Effective Mass of the Polaron: a lower bound

Volker Betz

TU Darmstadt

Venice, 23 August 2022

Joint work with Steffen Polzer (Geneva)

The Fröhlich Polaron

- A charged particle in a polar crystal drags around a
 polarization cloud when moving.
- It therefore appears to be heavier.

Image from Wikipedia = (== /) & (== //) 8.1.0.2

$$H_{\alpha} = \frac{1}{2}p^2 + \int_{\mathbb{R}^3} \omega(k) a_k^* a_k \, \mathrm{d}k + \sqrt{\alpha} \int_{\mathbb{R}^3} \frac{\hat{\varrho}(k)}{\sqrt{2\omega(k)}} \left(e^{\mathrm{i}k \cdot x} \, a_k + e^{-\mathrm{i}k \cdot x} \, a_k^* \right) \mathrm{d}k.$$

The three terms are particle (kinetic) energy, field energy and interaction energy, respectively.

For the Fröhlich Hamiltonian,
$$\omega(k)=1$$
 and $\frac{\hat{\varrho}(k)}{\sqrt{2\omega(k)}}=\frac{1}{\sqrt{2\pi}|k|}.$

The **coupling constant** α determines the strength of the interaction. We will be interested in large α .

The effective mass

$$H_{\alpha} = \frac{1}{2}p^2 + \int_{\mathbb{R}^3} \omega(k) a_k^* a_k \, \mathrm{d}k + \sqrt{\alpha} \int_{\mathbb{R}^3} \frac{\hat{\varrho}(k)}{\sqrt{2\omega(k)}} \left(e^{\mathrm{i}k \cdot x} a_k + e^{-\mathrm{i}k \cdot x} a_k^* \right) \mathrm{d}k.$$

H commutes with the total momentum operator $p+P_{\rm f}$ with $P_{\rm f}=\int_{\mathbb{R}^3}ka_k^*a_k\,{\rm d}k$. Therefore, it is unitarily equivalent to the fiber Hamiltonian $\int_{\mathbb{R}^3}^\oplus H_{\alpha}(P){\rm d}P$ with

$$H_{\alpha}(P) = \frac{1}{2} \left(P - P_{\mathrm{f}} \right)^2 + \int_{\mathbb{R}^3} \omega(k) a_k^* a_k \, \mathrm{d}k + \sqrt{\alpha} \int_{\mathbb{R}^3} \frac{\hat{\varrho}(k)}{\sqrt{2\omega(k)}} (a_k + a_k^*) \, \mathrm{d}k.$$

Set $E_{\alpha}(P) := \inf \operatorname{spec} H_{\alpha}(P) = E_{\alpha,r}(|P|)$ by rotation invariance.

Corresponds to $p \mapsto \frac{1}{2m}p^2$ of a free particle of mass m.

The effective mass is given by $m_{\rm eff}(\alpha) = \frac{1}{E_{\alpha,r}^{\prime\prime}(0)}$.

The effective mass

$$H_{\alpha} = \frac{1}{2}p^2 + \int_{\mathbb{R}^3} \omega(k) a_k^* a_k \, \mathrm{d}k + \sqrt{\alpha} \int_{\mathbb{R}^3} \frac{\hat{\varrho}(k)}{\sqrt{2\omega(k)}} \left(e^{\mathrm{i}k \cdot x} a_k + e^{-\mathrm{i}k \cdot x} a_k^* \right) \mathrm{d}k.$$

H commutes with the total momentum operator $p+P_{\rm f}$ with $P_{\rm f}=\int_{\mathbb{R}^3}ka_k^*a_k\,{\rm d}k$. Therefore, it is unitarily equivalent to the fiber Hamiltonian $\int_{\mathbb{R}^3}^\oplus H_{\alpha}(P){\rm d}P$ with

$$H_{\alpha}(P) = \frac{1}{2} (P - P_{\mathrm{f}})^2 + \int_{\mathbb{R}^3} \omega(k) a_k^* a_k \, \mathrm{d}k + \sqrt{\alpha} \int_{\mathbb{R}^3} \frac{\hat{\varrho}(k)}{\sqrt{2\omega(k)}} (a_k + a_k^*) \, \mathrm{d}k.$$

Set $E_{\alpha}(P) := \inf \operatorname{spec} H_{\alpha}(P) = E_{\alpha,r}(|P|)$ by rotation invariance.

Corresponds to $p \mapsto \frac{1}{2m}p^2$ of a free particle of mass m.

