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The nonlinear Schrödinger equation
Consider the spatial domain Λ = Td for d = 1, 2, 3.

Study the nonlinear Schrödinger equation (NLS).{
i∂tφt(x) =

(
−∆/2 + κ

)
φt(x) +

∫
dy w(x− y) |φt(y)|2 φt(x)

φ0(x) = Φ(x) ∈ Hs(Λ) .

Parameter κ > 0. Sobolev space ‖f‖Hs(Λ)
..= ‖(1 + |ξ|)s f̂(ξ)‖L2

ξ
.

Interaction potential
1 Nonlocal problem:
w : Λ→ R is even, integrable and of positive type: ŵ > 0.

2 Local problem: w = δ.

Conserved energy

s(φ) =

∫
dx φ̄(x)(κ−∆/2)φ(x) +

1

2

∫
dxdy |φ(x)|2 w(x− y) |φ(y)|2 .

Main object of study: d = 2 and w = δ.
→ Gives rise to the (complex) Euclidean Φ4

2 theory.
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Gibbs measures for the NLS

The Gibbs measure dµ associated with s is the probability measure on
the space of fields φ : Λ→ C

µ(dφ) ..=
1

ζ
e−s(φ) dφ , ζ ..=

∫
e−s(φ) dφ .

dφ = (formally-defined) Lebesgue measure.
A field theory.
→ for w = δ: (complex) Euclidean Φ4

d theory.
Formally, dµ is invariant under the flow of the NLS:

(Ft)∗dµ = dµ ,

where Ft
..= flow map of NLS.
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Known results

Rigorous construction of measure: CQFT literature in the 1970-s
(Nelson, Glimm-Jaffe, Simon).
Proof of invariance under flow of NLS: Bourgain and Zhidkov (1990s).
→ Measure supported on low-regularity Sobolev spaces.
Application to nonlinear dispersive PDEs: Obtain low-regularity
solutions of NLS µ-almost surely.
Recent advances: Bourgain-Bulut, Burq-Tzvetkov,
Burq-Thomann-Tzvetkov, Cacciafesta- de Suzzoni, Deng-Nahmod-Yue,
Fan-Ou-Staffilani-Wang, Genovese-Lucà-Valeri,
Nahmod-Oh-Rey-Bellet-Staffilani,
Nahmod-Rey-Bellet-Sheffield-Staffilani, Oh-Pocovnicu,
Oh-Tzvetkov-Wang, Thomann-Tzvetkov, Tzvetkov, ...
Stochastic PDEs: Stationary measure for a nonlinear heat equation
driven by space-time white noise; Stochastic quantisation.
Lebowitz-Rose-Speer, Nelson, Parisi-Wu,...
Recent works: Da Prato-Debussche, Gubinelli-Imkeller-Perkowski,
Hairer, Kupiainen,...
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NLS as a classical limit
NLS is a classical limit of many-body quantum theory.

On H(n) ≡ L2
sym(Λn) we consider the n-body Hamiltonian

H(n) ..= −1

2

n∑
i=1

∆i +

n∑
i,j=1

wn(xi − xj) .

Solve n-body Schrödinger equation

i∂tΨn,t = H(n)Ψn,t .

Obtain that, as n→∞

Ψn,0 ∼ φ⊗n0 implies Ψn,t ∼ φ⊗nt .

(Hepp (1974), Ginibre-Velo (1979), Spohn (1980), Fröhlich-Tsai-Yau
(1998), Fröhlich-Knowles-Pickl (2006), Erdős-Schlein-Yau (2006, 2007),
Fröhlich-Graffi-Schwarz (2007), Fröhlich-Knowles-Schwarz (2009), T.
Chen-Pavlović (2010), Pickl (2010), Ammari-Nier (2011), . . . ).
Problem: Obtain Gibbs measure dµ as many-body quantum limit .
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Gibbs measures for d = 1

Let s0(φ) ..=
∫

dx (|∇φ(x)|2/2 + κ|φ(x)|2).
Define the Wiener measure dµ0

µ0(dφ) ..=
1

ζ0
e−s0(φ) dφ , ζ0

..=
∫

e−s0(φ) dφ .

Typical elements in the support of dµ0 have form∑
k∈Zd

gk(ω)

(|k|2 + κ)1/2
e2πik·x , (gk) = i.i.d. complex Gaussians.

→ Classical free field . Series converges almost surely in H1− d2−ε(Λ).
The classical interaction is

W ..=
1

2

∫
dx dy |φ(x)|2 w(x− y) |φ(y)|2 .

