j \leq n} T_{i, j}+c \sum_{1 \leq i<j \leq n} T_{i, j}\right)
$$

Think of $H_{n} \in \mathbb{C}\left[S_{n}\right]$ and $\left(\mathbb{C}^{r}\right)^{\otimes n}$ as a representation

Method: Schur-Weyl duality

Write
$H_{n}=-\frac{1}{n}\left((a-c) \sum_{1 \leq i<j \leq m} T_{i, j}+(b-c) \sum_{m+1 \leq i<j \leq n} T_{i, j}+c \sum_{1 \leq i<j \leq n} T_{i, j}\right)$
Think of $H_{n} \in \mathbb{C}\left[S_{n}\right]$ and $\left(\mathbb{C}^{r}\right)^{\otimes n}$ as a representation
Decompositon into irreducible S_{n}-modules:

$$
\left(\mathbb{C}^{r}\right)^{\otimes n} \cong \bigoplus_{\lambda \vdash n, \ell(\lambda) \leq r} s_{\lambda} V^{\lambda}
$$

Method: Schur-Weyl duality

Write
$H_{n}=-\frac{1}{n}\left((a-c) \sum_{1 \leq i<j \leq m} T_{i, j}+(b-c) \sum_{m+1 \leq i<j \leq n} T_{i, j}+c \sum_{1 \leq i<j \leq n} T_{i, j}\right)$
Think of $H_{n} \in \mathbb{C}\left[S_{n}\right]$ and $\left(\mathbb{C}^{r}\right)^{\otimes n}$ as a representation
Decompositon into irreducible S_{n}-modules:

$$
\left(\mathbb{C}^{r}\right)^{\otimes n} \cong \bigoplus_{\lambda \vdash n, \ell(\lambda) \leq r} s_{\lambda} V^{\lambda}
$$

Moreover, as an $S_{m} \times S_{n-m}$-representation

$$
V^{\lambda} \cong \bigoplus_{\mu \vdash m, \nu \vdash n-m} c_{\mu, \nu}^{\lambda} V^{\mu} \otimes V^{\nu}
$$

This decomposition diagonalizes the Hamiltonian (Schur's Lemma)

Method: Schur-Weyl duality

Key input: "Horn's inequalities" (Knutson-Tao theorem) $c_{\mu, \nu}^{\lambda}>0$ if and only if there are Hermitian $r \times r$ matrices X, Y with spectra μ, ν respectively, such that $X+Y$ has spectrum λ

Method: Schur-Weyl duality

Key input: "Horn's inequalities" (Knutson-Tao theorem) $c_{\mu, \nu}^{\lambda}>0$ if and only if there are Hermitian $r \times r$ matrices X, Y with spectra μ, ν respectively, such that $X+Y$ has spectrum λ

Then on $V^{\mu} \otimes V^{\nu}$, $-H_{n}=\frac{1}{2 n}\left((a-c) \operatorname{tr}\left[X^{2}\right]+(b-c) \operatorname{tr}\left[Y^{2}\right]+c \operatorname{tr}\left[(X+Y)^{2}\right]+o(1)\right)$

Method: Schur-Weyl duality

Key input: "Horn's inequalities" (Knutson-Tao theorem) $c_{\mu, \nu}^{\lambda}>0$ if and only if there are Hermitian $r \times r$ matrices X, Y with spectra μ, ν respectively, such that $X+Y$ has spectrum λ

Then on $V^{\mu} \otimes V^{\nu}$, $-H_{n}=\frac{1}{2 n}\left((a-c) \operatorname{tr}\left[X^{2}\right]+(b-c) \operatorname{tr}\left[Y^{2}\right]+c \operatorname{tr}\left[(X+Y)^{2}\right]+o(1)\right)$

For spin-density Laplace transform, use full Schur-Weyl duality: as a representation of $\mathrm{GL}_{\mathrm{r}}(\mathbb{C}) \times \mathrm{S}_{\mathrm{n}}$

$$
\left(\mathbb{C}^{r}\right)^{\otimes n} \cong \bigoplus_{\lambda \vdash n, \ell(\lambda) \leq r} U^{\lambda} \otimes V^{\lambda}
$$

Thank you!