The effective mass is given by $m_{\rm eff}(\alpha) = \frac{1}{E''_{\alpha,\rm r}(0)}$.

Conjecture [Landau, Pekar 1948]: For large α we have $m_{\rm eff}(\alpha)\sim C\alpha^4$ with 'explicit' constant C.

The effective mass

$$H_{\alpha} = \frac{1}{2}p^2 + \int_{\mathbb{R}^3} \omega(k) a_k^* a_k \, \mathrm{d}k + \sqrt{\alpha} \int_{\mathbb{R}^3} \frac{\hat{\varrho}(k)}{\sqrt{2\omega(k)}} \left(e^{\mathrm{i}k \cdot x} a_k + e^{-\mathrm{i}k \cdot x} a_k^* \right) \mathrm{d}k.$$

H commutes with the total momentum operator $p+P_{\rm f}$ with $P_{\rm f}=\int_{\mathbb{R}^3}ka_k^*a_k\,{\rm d}k$. Therefore, it is unitarily equivalent to the fiber Hamiltonian $\int_{\mathbb{R}^3}^\oplus H_{\alpha}(P){\rm d}P$ with

$$H_{\alpha}(P) = \frac{1}{2} (P - P_{\mathrm{f}})^2 + \int_{\mathbb{R}^3} \omega(k) a_k^* a_k \, \mathrm{d}k + \sqrt{\alpha} \int_{\mathbb{R}^3} \frac{\hat{\varrho}(k)}{\sqrt{2\omega(k)}} (a_k + a_k^*) \, \mathrm{d}k.$$

Set $E_{\alpha}(P) := \inf \operatorname{spec} H_{\alpha}(P) = E_{\alpha,r}(|P|)$ by rotation invariance.

Corresponds to $p\mapsto \frac{1}{2m}p^2$ of a free particle of mass m.

The effective mass is given by $m_{\rm eff}(\alpha) = \frac{1}{E_{\alpha,\rm r}''(0)}$.

Conjecture [Landau, Pekar 1948]: For large α we have $m_{\rm eff}(\alpha) \sim C \alpha^4$ with 'explicit' constant C.

Theorem [Lieb, Seiringer 2020]:
$$\lim_{\alpha \to \infty} m_{\text{eff}}(\alpha) = \infty$$
.

V. Betz (Darmstadt)

Effective Mass and perturbed Brownian motion

For T>0 define a probability measure on $C([0,\infty),\mathbb{R}^3)$ by

$$\mathbb{P}_T(\mathrm{d}X) = \frac{1}{Z_{\alpha,T}} e^{\frac{\alpha}{2} \int_{-T}^T \mathrm{d}s \int_{-T}^T \mathrm{d}t \frac{\mathrm{e}^{-|t-s|}}{|X_t - X_s|}} \mathcal{W}^0(\mathrm{d}X).$$

 \mathcal{W}^0 is the path measure of Brownian motion.

Intuition:

- ▶ attractive interaction; favours paths revisiting their past.
- expect: mean square displacement $\mathbb{E}_{\alpha,T}(|X_T|^2) < \mathbb{E}_{\alpha,T}(|X_T|^2) = 3T$ for $\alpha > 0$.
- \blacktriangleright larger α gives smaller mean square displacement.

Effective Mass and perturbed Brownian motion

For T>0 define a probability measure on $C([0,\infty),\mathbb{R}^3)$ by

$$\mathbb{P}_T(\mathrm{d}X) = \frac{1}{Z_{\alpha,T}} e^{\frac{\alpha}{2} \int_{-T}^T \mathrm{d}s \int_{-T}^T \mathrm{d}t \frac{\mathrm{e}^{-|t-s|}}{|X_t - X_s|}} \mathcal{W}^0(\mathrm{d}X).$$

 \mathcal{W}^0 is the path measure of Brownian motion.

Intuition:

- ▶ attractive interaction; favours paths revisiting their past.
- expect: mean square displacement $\mathbb{E}_{\alpha,T}(|X_T|^2) < \mathbb{E}_{\alpha,T}(|X_T|^2) = 3T$ for $\alpha > 0$.
- \blacktriangleright larger α gives smaller mean square displacement.

Fact: if

$$\sigma^{2}(\alpha) = \lim_{T \to \infty} \frac{1}{3T} \mathbb{E}_{\alpha,T}(|X_{T}|^{2}).$$

exists, then the Polaron effective mass is given by $m_{\rm eff} = \frac{1}{\sigma^2(\alpha)}$.