In [0,+∞) almost surely if d = 1 (with w ∈ L1 or w = δ).
In this case dµ is a well-defined probability measure on H1/2−ε(T1) which
satisfies

dµ� dµ0 .
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Wick ordering
For d = 2, 3, W = 1

2

∫
dxdy |φ(x)|2 w(x− y) |φ(y)|2 is infinite almost

surely even if w ∈ L∞(Td).
Perform a renormalisation in the form of Wick ordering .

1 Nonlocal problem (w ∈ L1)

Ww ..=
1

2

∫
dxdy : |φ(x)|2 : w(x− y) : |φ(y)|2 :

=
1

2

∫
dxdy

(
|φ(x)|2 − Eµ0 [|φ(x)|2]

)
w(x− y)

(
|φ(y)|2 − Eµ0 [|φ(y)|2]

)
.

Note Ww > 0 if w is of positive type, by using that for f real∫
dx dy f(x)w(x− y)f(y) =

∑
k

ŵ(k) |f̂(k)|2 .

2 Local problem (w = δ)

Ww ..=
1

2

∫
dx : |φ(x)|4 :

=
1

2

∫
dx
(
|φ(x)|4 − 4Eµ0 [|φ(x)|2] |φ(x)|2︸ ︷︷ ︸

mass renormalisation

+ 2Eµ0 [|φ(x)|2]2︸ ︷︷ ︸
energy renormalisation

)
.

→ Here, Ww is no longer nonnegative.
V. Sohinger (Warwick) Φ4

2 theory as a limit of interacting Bose gas Quantissima, August 25, 2022 7 / 30



The Φ4
d measure

We fix w = δ.
When d = 2, we have W ≡Ww ∈ L2(dµ0), but W is unbounded below.
Nevertheless, one has e−W (φ) ∈ L1(dµ0).
→ Shown by Nelson (1973).
When d = 3, we have W /∈ L2(dµ0).
→ Construction requires a further mass renormalisation.
Glimm-Jaffe, Feldman-Osterwalder, Park, Gawȩdzki-Kupiainen,
Brydges-Dimock-Hurd, Brydges-Fröhlich-Sokal, Gubinelli-Hofmanová,
Barashkov-Gubinelli, ...
When d > 4, it is expected that µ is Gaussian no matter how one
renormalises the interaction.
Shown for d > 5 by Fröhlich (1982) and Aizenman (1982).
Shown for d = 4 for a real field φ by Aizenman and Duminil-Copin (2020).
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The classical Gibbs state

Classical Gibbs state ρ(·): Given X ≡ X(ω) a random variable, let

ρ(X) ..=
∫
X e−W dµ0∫
e−W dµ0

=

∫
X dµ .

On H(p) ≡ L2
sym(Λp) define the classical p-particle correlation function

γp by its operator kernel

(γp)x1,...,xp;y1,...,yp
..= ρ

(
φ(y1) · · ·φ(yp)φ(x1) · · ·φ(xp)

)
.

→ µ is determined by (γp)p.
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The quantum problem

Given m > 0 (mass of particles) and λ > 0 (coupling constant), we work
with the Hamiltonian on H(n) given by

H(n) ..=
1

m

n∑
i=

(
−∆i

2
+ κ
)

+
λ

2

n∑
i,j=1

w(xi − xj)−an+ b .

a, b ∈ R: Renormalisation parameters.
a: mass renormalisation.
b: energy renormalisation.
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The quantum problem

We henceforth write ν = 1
m and take λ = ν2.

The n-body Hamiltonian is

H(n)
ν

..= ν

n∑
i=1

(
−∆i

2
+ κ
)

+
ν2

2

n∑
i,j=1

w(xi − xj)− aνn+ bν .

The grand canonical ensemble is the sequence (ρn)n given by

ρn ≡ ρν,n ..=
1

Zν
e−H

(n)
ν , Zν :=

∑
n∈N

TrH(n) e−H
(n)
ν .

For p ∈ N, one defines the p-particle reduced density matrix γν,p by its
operator kernel

γν,p :=
∑
n>p

n!

(n− p)!
Trp+1,...,n(ρn) .
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Statement of the results: nonlocal problem, w
continuous

Theorem 1: Fröhlich, Knowles, Schlein, S. (2020).
Suppose that w is continuous and of positive type.
Then, we have

Zν :=
Zν

Z
(0)
ν

→ ζ as ν → 0 (PF) .

Moreover, for all p ∈ N we have

γν,p
Lr−→ γp as ν → 0 (CF) .

