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The Frohlich Polaron

@ @ @ @ A charged particle in a polar crystal drags around a
® @ @ @ polarization cloud when moving.
@@ @

@ @ 49
@ @ @® @ Its Hamiltonian is the self-adjoint operator in
L?(R3) @ F(L*(R?)) given by

It therefore appears to be heavier.

Image from Wikipedia

Ha_—Q—i—/wk:a*a.dk:—l— Q@ ————(e"Tar + e " ay)dk.
2]) R3 (k)aiax Ve R3 \/Qw(k‘)( " k)

The three terms are particle (kinetic) energy, field energy and

interaction energy, respectively.

For the Frohlich Hamiltonian, w(k) = 1 and 2o = VERR

The coupling constant a determines the strength of the
interaction. We will be interested in large a.
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H,

The effective mass

1, / . ok) . ik
=—p° + w(k)aiar dk + Vo ——— (P + e ) dk.
P’ + | wk)aia Va g 2w<k)( K 9

H commutes with the total momentum operator p + P; with
Py = [gs kajay, dk. Therefore, it is unitarily equivalent to the fiber

Hamiltonian [ Ho(P)dP with

1 o(k)
H,(P)=-(P-P, w(k)ajay dk+v/« ———(ap+ay) dk.
()= 3PP+ [ wtkyaiandiva [ TR (o
Set E.(P) := infspecH,(P) = E,.(|P|) by rotation invariance.

Corresponds to p — ﬁpQ of a free particle of mass m.

The effective mass is given by meg(a) = ﬁ.
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H commutes with the total momentum operator p + P; with
Py = [gs kajay, dk. Therefore, it is unitarily equivalent to the fiber

Hamiltonian [ Ho(P)dP with

Hy(P) = %(P Pf) /st(k)aZakdk—h/a ﬂ(aﬁaz)dk.

R3 \/2w(k)
Set E.(P) := infspecH,(P) = E,.(|P|) by rotation invariance.
Corresponds to p — ﬁpQ of a free particle of mass m.

The effective mass is given by meg(a) = E,, 7 (0)"

Conjecture [Landu, Peir 1045 For large o we have meg () ~ Ca

with "explicit’ constant C.
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H commutes with the total momentum operator p + P; with
Py = [gs kajay, dk. Therefore, it is unitarily equivalent to the fiber

Hamiltonian [ Ho(P)dP with

o(k)
R3 \/2w(k)
Set E.(P) := infspecH,(P) = E,.(|P|) by rotation invariance.

Corresponds to p — ﬁpQ of a free particle of mass m.

Hy(P) = %(P Pf) /st(k)aZakdk—h/a (agp+aj) dk.

The effective mass is given by meg(a) = E,, 7 (0)"

Conjecture [Landu, Peir 1045 For large o we have meg () ~ Ca
with "explicit’ constant C.
Theorem [Lies, seiringer 20201 1im g, 00 Mer () = 00.
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Effective Mass and perturbed Brownian motion
For T' > 0 define a probability measure on C'(]0, o), R?) by

Pr(dX) = - o rds Zrdt S5 0 g ).
Za T
WY is the path measure of Brownian motion.
Intuition:
> attractive interaction; favours paths revisiting their past.
P> expect: mean square displacement
Ea,T(‘XTP) < Ea,T(|XT|2) = 3T for o > 0.
> larger o gives smaller mean square displacement.
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Effective Mass and perturbed Brownian motion
For T' > 0 define a probability measure on C'(]0, o), R?) by

o —|t—s]|
Pr(dX) = 5o r Pt A e ax),

WY is the path measure of Brownian motion.
Intuition:
> attractive interaction; favours paths revisiting their past.
P> expect: mean square displacement
Ea,T(‘XTP) < Ea,T(|XT|2) = 3T for o > 0.
> larger o gives smaller mean square displacement.

Fact: if ]
—Eor(|X7]?).