(use Feynman-Kac formula, see [Feynman 55, Spohn 87, Dybalski, Spohn 20])

Effective Mass and perturbed Brownian motion

For T>0 define a probability measure on $C([0,\infty),\mathbb{R}^3)$ by

$$\mathbb{P}_T(\mathrm{d}X) = \frac{1}{Z_{\alpha,T}} e^{\frac{\alpha}{2} \int_{-T}^T \mathrm{d}s \int_{-T}^T \mathrm{d}t \frac{\mathrm{e}^{-|t-s|}}{|X_t - X_s|}} \mathcal{W}^0(\mathrm{d}X).$$

 \mathcal{W}^0 is the path measure of Brownian motion.

Intuition:

- ▶ attractive interaction; favours paths revisiting their past.
- expect: mean square displacement $\mathbb{E}_{\alpha,T}(|X_T|^2) < \mathbb{E}_{\alpha,T}(|X_T|^2) = 3T$ for $\alpha > 0$.
- larger α gives smaller mean square displacement.

Fact: if

$$\sigma^{2}(\alpha) = \lim_{T \to \infty} \frac{1}{3T} \mathbb{E}_{\alpha,T}(|X_{T}|^{2}).$$

exists, then the Polaron effective mass is given by $m_{\rm eff}=\frac{1}{\sigma^2(\alpha)}$.

(use Feynman-Kac formula, see [Feynman 55, Spohn 87, Dybalski, Spohn 20])

Extracting information from the expression for $\mathbb{P}_T(\mathrm{d}X)$ is hard!

V. Betz (Darmstadt)

Main result

For T>0 and $1\leqslant \gamma <2$ let

$$\mathbb{P}_T(\mathrm{d}X) = \frac{1}{Z_{\alpha,T}} e^{\frac{\alpha}{2} \int_{-T}^T \mathrm{d}s \int_{-T}^T \mathrm{d}t \, v(X_t - X_s) g(t - s)} \, \mathcal{W}^0(\mathrm{d}X).$$

with

$$ightharpoonup v(x) = |x|^{-\gamma} \text{ for } \gamma \in [1, 2),$$

▶
$$g \geqslant 0$$
, $\sup_{t \geqslant 0} (1+t)g(t) < \infty$,
$$\int_0^\infty g(s) \, \mathrm{d}s = 1 \text{ and}$$

$$\int_0^\infty sg(s) \, \mathrm{d}s < \infty.$$

Main result

For T>0 and $1\leqslant \gamma <2$ let

$$\mathbb{P}_T(\mathrm{d}X) = \frac{1}{Z_{\alpha,T}} e^{\frac{\alpha}{2} \int_{-T}^T \mathrm{d}s \int_{-T}^T \mathrm{d}t \, v(X_t - X_s) g(t-s)} \, \mathcal{W}^0(\mathrm{d}X).$$

with

$$\triangleright v(x) = |x|^{-\gamma} \text{ for } \gamma \in [1, 2),$$

▶
$$g \geqslant 0$$
, $\sup_{t \geqslant 0} (1+t)g(t) < \infty$,
$$\int_0^\infty g(s) \, \mathrm{d}s = 1 \text{ and}$$

$$\int_0^\infty sg(s) \, \mathrm{d}s < \infty.$$

Theorem [B., Polzer 22]

$$\sigma^2(\alpha) = \lim_{T \to \infty} \frac{1}{3T} \mathbb{E}_{\alpha,T} \left(|X_T|^2 \right)$$
 exists, and there exists $C < \infty$ such that $\sigma^2(\alpha) \leqslant C \alpha^{-2/5}$ for all $\alpha > 0$.

Consequently, $m_{\rm eff}(\alpha) \geqslant C^{-1}\alpha^{2/5}$.

This is ten percent of the way up to $m_{\rm eff}(\alpha) \sim \alpha^4$.