Here,

r ∈


[1,∞] , d = 1

[1,∞) , d = 2

[1, 3) , d = 3 .

is optimal. We apply Wick ordering when d = 2, 3.
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Statement of the results: nonlocal problem, w
continuous
Theorem 1 can be deduced from a stronger result.
We Wick order γν,p and γp to obtain γ̂ν,p and γ̂p.
Example: We have

γ̂1 = γ1 − γ(0)
1

and

(γ̂2)x1,x2;x̃1,x̃2
= (γ2)x1,x2;x̃1,x̃2

− (γ1)x1;x̃1
(γ

(0)
1 )x2;x̃2

− (γ1)x1;x̃2
(γ

(0)
1 )x2;x̃1

− (γ1)x2;x̃1
(γ

(0)
1 )x1;x̃2

− (γ1)x2;x̃2
(γ

(0)
1 )x1;x̃1

+ (γ
(0)
2 )x1,x2;x̃1,x̃2

.

Theorem 2: Fröhlich, Knowles, Schlein, S. (2020).
For all p ∈ N we have

γ̂ν,p
C−→ γ̂p as ν → 0 , (CF−Wick) .

where C−→ denotes convergence in the space of continuous functions w.r.t.
‖ · ‖L∞ .
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Statement of the results: local problem, d = 2

Let v : R2 → R be even, smooth, compactly supported, of positive type and
integral 1. We let

wε(x) :=
∑
n∈Z2

1

ε2
v
(x− n

ε

)
.

Theorem 3: Fröhlich, Knowles, Schlein, S. (2022).
Fix d = 2. Suppose that ε ≡ ε(ν) satisfies

ε > exp
(
−(log ν−1)1/2−c)

for some c > 0.
Then (PF) and (CF−Wick) hold as ε, ν → 0 with classical interaction being

W =
1

2

∫
dx : |φ(x)|4 : .
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Statement of the results: nonlocal problem, w ∈ Lq

Consider w ∈ Lq(Λ) even, real-valued, and of positive type, such that{
q > 1 if d = 2

q > 3 if d = 3 .

These are the optimal integrability conditions for the choice of w noted by
Bourgain (1997). Consider

wε ..= v ∗ δε ∈ C∞(Λ) , δε =
1

εd

∑
y∈Zd

F (
x− y
ε

) .

Theorem 4: Fröhlich, Knowles, Schlein, S. (2022).
Suppose that ε ≡ ε(ν) satisfies ε(ν) & 1

log ν−1 . Then (PF) and (CF−Wick)
hold as ε, ν → 0 with classical interaction being

W =
1

2

∫
dxdy : |φ(x)|2 : w(x− y) : |φ(y)|2 : .
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Related results

1D results: previously shown using variational techniques by Lewin,
Nam, Rougerie (2015).
Higher dimensions: non local, non translation-invariant interactions.
Fröhlich, Knowles, Schlein, S. (2017): analysis of translation-invariant
interactions w ∈ L∞ for d = 2, 3 by using perturbative methods, with a
modified Gibbs state. New proof of d = 1 result.
S. (2019): Extension of above result to w ∈ Lq for optimal q following
Bourgain (1997).
Lewin, Nam, Rougerie (2018): 1D non-periodic problem with
subharmonic trapping.
Lewin, Nam, Rougerie (2018): 2D problem with translation-invariant
interaction for smooth w without modified Gibbs state.
Lewin, Nam, Rougerie (2020): Extension to 3D.
Fröhlich, Knowles, Schlein, S. (2018): time-dependent problem in 1D.
→ Corresponds to the invariance of the measure.
Rout-S. (2022): 1D focusing problem.
Fröhlich, Knowles, Schlein, S. (2020): Analysis of problem on the lattice
using loop ensembles.
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The Φ4
2 theory. Proof of Theorem 3

We compare the fully Wick-ordered interaction

W =
1

2

∫
dx : |φ(x)|4 :

with

W ε =
1

2

∫
dxdx̃ : |φ(x)|2 : wε(x− x̃) : |φ(x̃)|2 : −τε

∫
dx : |φ(x)|2 :− Eε

where

τε :=

∫
dxwε(x)G(x) , Eε :=

1

2

∫
dx dx̃ wε(x− x̃)G(x̃− x)2

and
G = (−∆/2 + κ)−1

is the Green function.

V. Sohinger (Warwick) Φ4
2 theory as a limit of interacting Bose gas Quantissima, August 25, 2022 17 / 30



The Φ4
2 theory. Proof of Theorem 3

We analyse (PF).
Step 1: Compare Zν ≡ Zν,ε with ζε ≡

∫
e−W

ε

dµ0 using a quantitative
version of the bosonic functional integral from the proof of Theorem 1.