1, g et (1XrT)

exists, then the Polaron effective mass is given by meg = %

2 .
o°(a) = lim
T—
(use Feynman-Kac formula, see [Feynman 55, Spohn 87, Dybalski, Spohn 20])
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Effective Mass and perturbed Brownian motion
For T' > 0 define a probability measure on C'(]0, o), R?) by

o —|t—s]|
Pr(dX) = 5o r Pt A e ax),

WY is the path measure of Brownian motion.
Intuition:
> attractive interaction; favours paths revisiting their past.
P> expect: mean square displacement
Ea,T(‘XTP) < Ea,T(|XT|2) = 3T for o« > 0.
> larger o gives smaller mean square displacement.
Fact: if ]
—E,r(|Xr?).
b grter (X7
exists, then the Polaron effective mass is given by meg = %

2 ET
o (@) = fim

(use Feynman-Kac formula, see [Feynman 55, Spohn 87, Dybalski, Spohn 20])

Extracting information from the expression for Py (d.X) is hard!
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Main result
ForT'>0and 1 <vy<2let

PT(dX) = e% ffT ds fTT dt v(Xe—Xs)g(t—s) WO(dX).

o, T
with
> U(m) =|z|™7 for v € [1,2),
=0, SuPt>0(1 +t)g(t) < oo,
fo s)ds=1 and
fooo ( )ds < oc.



Main result
ForT'>0and 1 <y <2let

Pr(dX) = L s T s T de (X=X g(t-s) WO(dX).
a,T
with
» v(z) = |z|77 for v € [1,2),
> 920, SUPt>0<1 +1)g(t) < oo,
Jo" 9(s)ds =1 and
I sg(s) ds < 0.

Theorem 5., Polzer 22]
o%() = lim7_,00 37Ea,r (| X7|?) exists, and there exists C' < oo
such that o2(a)) < Ca~2/° for all o > 0.

Consequently, meg(a) > C~1a?/5.

This is ten percent of the way up to meg(a) ~ .
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Varadhans point process representation
Let I', 7 be the distribution of the PPP with intensity measure
po,r(dsdt) = ag(t — ) o < s<t < 7y dsdt, Ca,1 = pa,7(R?).
Then for measurable A € C([0, ), R?) we have

Pr(A4) = ZlT /A W(AX) e o < st < pdsdigli=s)o(Xe=Xo)
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Varadhans point process representation
Let I', 7 be the distribution of the PPP with intensity measure

po,r(dsdt) = ag(t — ) o < s<t < 7y dsdt, Ca,1 = pa,7(R?).
Then for measurable A € C([0, ), R?) we have

/ W(dX)e* JJo < s<i < pdsdt g(t—s)v(Xi—Xs)

Pr(A) = .

1 1 n n n
— %Igm/ﬂg,T(gdsidti)AW(dX Zl_[lv X, — X))
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Varadhans point process representation
Let I', 7 be the distribution of the PPP with intensity measure
po,r(dsdt) = ag(t — ) o < s<t < 7y dsdt, Ca,1 = pa,7(R?).
Then for measurable A € C([0, ), R?) we have

Pr(A4) = / W(AX) e o < st < pdsdigli=s)o(Xe=Xo)

a, T

1 1 " n n
ngn! / M?,T(Edsidti) /A W(dX) Hv X, — X))

= G [Tartae) [ wax) T e x)

(s,t)€supp(€)
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Varadhans point process representation
Let I', 7 be the distribution of the PPP with intensity measure
pro,r(dsdt) = ag(t — s)lig < s« < 7y dsdt, CaT = ,ua,T(]RQ).
Then for measurable A € C([0, ), R?) we have

Pr(A4) = / W(AX) e o < st < pdsdigli=s)o(Xe=Xo)

a, T

1 1 " n n
ngn! / M?,T(Edsidti) /A W(dX) HU X, — X))

= G [Tartae) [ wax) T e x)

(s,t)€supp(€)

= [ G FETar ) gBwia I o X)
a,T ©) (s,t)Esupp(€)