Let $\Gamma_{\alpha,T}$ be the distribution of the PPP with intensity measure

$$\mu_{\alpha,T}(\mathrm{d} s\,\mathrm{d} t) = \alpha g(t-s) \mathbb{1}_{\{0\leqslant s < t\leqslant T\}} \,\mathrm{d} s \mathrm{d} t, \qquad c_{\alpha,T} := \mu_{\alpha,T}(\mathbb{R}^2).$$

Then for measurable $A \subset C([0,\infty),\mathbb{R}^3)$ we have

$$\mathbb{P}_T(A) = \frac{1}{Z_{\alpha,T}} \int_A \mathcal{W}(\mathrm{d}X) \,\mathrm{e}^{\alpha \iint_0 \leqslant s < t} \leqslant T^{\mathrm{d}s\mathrm{d}t} g(t-s) v(X_t - X_s)$$

Let $\Gamma_{\alpha,T}$ be the distribution of the PPP with intensity measure

$$\mu_{\alpha,T}(\mathrm{d} s\,\mathrm{d} t) = \alpha g(t-s) \mathbb{1}_{\{0\leqslant s < t\leqslant T\}} \,\mathrm{d} s \mathrm{d} t, \qquad c_{\alpha,T} := \mu_{\alpha,T}(\mathbb{R}^2).$$

Then for measurable $A \subset C([0,\infty),\mathbb{R}^3)$ we have

$$\mathbb{P}_{T}(A) = \frac{1}{Z_{\alpha,T}} \int_{A} \mathcal{W}(\mathrm{d}X) \, \mathrm{e}^{\alpha \iint_{0} \leq s < t} \leq T^{\operatorname{d}s \operatorname{d}t} \, g(t-s) v(X_{t} - X_{s})$$

$$= \frac{1}{Z_{\alpha,T}} \sum_{n=0}^{\infty} \frac{1}{n!} \int \mu_{\alpha,T}^{\otimes n} \left(\prod_{i=1}^{n} \mathrm{d}s_{i} \mathrm{d}t_{i} \right) \int_{A} \mathcal{W}(\mathrm{d}X) \prod_{i=1}^{n} v(X_{t_{i}} - X_{s_{i}})$$

Let $\Gamma_{\alpha,T}$ be the distribution of the PPP with intensity measure

$$\mu_{\alpha,T}(\mathrm{d} s\,\mathrm{d} t) = \alpha g(t-s) \mathbb{1}_{\{0\leqslant s < t\leqslant T\}}\,\mathrm{d} s\mathrm{d} t, \qquad c_{\alpha,T} := \mu_{\alpha,T}(\mathbb{R}^2).$$

Then for measurable $A \subset C([0,\infty),\mathbb{R}^3)$ we have

$$\mathbb{P}_{T}(A) = \frac{1}{Z_{\alpha,T}} \int_{A} \mathcal{W}(\mathrm{d}X) \, \mathrm{e}^{\alpha \iint_{0 \leq s < t \leq T} \, \mathrm{d}s \mathrm{d}t \, g(t-s) v(X_{t}-X_{s})}$$

$$= \frac{1}{Z_{\alpha,T}} \sum_{n=0}^{\infty} \frac{1}{n!} \int \mu_{\alpha,T}^{\otimes n} \left(\prod_{i=1}^{n} \mathrm{d}s_{i} \mathrm{d}t_{i} \right) \int_{A} \mathcal{W}(\mathrm{d}X) \prod_{i=1}^{n} v(X_{t_{i}} - X_{s_{i}})$$

$$= \frac{\mathrm{e}^{c_{\alpha,T}}}{Z_{\alpha,T}} \int \Gamma_{\alpha,T}(\mathrm{d}\xi) \int_{A} \mathcal{W}(\mathrm{d}X) \prod_{(s,t) \in \mathrm{supp}(\xi)} v(X_{t} - X_{s})$$

Let $\Gamma_{\alpha,T}$ be the distribution of the PPP with intensity measure

$$\mu_{\alpha,T}(\mathrm{d} s\,\mathrm{d} t) = \alpha g(t-s) \mathbb{1}_{\{0\leqslant s < t\leqslant T\}}\,\mathrm{d} s\mathrm{d} t, \qquad c_{\alpha,T} := \mu_{\alpha,T}(\mathbb{R}^2).$$

Then for measurable $A \subset C([0,\infty),\mathbb{R}^3)$ we have

with $F(\xi) = \mathbb{E}_{\mathcal{W}} \left(\prod_{(s,t) \in \text{supp}(\xi)} v(X_t - X_s) \right)$.

