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Overview

This talk describes some observations I made when trying to relate
di�erent approaches to the bosonic ensembles of quantum statistical
mechanics.

I learned about cycle statistics and large-deviation principles
[Ginibre, Pulé, Dorlas, Ueltschi, Betz, Adams, König, . . .]
from Stefan Adams and Wolfgang König.

I also learned a lot from Joel Feldman about the work of
T. Bałaban, J. Feldman, H. Knörrer, E. Trubowitz (BFKT)
on the interacting Bose gas in the thermodynamic limit.

Original aim: simplify some of the technique of BFKT, find a loop re-
presentation in the presence of a condensate.

Related, independent work by Fröhlich, Knowles, Schlein, Sohinger
has been reported by Vedran Sohinger at this meeting.
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Motivations for this work

directly relate and compare:
functional integral and interacting Brownian motion representations
criteria for BEC: U(1) breaking and occurrence of infinite cycles

kinetic term p
2
/(2m)$ Brownian motion

BEC sound wave c|p|$ what kind of process?

Results so far

Functional integral technique: representation of canonical ensemble
integrals with real Gaussian measures
easy proof of time-continuum limit
uniform bounds, no large-field analysis

prove analyticity and decay of correlations by convergent expansions
$ persistence of gaps

derive a (stochastic) process in a condensate background



Setup and Notations

Space: any finite (large) graph X, e.g. X = ⌘Zd
/LZd.

Use notations
R
x fx for (weighted) sums on X, bilinear form (f | g)X =

R
x fx gx .

H = L
2(X,C), F (N)

B =
NN

s H, FB =
L1

n=0 F (n)
B

The N -boson space F (N)
B has finite dimension

�|X|+N�1
|X|�1

�
.

FB is infinite-dimensional even if X is finite.

Vacuum vector ⌦ = (1, 0, 0, . . .) 2 FB .

PN projector to the N -particle subspace F (N)
B of FB .

CCR algebra axay � ayax = 0, axa†y � a
†
yax = ⌘

�d
�x,y.

The local density operators nx = a
†
xax : F (N)

B ! F (N)
B satisfy

knxk = N and nxny = nynx for all x, y 2 X .



Hamiltonian

Single particle Hamiltonian: self-adjoint, non-negative operator E

e.g. the graph Laplacian ��, or ��+W (x), W external potential.

Two-body interaction v: a pair of particles at sites x and y contributes vx,y 2 R to the
energy. vx,y = vy,x. Thus v is a self-adjoint operator on CX.

If X is a torus, v is called translation-invariant if vx+z,y+z = vx,y for all z. Then also use
the notation vx,y = v(x� y).

We will not need translation invariance here.

H = H0 + V with
H0 = (a† | E a)X and V = 1

2(n | v n)X

The case v = 0 describes free (i.e. noninteracting bosons).

Assume throughout that v � 0.

H0 and V, hence H, all commute with N, hence map F (N)
B to itself.



Canonical ensemble

[F](N,�,X)
H

= TrFB

⇥
e��H

F PN

⇤
(� > 0 the inverse temperature)

Zc = Z
(N,�,X)
c = [1](N,�,X) canonical partition function

hFi
(N,�,X)
H

= 1
Zc

[F](N,�,X)
H

canonical expectation value

Grand-canonical ensemble

The grand-canonical partition function at chemical potential µ is

Z
(�,µX)
g =

1X

N=0

e�µNZ(N,�,X)
c = TrFB

⇥
e��(H�µN)

⇤
,

and the grand-canonical expectation value is defined similarly.

To explain the integral representation of the Bose ensembles,
it is useful to look at a complex field theory first.



Gaussian, a.k.a. Hubbard-Stratonovitch Transform

Q+Q
†
> 0, D = Q

�1, dµD(�̄,�) = detQ e�(�̄,Q�)
D�, D� =

Q
x

d�̄x^d�x

2⇡i .

Z(J̄ , J) =

Z
dµD(�̄,�) e

�(|�|2, V |�|2) e(J̄ ,�)+(�̄,J)

Let V > 0, then e�(|�|2, V |�|2) =
R
dµV (h) ei(h,|�|

2).