We show that ∣∣Zν − ζε∣∣ . eC(log ε−1)2 ν1/4 .

Due to the Wick ordering of the full quartic nonlinearity, we destroy the
positivity of the interaction.
→W ε is not necessarily positive.
This analysis needs to be quantitative.
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The Φ4
2 theory. Proof of Theorem 3

We analyse (PF).
Step 2: Compare ζε ≡

∫
e−W

ε

dµ0 and ζ ≡
∫

e−Wdµ0.
→ A purely field theoretic step.

Prove a version of the Nelson argument (1973) for nonlocal interactions.
Pass through an intermediate interaction

V ε :=
1

2

∫
dxdx̃ wε(x− x̃) : |φ(x)|2 |φ(x̃)|2 :

and show that for all t > 1

µ0

(
e−V

ε

> t
)
. exp

(
e−c
√
log t) .

Deduce that ‖e−V
ε

‖Lp(µ0) is uniformly bounded in ε.

V. Sohinger (Warwick) Φ4
2 theory as a limit of interacting Bose gas Quantissima, August 25, 2022 19 / 30



The Φ4
2 theory. Proof of Theorem 3

Step 2: Compare ζε ≡
∫

e−W
ε

dµ0 and ζ ≡
∫

e−Wdµ0.
Using Wick’s theorem show that limε→0 ‖W ε − V ε‖L2(dµ0)

= 0 and
limε→0 ‖V ε −W‖L2(dµ0)

= 0.
Conclude using hypercontractivity.

∥∥eV
ε−Wε

− 1
∥∥
Lp(µ0)

6
∑
k>1

1

k!
‖(V ε −W ε)k‖Lp(µ0)

=
∑
k>1

1

k!
‖V ε −W ε‖kLpk(µ0)

.
∑
k>1

1

k!
(pk)k‖V ε −W ε‖kL2(µ0)

.

Deduce that ‖e−W
ε

‖Lp(µ0) is uniformly bounded in ε.
Conclude by

∥∥e−W − e−W
ε∥∥
Lp(µ0)

6
∫ 1

0

dt
∥∥∥(W −W ε) e−tW

ε−(1−t)W
∥∥∥
Lp(µ0)

.
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Proof of Theorem 1: Functional integral (formal setup)
Quantum field Φ : [0, ν]× Λ→ C , measure DΦ ..=

∏
τ∈[0,ν]

∏
x∈Λ Φ(τ, x).

Define

S0(Φ) ..=
∫ ν

0

dτ

∫
Λ

dx Φ̄(τ, x)(∂τ + κ−∆/2)Φ(τ, x)

W(Φ) ..=
1

2

∫ ν

0

dτ

∫
Λ2

dxdy |Φ(τ, x)|2 w(x− y) |Φ(τ, y)|2

S(Φ) ..= S0(Φ) + W(Φ) .

Quantum (relative) partition function Zν =
∫

DΦ e−S(Φ)∫
DΦ e−S0(Φ)

(formally).

Rescale for t ∈ [0, 1] as Φ′(t, x) ..=
√
νΦ(νt, x).

S(Φ) =

∫ 1

0

dt

∫
Λ

dx Φ̄′(t, x)
(
∂t/ν + κ−∆/2

)
Φ′(t, x)

+
1

2

∫ 1

0

dt

∫
Λ2

dxdy |Φ′(t, x)|2 w(x− y) |Φ′(t, y)|2 .

Formally deduce Zν → ζ by stationary phase.
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Hubbard-Stratonovich transformation

Let C > 0 be an n× n matrix. The Gaussian probability measure on Rn
with covariance C is

µC(du) ..=
1√

(2π)n det C
e−

1
2 〈u,C

−1u〉 du .

Wick’s theorem: for any f ∈ Rn we have∫
µC(du) ei〈f ,u〉 = e−

1
2 〈f ,Cf〉 .

Hubbard-Stratonovich transformation: for a real Gaussian measure µC
(not necessarily finite dimensional) with covariance C we have∫

µC(dσ) ei〈f,σ〉 = e−
1
2 〈f,Cf〉 .

(In general formal if f and σ are both rough!)
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Functional integral + HS transformation

Consider σ : [0, ν]× Λ→ R centred with law µC and covariance∫
µC(dσ)σ(τ, x)σ(τ̃ , x̃) = ν δ(τ − τ̃)w(x− x̃) ≡ Cτ,τ̃x,x̃ .