$$\mathbb{P}_{T}(A) = \frac{1}{Z_{\alpha,T}} \int_{A} \mathcal{W}(\mathrm{d}X) \, \mathrm{e}^{\alpha \iint_{0} \, \leqslant \, s < t \, \leqslant \, T \, \mathrm{d}s \mathrm{d}t \, g(t-s) v(X_{t}-X_{s})}$$

$$= \frac{1}{Z_{\alpha,T}} \sum_{n=0}^{\infty} \frac{1}{n!} \int \mu_{\alpha,T}^{\otimes n} \left(\prod_{i=1}^{n} \mathrm{d}s_{i} \mathrm{d}t_{i} \right) \int_{A} \mathcal{W}(\mathrm{d}X) \prod_{i=1}^{n} v(X_{t_{i}} - X_{s_{i}})$$

$$= \frac{\mathrm{e}^{c_{\alpha,T}}}{Z_{\alpha,T}} \int \Gamma_{\alpha,T}(\mathrm{d}\xi) \int_{A} \mathcal{W}(\mathrm{d}X) \prod_{(s,t) \in \mathrm{supp}(\xi)} v(X_{t} - X_{s})$$

$$= \int \underbrace{\frac{\mathrm{e}^{c_{\alpha,T}}}{Z_{\alpha,T}} F(\xi) \Gamma_{\alpha,T}(\mathrm{d}\xi)}_{=\hat{\Gamma}_{\alpha,T}(\mathrm{d}\xi)} \underbrace{\frac{1}{F(\xi)}} \mathbb{E}_{\mathcal{W}} \left(\mathbb{1}_{A} \prod_{(s,t) \in \mathrm{supp}(\xi)} v(X_{t} - X_{s}) \right)$$

$$= : P_{\xi}(A)$$

V. Betz (Darmstadt)

Point process and interval process

 $\Gamma_{\alpha,T}$ is the distribution of the PPP with intensity measure

$$\mu_{\alpha,T}(\mathrm{d} s \, \mathrm{d} t) =$$

$$\alpha g(t-s) \mathbb{1}_{\{0 \leqslant s < t \leqslant T\}} \, \mathrm{d} s \mathrm{d} t,$$

$$c_{\alpha,T} := \mu_{\alpha,T}(\mathbb{R}^2).$$

Point process representation 2 $\mathbb{P}_{\alpha,T}(A) = \int \hat{\Gamma}_{\alpha,T}(\mathrm{d}\xi) \boldsymbol{P}_{\xi}(A),$

$$\hat{\Gamma}_{\alpha,T}(\mathrm{d}\xi) = F(\xi)\Gamma_{\alpha,T}(\mathrm{d}\xi),
\mathbf{P}_{\xi}(\mathrm{d}X) = \frac{1}{F(\xi)} \prod_{(s,t)\in\mathrm{supp}(\xi)} v(X_t - X_s) \mathcal{W}(\mathrm{d}X),
F(\xi) = \mathbb{E}_{\mathcal{W}} \left(\prod_{(s,t)\in\mathrm{supp}(\xi)} v(X_t - X_s) \right).$$

[Mukherjee, Varadhan 19] Generalized in [B., Polzer 21].

 $\mathbb{P}_{\alpha,T}$ is a mixture of path measures, the mixing measure is the point process with distribution $\hat{\Gamma}_{\alpha,T}$, which can be seen as a collection of overlapping intervals.

 P_{ξ} factorizes with respect to clusters (independent increments!).

Point process representation 2 $\mathbb{P}_{\alpha,T}(A) = \int \hat{\Gamma}_{\alpha,T}(\mathrm{d}\xi) \boldsymbol{P}_{\xi}(A),$

$$\hat{\Gamma}_{\alpha,T}(\mathrm{d}\xi) = F(\xi)\Gamma_{\alpha,T}(\mathrm{d}\xi),
\mathbf{P}_{\xi}(\mathrm{d}X) = \frac{1}{F(\xi)} \prod_{(s,t) \in \mathrm{supp}(\xi)} v(X_t - X_s) \mathcal{W}(\mathrm{d}X),
F(\xi) = \mathbb{E}_{\mathcal{W}} \left(\prod_{(s,t) \in \mathrm{supp}(\xi)} v(X_t - X_s) \right).$$

[Mukherjee, Varadhan 19] Generalized in [B., Polzer 21].

 $\mathbb{P}_{\alpha,T}$ is a mixture of path measures, the mixing measure is the point process with distribution $\hat{\Gamma}_{\alpha,T}$, which can be seen as a collection of overlapping intervals.

 P_{ξ} factorizes with respect to clusters (independent increments!). Infinite volume limit and CLT can be deduced from this.