(h, |�|2) =

Z

x

�̄xhx�x = (�̄, h�)

so by Fubini’s theorem

Z(J̄ , J) = detQ

Z
dµV (h)

Z
e�(�̄,(Q�ih)�)+(J̄ ,�)+(�̄,J)

D�

=

Z
dµV (h) e

(J̄ , (Q�ih)�1J) det(Q(Q� ih)�1) .

and e.g.

h�̄x�yi =
1
Z

�2Z(J̄ ,J)
�Jy�J̄y

��
J̄=J=0

=

Z
dµV (h)

⇥
(Q� ih)�1

⇤
x,y

e�Tr log(1�ihD)
.



Formal expansion with loop-vertices

� Tr log(1� ihD) =
1X

n=1

1

n
Tr [(ihD)n]

so Tr log generates ‘loop-vertices’, and

(Q� ih)�1 = D +DihD +DihDihD + . . .

generates ‘path-vertices’ for the integral over h.



Uniformity

Q = P � iR, P = P
†
> 0 and R = R

†. So P = B
2 with B = B

†
> 0, and

Q� ih = B [1� iC(h+R)C] B . C = B
�1

Thus (Q � ih)�1 exists and is bounded uniformly in h. The Neumann expansion can be
done to finite order, with a remainder term that is uniformly bounded in h. Since

�
�

�hx
Tr log(1� ihD) =

⇥
(1� ihD)�1iD

⇤
x,x

= i
⇥
(Q� ih)�1

⇤
x,x

,

and higher derivatives with respect to h are uniformly bounded in h, the Brydges-
Kennedy formula gives a convergent expansion for the correlation functions, provided
that D = Q

�1 is regular.

We will now see that integral representations hold for the quantum many-boson ensem-
bles, with similar uniformity properties.



Double-Gaussian integral representation

Theorem 1 Assume that v � 0. Set h0 = 0. For |, |0 2 {0, . . . , `} let

Q(h)|,|0 = �|,|0 1� �|+1,|0 e
�✏E ei

p
✏ h|0

Then Z
(N,�,X)
c = lim`!1 Z

(N,�,X,`)
c where1

Z
(N,�,X,`)
c = lim

R!1

Z
dµV(h)

Z

8x:|ax|R

Da e�(ā|Q(h) a)X (ā`|a0)XN

N !

If E > 0, then Re (ā | Q(h) a)X is strictly positive,
so the integral over a converges absolutely
and R!1 can be taken.

Z
(N,�,X,`)
c =

Z
dµV(h)

Z

CX
Da e�(ā|Q(h) a)X (ā`|a0)XN

N !

1
Da =

Q̀
|=0

dXa| =
Q̀
|=0

Q
x2X

dā|,x^a|,x

2⇡i dµV(h) =
Q̀
|=1

dµv(h|)



Covariance

The operator Q(h) is upper triangular: se�ing A| = e�✏E ei
p
✏h|

Q(h) =

2

6666666664

1 �A1 0 0 . . . 0
0 1 �A2 0 . . . 0

. . . . . .

0 0 0 1 �A`

0 0 0 . . . 0 1

3

7777777775

✏ =
�

`

The covariance C(h) = Q(h)�1 exists, is upper triangular, and given by a terminating
Neumann series.

C(h) is entire analytic in h. In fact, for every finite `, it is a trigonometric polynomial in
h.

Note that det C(h) = 1 and that Q has no periodic boundary condition in time.



Remarks on the proof

Use the Lie product formula e��H
 �
`!1

⇣
e�

�
` H0e�

�
` V

⌘`

. Recall the notation ✏ = �
` .

All nx commute, so by the spectral theorem

e�✏V = e�✏(n|vn)X =

Z
dµv(h) e

i
p
✏(h|n)X =

Z
dµv(h) e

(a†| i
p
✏h a)X

dµv = normalized, centered Gaussian measure on RX with covariance v.

Coherent states �(a) = e(a|a
†)X ⌦ with the properties2

ax�(a) = ax�(a) e(a
†|K a)X�(a) = �(eKa) if eK is bounded.

1FB = lim
R!1

Z

CR
X

dX
a |aiha| TrFBA = lim

R!1

Z

CR
X

dX
a ha | A ai

8a, a
0
2 CX

h�(a0) | PN�(a)i =
1
N ! (ā

0
| a)X

N
.