:fa,T(dg) ::PE(A>

with F(f) =Ew ( H(s,t)esupp(g) U(Xt - XS))
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Point process and interval process

t

I'o,7 is the distribution
of the PPP with inten-
sity measure

po,r(dsdt) =
ag(t — ) 1o < s<t < 7y dsdt;
Ca, T ‘= ,U/a,T(R2)'

S5 b S og st byt



Point process representation 2
Par(4) = [ Tar(d9)Pe(a)

Lo7(d€) = F(§)Lar(dE),

P¢(dX) = % [T (s esupp(e) VXt = Xs)W(dX),

F(f) =Ew ( H(s,t)Esupp(g) U(Xt - XS))

[Mukherjee, Varadhan 19] Generalized in [B., Polzer 21].

P, 7 is a mixture of path measures, the mixing measure is the

point process with distribution fa,Tv which can be seen as a
collection of overlapping intervals.

——t —
2 —

s s
s -‘:_‘te . - -
[ :
0 ¢7l:q}¢/ vrhau’/renoo( T

P¢ factorizes with respect to clusters (independent increments!).
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Point process representation 2
Par(4) = [ Tar(d9)Pe(a)

Lo7(d€) = F(§)Lar(dE),

P¢(dX) = % [T (s esupp(e) VXt = Xs)W(dX),

F(f) =Ew ( H(s,t)Esupp(g) U(Xt - XS))

[Mukherjee, Varadhan 19] Generalized in [B., Polzer 21].

P, 7 is a mixture of path measures, the mixing measure is the

point process with distribution fa,Tv which can be seen as a
collection of overlapping intervals.

——t —
2 —

s s
s -‘l_‘ic . - -
[ :
0 ¢7l:q}¢/ vrhau’/rlnoo( T

P¢ factorizes with respect to clusters (independent increments!).

Infinite volume limit and CLT can be deduced from this.
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Mean square displacement: ideas
Par(4) = [ Far(d9)Pe(a)

Faor(d) = F(&)Tar(dE),
P¢(dX) = % s tyesupp(e) v (Xe = Xs)W(AX),
F(f) - EW ( H(s,t)esupp(g) U(Xt - XS))

pe® @ bt id. clusters.

MM

r—»f\"*;ﬁ*—i—“ ‘—’?—';4 —
CL«’/‘#SQI{ uo‘(
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Mean square displacement: ideas
Par(4) = [ Far(d9)Pe(a)
f‘a,T(dé) = F(&)Fa,T(dg)y

PE(dX) = % H(s,t)ésupp(.ﬁ) U(Xt - XS)W<dX)'
F(&) = EW(H(s,t)esupp(g) U(Xt - XS))

free BT [_@ bot iid. it clusters.

f
|—-¢ :__H
{\ ’—#\./[-q-——f , L—’\'H—(——'{ (\
CL«‘/‘#S are iid

We need to estimate (from above) the mean square displacement
per unit length in one typical cluster.
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Mean square displacement: ideas
Par(4) = [ Far(d9)Pe(a)
f‘a,T(dé) = F(f)ra,T(dg)'

Pe(dX) = % L5 ) esuppe) v(Xe — X )W(dX),
F<£) = EW(H(s,t)esupp(g) U(Xt - XS))

free ‘Bn [_@ bt iid. wrl clusters.
WW%N s

’\ "—fL /'-;T-*—ﬁ—“ ‘—«ﬂﬁ«f——” r\
C&«S’/‘ﬂs qQre uo‘(

We need to estimate (from above) the mean square displacement
per unit length in one typical cluster.

For large «, clusters get longer and more densely populated.
Getting information about them is still rather tricky!
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Effective mass estimate: a shift of energy

1
Define ve(z) = 2l +e, g(t)= el

fa,r(ds dt) = ag(t — 5)]1{0 < s<t < 7} dsdt, Ca,T ‘= Ma,T(R2)~

Then W|th Fg(é.) - EW(H(s,t)Esupp(ﬁ) Ug(Xt - XS))!