V. Betz (Darmstadt)

Mean square displacement: ideas $\mathbb{P}_{\alpha,T}(A) = \int \hat{\Gamma}_{\alpha,T}(\mathrm{d}\xi) \boldsymbol{P}_{\xi}(A),$

$$\hat{\Gamma}_{\alpha,T}(\mathrm{d}\xi) = F(\xi)\Gamma_{\alpha,T}(\mathrm{d}\xi),
\mathbf{P}_{\xi}(\mathrm{d}X) = \frac{1}{F(\xi)} \prod_{(s,t)\in\mathrm{supp}(\xi)} v(X_t - X_s) \mathcal{W}(\mathrm{d}X),
F(\xi) = \mathbb{E}_{\mathcal{W}} \left(\prod_{(s,t)\in\mathrm{supp}(\xi)} v(X_t - X_s) \right).$$

Mean square displacement: ideas $\mathbb{P}_{\alpha,T}(A) = \int \hat{\Gamma}_{\alpha,T}(\mathrm{d}\xi) \boldsymbol{P}_{\xi}(A),$

$$\hat{\Gamma}_{\alpha,T}(\mathrm{d}\xi) = F(\xi)\Gamma_{\alpha,T}(\mathrm{d}\xi),
\mathbf{P}_{\xi}(\mathrm{d}X) = \frac{1}{F(\xi)} \prod_{(s,t)\in\mathrm{supp}(\xi)} v(X_t - X_s) \mathcal{W}(\mathrm{d}X),
F(\xi) = \mathbb{E}_{\mathcal{W}} \left(\prod_{(s,t)\in\mathrm{supp}(\xi)} v(X_t - X_s) \right).$$

We need to estimate (from above) the mean square displacement per unit length in one typical cluster.

Mean square displacement: ideas $\mathbb{P}_{\alpha,T}(A) = \int \hat{\Gamma}_{\alpha,T}(\mathrm{d}\xi) \boldsymbol{P}_{\xi}(A),$

$$\hat{\Gamma}_{\alpha,T}(\mathrm{d}\xi) = F(\xi)\Gamma_{\alpha,T}(\mathrm{d}\xi),
\mathbf{P}_{\xi}(\mathrm{d}X) = \frac{1}{F(\xi)} \prod_{(s,t)\in\mathrm{supp}(\xi)} v(X_t - X_s) \mathcal{W}(\mathrm{d}X),
F(\xi) = \mathbb{E}_{\mathcal{W}} \left(\prod_{(s,t)\in\mathrm{supp}(\xi)} v(X_t - X_s) \right).$$

We need to estimate (from above) the mean square displacement per unit length in one typical cluster.

For large α , clusters get longer and more densely populated. Getting information about them is still rather tricky!

Effective mass estimate: a shift of energy

$$\begin{aligned} \operatorname{Define} \qquad v_{\pmb{\varepsilon}}(x) &= \frac{1}{|x|} + \pmb{\varepsilon}, \quad g(t) = \operatorname{e}^{-|t|} \\ \mu_{\alpha,T}(\operatorname{d} s \operatorname{d} t) &= \alpha g(t-s) 1\!\!1_{\{0 \leqslant s < t \leqslant T\}} \operatorname{d} s \operatorname{d} t, \qquad c_{\alpha,T} := \mu_{\alpha,T}(\mathbb{R}^2). \\ \operatorname{Then with} & F_{\pmb{\varepsilon}}(\xi) &= \mathbb{E}_{\mathcal{W}}(\prod_{(s,t) \in \operatorname{supp}(\xi)} v_{\pmb{\varepsilon}}(X_t - X_s)), \\ \mathbb{P}_{\alpha,T}(\operatorname{d} X) &= \frac{1}{Z_{\alpha,T}^{\pmb{\varepsilon}}} \mathcal{W}(\operatorname{d} X) \operatorname{e}^{\alpha \iint_0 \leqslant s < t \leqslant T} \operatorname{d} s \operatorname{d} t g(t-s) v_{\pmb{\varepsilon}}(X_t - X_s) &= \hat{\Gamma}_{\alpha,T}^{\pmb{\varepsilon}}(\operatorname{d} \xi) \boldsymbol{P}_{\xi}^{\pmb{\varepsilon}}(\operatorname{d} X) \\ \text{where } \hat{\Gamma}_{\alpha,T}^{\pmb{\varepsilon}}(\operatorname{d} \xi) &= \frac{\operatorname{e}^{c_{\alpha,T}}}{Z_{\alpha,T}^{\pmb{\varepsilon}}} F_{\pmb{\varepsilon}}(\xi) \Gamma_{\alpha,T}(\operatorname{d} \xi) \text{ and} \\ & \boldsymbol{P}_{\xi}^{\pmb{\varepsilon}}(\operatorname{d} X) &= \frac{1}{F_{\pmb{\varepsilon}}(\xi)} \prod_{(s,t) \in \operatorname{supp}(\xi)} v_{\pmb{\varepsilon}}(X_t - X_s) \mathcal{W}(\operatorname{d} X). \end{aligned}$$