2CR = {z 2 C : |z|  R}



The oscillatory a-integral

Integration over h leaves over an integral over a,

Zc =

Z
Da e�(ā|Q(h) a)X�V(a) (ā`|a0)XN

N !

Both the kinetic and the interaction term are complex-valued – this is a complex oscilla-
tory integral.

For vx,y = v�x,y, the interaction is V(a) = ✏
P

|

R
x (ā|�1,xa|,x), where

 (z) = � ln�(z), �(z) =
1X

n=0

z
n

n!
e�

1
2 ✏v n2

Thus the positivity of the operator V is lost here.

We will see how to recover it shortly.



The h-representation

The a-integral in Zc =
R
dµV(h)

R
Da e�(ā|Q(h) a)X (ā`|a0)XN

N ! is Gaussian as well. At ✏ > 0

it is absolutely convergent. The factor (ā` | a0)X
N leads to a permanent:

Z
(N,�,X,`)
c =

1

N !

X

�2SN

Z

x1,..,xN

Z
dµV(h)

NY

k=1

C(h)(0,xk),(`,x�(k)) .

Denote hF (h)ih =
R
F (h)dµV(h) and

PN,XC|,|0 =
X

⇡2SN

Z

x1,...,xN

NY

n=1

C(|,xn),(|0,x⇡(n)) .

Then
Z

(N,�,X,`)
c =

1

N !
hPN,XC(h)0,`ih



The random walk representation

Recall Q(h)|,|0 = �|,|0 1� �|+1,|0 e�✏E ei
p
✏ h|0 .

The Neumann series for C(h) = Q(h)�1 corresponds to a random walk expansion

C(h)(0,xk),(`,x�(k)) =
X

y(k)

Ỳ

j=1

�
e�✏E�

y
(k)
j�1,y

(k)
j

e�i
p
✏hj(y

(k)
j )

where y(k) = (y(k)0 , . . . y
(k)
` ) is a walk xk ! x�(k) with transition amplitude

P (y(k)) =
Ỳ

j=1

�
e�✏E�

y
(k)
j�1,y

(k)
j



An easy exercise in Gaussian integration gives

Theorem 2

Z
(N,�,X,`)
c =

1

N !

X

�2SN

Z

x1,..,xN

X

y
(1),..,y(N)

y
(k):xk!x�(k)

e�V(y(1),..,y(N))
NY

k=1

P (y(k))

with3

V(y(1), .., y(N)) =
1

2

X

1k,k0N

Z

⌧

v
⇣
y
(k)(⌧)� y

(k0)(⌧)
⌘

.

This is the random walk representation that replaces the interacting Brownian motion
for ✏ > 0. It converges to the IBM representation as ✏! 0.

3
R
⌧ F (⌧) = ✏

P
| F (✏|)



Uniformity

Lemma 1 If E generates a stochastic process (i.e. (e�⌧E)xy � 0 for all ⌧ > 0 and all x, y),
then for all |0 � |, all x, x0 2 X, and all h

��C(h)(|,x),(|0,x0)
�� 

��C(0)(|,x),(|0,x0)
�� =

⇣
e(|

0�|)✏ E
⌘

x,x0
.

Proof. Writing out the matrix products

C(h)(|,x),(|0,x0) =
X

y:x!x0

|0Y

j=|+1

�
e�✏E�

yj�1,yj
ei
p
✏h|,yj

By hypothesis

��C(h)(|,x),(|0,x0)
�� 

X

y:x!x0

|0Y

j=|+1

�
e�✏E�

yj�1,yj
= C(0)(|,x),(|0,x0)



An absolutely convergent a-integral

Theorem 3 Let v be translation invariant, E > 0 and v � 0, and E generate a stochastic
process. Then, up to an explicit constant, Z(N,�,X)

c is the limit `!1 of

Z(N,�,X)
` =

Z
Da e�SX(a) 1

N !(ā(�) | a(0))X
N
.

with the action SX given by

SX(a) =

Z

⌧

�
(ā(⌧) | [(�@⌧ + v(0) + E

(✏))a](⌧))X +
�
|a(⌧)|2

�� v |a(⌧)|2
�
X

 

Here @⌧ denotes the discrete forward time derivative

(@⌧a)(⌧, x) =
1

✏
(a(⌧ + ✏, x)� a(⌧, x))

with the boundary condition a(� + ✏, x) = 0, and

(E (✏)
a)(⌧, x) =

1

✏

Z

y

(1� e�✏E)(x� y) a(⌧ + ✏, y) .



