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Mathematical scaffolding of physics

Sometimes a common mathematical structure is found underlying a number of different
physics phenomena. Examples: KPZ “universality class”, the SLE processes,...

While not in that league in terms of explicit formulae, the main subject of this talk is
another such example.

In this case a common loop-based mathematical structure, and a related dichotomy, are
found to play a role for a number of interesting and at first sight very different physics
phenomena. These include:

• the discontinuity in the phase transition of planar Q state Potts models with Q > 4.

• symmetry breaking in the ground states of two different extension of Heisenberg’s quantum
anti-ferromagnetic spin chain:

• dimerization under HAF for S > 1/2,

• Néel long range order under the asymmetric HXXZ (∆ > 1).

• the Berezinskii-Kosterlitz-Thouless phase of slow decay of correlations in O(2) symmetric
spin models.

• pinning versus delocalization in a class of height functions formulated over R2
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Loop soup ensembles the basic setup

• L - a periodic array of lines in R2

• Ω - the set of (oriented) loop covers of L, equipped with the natural Borel structure

• (Ω, µ(dω)) - a probability measure on Ω which is periodic under shifts

• Of particular interest is the function g(u, v) := Pr(u ω
←→v) for u, v ∈ ∪`∈L`

(the probability that u and v are on the same loop of ω)

Two examples: 1) For percolation, and more generally the Q state Potts models (graph drawn on the board)

L = the union of the edges of the line graph L(Z2) ZL =

∫
Ω

√
Q
N1(ω)

e(β−βc)(N0(ω)−N∗0 (ω)µ(dω)

2) For quantum spin chains, with H = −
∑
u

Ku,u+1 Z = tr e−βH =
∑
α

〈α|e−βH |α〉

LL,β = Z ∩ [−L,L]× [0, β]

e−βH ≈
∫

Ω

∗∏
j

K(bj ,tj)µ(dω)

H
(L)
AF = −

L−1∑
u=−L+1

(2S + 1)P
(0)
u,u+1

An emergent similarity:
(2S + 1)←→

√
Q
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A (d + 1) dimensional functional integral representation of the ground states of quantum Hamiltonian

Feynman, Dyson, Ginibre ‘71, “Suzuki-Trotter”, .., Aiz.-Lieb ‘90, Conlon-Solovej ‘91, Toth ‘93, Aiz.- Nacht. ‘94.,...
Aiz., Duminil-Copin Warzel ‘20, ... Björnberg, Mühlbacher, Nachtergaele, Ueltschi ‘21

Warmup: eβ(H−1) =
∑
n

pnH
n ≡ E(HN ) with pn = βn

n!
e−β (the Poisson distribution)

e
β
∑

b∈E(Λ)(Kb−1)
=

∫
Ω(Λ,β)

T

 ∏
(b,t)∈ω

K(b, t)

 ρ(dω)

Ω(Λ, β) – the set of countable subsets of E(Λ)× [0, β]
ρ(dω) – the probability measure under which ω forms a Poisson process

over Ω, of intensity dt along each “vertical” line {b} × [0, β].

One gets:

tr e−βH/2Fe−βH/2 =

∫
Ω(Λ,β)

ρ(dω) tr T

Thermal expectation value functional for a quantum spin model are expressed in terms of an integral over
histories of {Szx} (in “imaginary time”), i.e. configurations of σ3(x, t) defined over [−L1, L2],×[0, β].

Each quantum operator F , on the Hilbert space associated with Λ, is represented by a specific
action on this functional integral (typically at t = 0).

To demonstrate the general principle we next spell this for HAF = −
∑

(2S + 1)P
(0)
u,u+1 .
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The loop representation for HAF = −
∑

(2S + 1)P
(0)
u,u+1

In the basis of e.funct’s of {Szu}: (2S + 1)P
(0)
u,v =

S∑
m,m′=−S

(−1)
m−m′ |m,−m〉〈m′,−m

′| .

In this case, the signs can be changed to all positive by the gauge transformation U = eiπη/2 at
η =

∑
u(−1)uSzu.