Effective mass estimate: a shift of energy

Define
$$v_{\varepsilon}(x) = \frac{1}{|x|} + \varepsilon$$
, $g(t) = e^{-|t|}$

$$\mu_{\alpha,T}(\mathrm{d} s\,\mathrm{d} t) = \alpha g(t-s) \mathbb{1}_{\{0\leqslant s < t\leqslant T\}} \,\mathrm{d} s \mathrm{d} t, \qquad c_{\alpha,T} := \mu_{\alpha,T}(\mathbb{R}^2).$$

Then with $F_{\varepsilon}(\xi) = \mathbb{E}_{\mathcal{W}}(\prod_{(s,t) \in \text{supp}(\xi)} v_{\varepsilon}(X_t - X_s))$,

$$\mathbb{P}_{\alpha,T}(\mathrm{d}X) = \frac{1}{Z_{\alpha,T}^{\boldsymbol{\varepsilon}}} \mathcal{W}(\mathrm{d}X) \, \mathrm{e}^{\alpha \iint_{0} \, \leqslant \, s < t \, \leqslant \, T} \, \mathrm{d}s \mathrm{d}t \, g(t-s) v_{\boldsymbol{\varepsilon}}(X_{t}-X_{s})} \, = \hat{\Gamma}_{\alpha,T}^{\boldsymbol{\varepsilon}}(\mathrm{d}\xi) \boldsymbol{P}_{\xi}^{\boldsymbol{\varepsilon}}(\mathrm{d}X)$$

where $\hat{\Gamma}_{\alpha,T}^{\epsilon}(\mathrm{d}\xi) = \frac{\mathrm{e}^{c_{\alpha,T}}}{Z_{\alpha,T}^{\epsilon}} F_{\epsilon}(\xi) \Gamma_{\alpha,T}(\mathrm{d}\xi)$ and

$$\mathbf{P}_{\xi}^{\varepsilon}(\mathrm{d}X) = \frac{1}{F_{\varepsilon}(\xi)} \prod_{(s,t) \in \mathrm{supp}(\xi)} v_{\varepsilon}(X_t - X_s) \mathcal{W}(\mathrm{d}X).$$

Decompose this further: $v_{\varepsilon}(x) = \frac{1}{|x|} + \varepsilon = \int_{[0,\infty)} \nu_{\varepsilon}(\mathrm{d}u) \, \mathrm{e}^{-u^2|x|^2/2}$,

$$\nu_{\varepsilon} = \sqrt{2/\pi} \, \mathrm{d}u + \varepsilon \delta_0(\mathrm{d}u).$$

Then:

Effective mass: a variational formula

$$\mathbb{P}_{\alpha,T}(\mathrm{d}X) = \int \hat{\Gamma}_{\alpha,T}^{\epsilon}(\mathrm{d}\xi) \int \kappa_{\epsilon}(\xi,\mathrm{d}u) \boldsymbol{P}_{\xi,u}(\mathrm{d}X)$$

with $u \in \mathbb{R}^{|\xi|}$, the kernel

$$\kappa_{\varepsilon}(\xi, u) := \frac{\phi(\xi, u)}{F_{\varepsilon}(\xi)} \nu_{\varepsilon}^{|\xi|}(\mathrm{d}u), \quad \phi(\xi, u) = \mathbb{E}_{\mathcal{W}}\left(\mathrm{e}^{-\sum_{(s,t)\in\xi} u_{(s,t)}^2(X_t - X_s)^2}\right)$$

and Gaussian path measure

$$\boldsymbol{P}_{\xi,u}(\mathrm{d}X) = \frac{1}{\phi(\xi,u)} e^{-\sum_{(s,t)\in\xi} u_{(s,t)}^2(X_t - X_s)^2} \mathcal{W}(\mathrm{d}X).$$