(Formally) use HS with f = |Φ|2 and let K(u) ..= ∂τ −∆/2− u

Z ′ν ..=
∫

DΦ e−S(Φ)∫
DΦ e−S0(Φ)

=

∫
µC(dσ)

∫
DΦ exp

(
−
〈
Φ , (

K(−κ+iσ)︷ ︸︸ ︷
∂τ −∆/2 + κ− iσ)Φ

〉)∫
DΦ exp

(
−
〈
Φ , (∂τ −∆/2 + κ)Φ

〉) .

By Gaussian integration

Z ′ν =

∫
µC(dσ)

detK(−κ+ iσ)−1

detK(−κ)−1
=

∫
µC(dσ) eF1(σ) ,

F1(σ) ..=
∫ ∞

0

dt Tr

(
1

t+K(−κ+ iσ)
− 1

t+K(−κ)

)
.

We used det(A) = exp
(
Tr logA

)
, log a− log b = −

∫∞
0

dt
(

1
t+a −

1
t+b

)
.
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Space-time representation

Goal: Find K(u)−1 for K(u) = ∂τ −∆/2− u.
We have

(K(u)−1)τ,τ̃x,x̃ =
∑
r∈νN

1τ+r>τ̃ W
τ+r,τ̃
x,x̃ (u) ,

where for [t]ν
..= (tmod ν) ∈ [0, ν) , (W τ,τ̃ )τ̃6τ solves

∂τW
τ,τ̃ (u) =

(
1

2
∆ + u([τ ]ν)

)
W τ,τ̃ (u) , W τ,τ (u) = 1 .

Feynman-Kac formula: the kernel of W τ,τ̃ is given by

W τ,τ̃
x,x̃ (u) =

∫
Wτ,τ̃
x,x̃(dω) e

∫ τ
τ̃

dt u([t]ν ,ω(t)) .

Conclusion: Z ′ν =
∫

DΦ e−S(Φ)/
∫

DΦ e−S0(Φ) is a rigorous expression in
terms of Brownian loops; similarly for correlation functions.
→ Ginibre representation.
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Functional integral representation

By the Feynman-Kac formula and Hubbard-Stratonovich transformation
and working backwards, we formally get

Zν =

∫
µC(dσ) eF1(σ)

(the true quantum partition function).
In practice, always regularise C.
Replace C 7→ Cη for η > 0, such that under the law of µCη , σ is almost
surely smooth.∫

µCη (dσ)σ(τ, x)σ(τ̃ , x̃) = ν δη,ν(τ − τ̃)wη(x− x̃) =.. (Cη)τ,τ̃x,x̃ .

We have
Zν = lim

η→0

∫
µCη (dσ) eF1(σ) .
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Wick ordering

Wick order for d = 2, 3.

Zν =

∫
µC(dσ) eF2(σ)

where

F2(σ) ..=
∫ ∞

0

dt Tr

(
1

t+K(−κ+ iσ)
− 1

t+K(−κ)

− 1

t+K(−κ)
iσ

1

t+K(−κ)

)
.

We subtract the first order term in the resolvent expansion.
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Functional integral representation: classical setting

Classical setting: derive a similar representation, after Symanzik (1968).
µw: real Gaussian measure with mean zero and covariance∫

µw(dξ) ξ(x) ξ(x̃) = w(x− x̃) .

We have
ζ =

∫
µw(dξ) ef2(ξ) ,

where

f2(ξ) ..=
∫ ∞

0

dt Tr

(
1

t−∆/2 + κ− iξ
− 1

t−∆/2 + κ

− 1

t−∆/2 + κ
iξ

1

t−∆/2 + κ

)
.
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Conclusion of the proof

Use the functional integral representations

Zν =

∫
µC(dσ) eF2(σ) , ζ =

∫
µw(dξ) ef2(ξ)

to obtain Zν → ζ as ν → 0.
Fact: If σ has law µC , then

〈σ〉 ..=
1

ν

∫ ν

0

dτ σ(τ, x)

has law µw.
Show that

lim
ν→0

∫
µC(dσ)

[
eF2(σ) − ef2(〈σ〉)

]
= 0 .

Study Riemann sums and using continuity properties of Brownian paths.
This analysis can be made quantitative: necessary in the proof of the
result for Φ4

2.
V. Sohinger (Warwick) Φ4

2 theory as a limit of interacting Bose gas Quantissima, August 25, 2022 28 / 30



Thank you for your attention!
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