By these means, one gets a stochastic geometric representation of the thermal states in terms of a
system of random loops (AN94):

tr T

 ∏
(b,t)∈ω

K(b, t)

 = (2S+1)N1(ω)

with Sz(u, t) restricted to ±m at m ∈ [−S, S] constant, and ± flipping upon each “time reversal”, as one
travels along a loop. (Note the similarity with Q state Potts on p.4 !)

〈F 〉Λ,β =

∫
Ω(Λ,β)

E (F |ω) (2S + 1)N1(ω)ρ(dω)/Norm

and E (F |ω) := trUFU∗ T

 ∏
(b,t)∈ω

K(b, t)

 /(2S + 1)N1(ω) .
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The loop-soup dichotomy LRO (symmetry breaking), or else slow decay of correlations

Theorem 1 (AN‘94) In the infinite-volume limit, each loop-soup measure, with a local finite-energy
condition, exhibits
either slow decay of correlations (connectivity) or else long range order.

More explicitly: either ∑
u∈L1

|x| τ(0, x) =∞

or else there exists a bounded measurable function m(ω) with

E(Txω)) = (−1)x .

Proof idea: move to the board.

Theorem 2 In the following models (the first classical the other two quantum)
the classical Q state Potts model at βc
for the ground states of HAF
for the ground states of HXXZ at S = 1

2

LRO (option 2) holds exactly for


Q > 4

S > 1/2

∆ > 1

HPotts =
∑
u δσu,σu+1 option (2)⇔ discontinuity in the spontaneous magnetization

HAF = −
L−1∑

u=−L+1

P
(0)
u,u+1 option (2)⇔ dimerization

H
S=1/2
XXZ =

L−1∑
u=−L+1

[
σu · σu+1 + (∆− 1)σzuσ

z
u+1

]
; option (2)⇔ Ne’el order (staggered magnetization)
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What makes Q = 4 into a threshold value?

What makes Q = 4 into a threshold value?

Two tracks to the answer:

I) An old hint (Baxter–Kelland–Wu ‘78):

Writing
√
Q = eλ + e−λ

[
or correspondingly (2S + 1) = eλ + e−λ

]
BKW noted that the solution for λ changes its nature at Q = 4 (λ is real, and 6= 0, for Q > 4).

(the relevance of this observation to be explained on the board.)

An alternative track (which requires harder analysis, but yields more information):

II) Bethe ansatz analysis of the 6-vertex models, which is robust enough to handle also the model’s
1–directional continuum limit.

The rigorous support for II was provided by DC, Gagnebin, Harel, Manolescu, and Tassion ‘16.

The challenge to develop an argument based on (I) was finally met in
G. Ray, Y. Spinka A short proof of the discontinuity of phase transition in the planar random-cluster model
with q > 4, (CMP 2020)

In a joint work with Hugo Duminil-Copin and Simone Warzel this approach was extended to also
cover the quantum models with HAF , and HXXZ .
M. Aizenman, H. Duminil-Copin, S. Warzel, Dimerization and Néel Order in Different Quantum Spin
Chains Through a Shared Loop Representation, Ann. H. Poincaré 21, 2737 (2020).
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What makes Q = 4 into a threshold value?

The height function associated with a specified configuration of rungs and loop orientations, and
the related binary pseudo spin (defined by the arrows).

Note: vertical discontinuity in the pseudo spin τ implies the presence of a rang of ω.
However, ω also includes other rungs (marked in small ovals) whose presence is transparent to τ . Their
knowledge is essential for the full reconstruction of the loops of ω, but not for the height function.

This yields two distinct perspectives on ω: Overall, the hight function’s distribution is an even
function of λ. However conditioned on the location of all the rungs, it is not(!) and it exhibits helicity!

The combination of these two properties allows to rule out delocalization for the height function
at Q > 4, and by implications to prove symmetry breaking / LRO at the corresponding values of Q / S / ∆.

The argument (ADW ‘20) is an adaptation to these systems of an approach which first appeared in

G. Ray, Y. Spinka A short proof of the discontinuity of phase transition in the planar random-cluster model
with q > 4, (CMP 2020).

Recently, the loop-soup dichotomy was shown to yield also an alternative explanation of the slow decay of
correlations in two dimensional O(2) symmetric spin models, i.e. existence of the BKT phase (AHPS‘21).
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Thank you for your attention.

And thank you Daniel for instigating and organizing

this very satisfying series of workshops!
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