Effective mass: a variational formula

$$\mathbb{P}_{\alpha,T}(\mathrm{d}X) = \int \hat{\Gamma}_{\alpha,T}^{\boldsymbol{\varepsilon}}(\mathrm{d}\xi) \int \kappa_{\boldsymbol{\varepsilon}}(\xi,\mathrm{d}u) \boldsymbol{P}_{\xi,u}(\mathrm{d}X)$$

with $u \in \mathbb{R}^{|\xi|}$, the kernel

$$\kappa_{\varepsilon}(\xi, u) := \frac{\phi(\xi, u)}{F_{\varepsilon}(\xi)} \nu_{\varepsilon}^{|\xi|}(\mathrm{d}u), \quad \phi(\xi, u) = \mathbb{E}_{\mathcal{W}}\left(\mathrm{e}^{-\sum_{(s,t)\in\xi} u_{(s,t)}^2(X_t - X_s)^2}\right)$$

and Gaussian path measure

$$\mathbf{P}_{\xi,u}(dX) = \frac{1}{\phi(\xi,u)} e^{-\sum_{(s,t)\in\xi} u_{(s,t)}^2(X_t - X_s)^2} \mathcal{W}(dX).$$

We then have

$$\sigma_{\alpha,T}^2 := \frac{1}{3T} \mathbb{E}_{\alpha,T}(|X_T - X_0|^2) = \int \hat{\Gamma}_{\alpha,T}^{\epsilon}(\mathrm{d}\xi) \int \kappa_{\epsilon}(\xi,\mathrm{d}u) \sigma_T^2(\xi,u),$$

where
$$\sigma_T^2(\xi, u) = \frac{1}{3T} \boldsymbol{E}_{\xi, u} (|X_T - X_0|^2) =$$

$$= \frac{1}{T} \operatorname{dist}_{L^2} (B_{[0,T]}, \operatorname{span} \{ u_{(s,t)} (B_t - B_s) + Z_{(s,t)} : (s,t) \in \xi \})^2$$

Here B is a 1-dim BM and the $Z_{(s,t)}$ are $\mathcal{N}(0,1)$, iid indep. of B.

V. Betz (Darmstadt)

Effective mass of the Polaron

Effective mass: identifying a simple part of the point process

$$\sigma_{\alpha,T}^2 = \int \hat{\Gamma}_{\alpha,T}^{\epsilon}(\mathrm{d}\xi) \int \kappa_{\epsilon}(\xi,\mathrm{d}u) \ \sigma_T^2(\xi,u),$$

with

$$\sigma_T^2(\xi, u) = \frac{1}{T} \operatorname{dist}_{L^2} \left(B_{[0,T]}, \operatorname{span} \{ u_{(s,t)}(B_t - B_s) + Z_{(s,t)} : (s,t) \in \xi \} \right)^2$$

Observation 1: deleting intervals (s,t) from ξ enlarges $\sigma_T^2(\xi,u)$. This is good, we want an upper bound for $\sigma_{\alpha,T}^2$. The same holds for decreasing some component of u.

Observation 2: $\hat{\Gamma}_{\alpha,T}^{\varepsilon}$ is a Cox process with driving measure $\mu_{\alpha,T}(\mathrm{d} s \mathrm{d} t) v_{\varepsilon}(X_t - X_s)$ with $X \sim \mathbb{P}_{\alpha,T}$, i.e. conditional on X the intensity measure is $\mu_{\alpha,T}(\mathrm{d} s \mathrm{d} t) v_{\varepsilon}(X_t - X_s)$.

Observation 3: $\hat{\Gamma}_{\alpha,T}^{\varepsilon}$ is the distribution of the independent sum $\eta_{\alpha,T} + \eta_{\alpha,T}^{\varepsilon}$ with $\eta_{\alpha,T} \sim \hat{\Gamma}_{\alpha,T}^{0}$ and $\eta_{\alpha,T}^{\varepsilon} \sim \Gamma_{\varepsilon\alpha,T}$. We understand $\Gamma_{\varepsilon\alpha,T}$ very well!

Effective mass: lower bound

Strategy:

- 1. We delete all intervals from (ξ, u) that
 - ightharpoonup come from the process $\eta_{\alpha,T}$,
 - ▶ or are shorter than length 1,
 - or carry a mark less than $C(\alpha)$ (to be fixed later).
 - then we remove overlapping intervals.

Since $\alpha \to \infty$ there are still plenty of intervals left.

- 2. We use stochastic domination to estimate the kernel $\kappa_{\varepsilon}(\xi, \mathrm{d}u)$ that depends on the whole ξ by a product kernel that marks all intervals independently with either 0 or $C(\alpha)$, with suitable probability for each one.
- 3. In the resulting configuration, $\sigma_T^2(\xi, u)$ can be computed. Optimizing $C(\alpha) = \alpha^{1/5}$ gives the result.

V. Betz (Darmstadt)

Thank you for listening!