Bor(dX) = = W(dX) e Mo < e cm dodtaltmelneXem) S 12 4 (dg) PE(dX)
a,T
eca,T

where I8, (d¢) = %2 —FL(§)Par(dS) and

P{(dX) = w5 I v-(x: = Xow(dx).

(s,t)€supp(€)
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Effective mass estimate: a shift of energy

1
Define ve(z) = 2l +e, g(t)= el

por(dsdt) = ag(t — s)li < s« < 7y dsdt, Cat = po1(R?).

Then W|th Fg(é.) - EW(H(s,t)Esupp(ﬁ) Ug(Xt - X5>),

Par(dX) = oo W(AX) o< acr e m bt oltm e GO S 1 (dg) P (dX)
a,T
eca,T

where I8, (d¢) = %2 —FL(§)Par(dS) and

PdX) =y [ ve(Xe— X)W(dX).
(s,t)esupp(€)
Decompose this further: v.(z) = \71| 4+e= f[o 00) v.(du) e~ v lzl?/2 7

ve = /2/m du + edp(du).
Then:
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Effective mass: a variational formula

P, 7(dX) = / e (d) / e (€, du) Py (dX)

with v € Rm, the kernel

nel6rw) = 28U W du), (€, u) = Eyy (e~ Stonee on (=X
F(§)
and Gaussian path measure
1 72 U2 (thXS)Q
P u dX) = e (s,t)€€ P(s,t) WI(dX).
A (4X)
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Effective mass: a variational formula

P, 7(dX) = / e (d) / e (€, du) Py (dX)

with v € Rm, the kernel

ve(u) = Y& 160y, (€, u) = Eyy (0 Stemee o (X=X
F(§)
and Gaussian path measure
1 72 U2 (thXS)Q
P u dX) = e (s,t)€€ P(s,t) WI(dX).
el dX) = e w (dX)

We then have
1 .
7= B (X = XoP) = [ Fi(de) [ weedu)oh e,

where 07.(&,u) = %TEg,uﬂXT - Xo*) =

1 . 2
= leStLQ (B[O’T],span{u(s’t)(Bt - BS) + Z(s,t) : (S,t) S f})
Here B is a 1-dim BM and the Z, ;) are N'(0,1), iid indep. of B.
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Effective mass: identifying a simple part of the
point process

= [ Far@9) [ nelédw o6,
with
L.
07 (&, u) = sty (Biory, spanf{ugssy (Bi—Bs)+-Z(s « (s,1) € €})°

Observation 1: deleting intervals (s,t) from ¢ enlarges 02.(&, u).
This is good, we want an upper bound for 0’37T. The same holds
for decreasing some component of .

Observation 2: fz 7 is a Cox process with driving measure

o1 (dsdt)ve (X; — Xé) with X ~ P, 7, i.e. conditional on X the
intensity measure is ji 7(dsdt)v. (X, — X5).

Observation 3: f;T is the distribution of the independent sum
Ne + 15, 7 With 757 ~ TY - and 7 ~ T 7. We understand
Lear ver>; well! 7 7
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Effective mass: lower bound

. u,‘,, 14- %//
;,“L,,/ P / )zw/'f
* — e ¥ — —
—— —— e % -
. e e —— —% " ¥ ,
) 7
0 Qo ZdL.r % = intervals J&[céo( T

Strategy:
1. We delete all intervals from (£, u) that
» come from the process 7, 7,
» or are shorter than length 1,
» or carry a mark less than C'(«) (to be fixed later).
» then we remove overlapping intervals.

Since o — oo there are still plenty of intervals left.

2. We use stochastic domination to estimate the kernel x.(&, du)
that depends on the whole £ by a product kernel that marks
all intervals independently with either 0 or C'(«v), with suitable
probability for each one.

3. In the resulting configuration, 02(, u) can be computed.
Optimizing C'(a) = a'/® gives the result.
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Thank you for listening!
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