Remarks

If v > 0, the quartic term is strictly positive, so the integral converges absolutely.

The limit remains unchanged if (E (✏)
a)(⌧, x) is replaced by (Ea)(⌧, x) in the action.

The v(0) can be removed by normal ordering of V.

In the translation-invariant case

SX(a) =

Z

⌧

Z

x

ā(⌧, x) [(�@⌧ + v(0) + E
(✏))a](⌧, x)

+

Z

⌧

Z

x,y

|a(⌧, x)|2 v(x� y) |a(⌧, y)|2



Idea of the proof

The main idea is to avoid estimating oscillatory integrals and instead use the h-
representation.

e�✏(|a||2|v |a||2) =

Z
dµv(h|) e

i
p
✏(h|||a||2)

gives a quadratic form

Q2(h)|,|0 = �|,|0 (1� i
p
✏ hj)� �|+1,|0 e

�✏Ẽ

Taking out the factor from the diagonal gives

Q1(h)|,|0 = �|,|0 � �|+1,|0 e
�✏Ẽ (1� i

p
✏ hj)

�1

Observe that
(1� i

p
✏ hj)

�1
� ei

p
✏hj = O(✏)

By the resolvent identity, the uniform bounds for C and C1, and an additional integration
by parts, one can estimate the di�erence of permanents of C and C1.



Grand-canonical ensemble

Recall that Z(�,µX)
g =

1P
N=0

e�µNZ(N,�,X)
c .

Absorb the prefactor by a shi� E ! Eµ = E � µ. Then resum

1X

N=0

1

N !
(ā` | a0)X

N = e(ā`|a0)X

This produces the standard periodic boundary condition in the quadratic form of the a
fields, hence the standard time-ordered Green function, and

Z
(N,�,X,`)
g =

Z
dµV(h)

Z

CX
Da e�(ā|K(h) a)X

with
K(h)|,|0 = Q(h)|,|0 � �|,`�0,|01 .



Theorem 4 Assume that Eµ > 0. Then

the integral for the grand canonical partition function Z
(N,�,X,`)
g is absolutely convergent.

The grand-canonical covariance G(h) = K(h)�1

• exists for all h, and has a norm bounded uniformly in h

• is analytic in h if |Im h|,x| <
p
✏emin, where emin is the smallest eigenvalue of Eµ.

• If Eµ generates a stochastic process, then for all |0 � |, all x, x0 2 X, and all h,

8h 2 RX :
��G(h)(|,x),(|0,x0)

��  G(0)(|,x),(|0,x0) .



Comparing canonical and grand-canonical

the canonical covariance C(h) has only forward propagation in time

the grand-canonical G(h) has forward- and backward propagation

det C(h) = 1 but detG(h) 6= 1.

In Feynman graph expansions this implies the absence of loop vertices in the canonical
ensemble (fixed particle number implies absence of pair creation!)

Zc



Generating functional for correlations

Letm = µ+ i⌫ be a complex chemical potential and

Ki⌫(Eµ, h) = 1�N e�✏Eei
p
✏h
�R ei�⌫ , Gi⌫(Eµ, h) = Ki⌫(Eµ, h)

�1

Partition function with sources J, J̄

Z
(m,�,X,`)
g (J̄ , J) =

⌧Z
e�(ā|Ki⌫(Eµ,h)a)X+(J̄ |a)X+(J |ā)X Da

�

h

=

⌧Z
e(J̄ |Gi⌫(Eµ,h)J)X detGi⌫(Eµ, h)

�

h

=

⌧Z
eW0(J̄ ,J,h)

�

h

with
W0(J̄ , J, h) = (J̄ | Gi⌫(Eµ, h)J)X + Tr ln C � Tr ln(1� ei�⌫RC)

C = (1�N e�✏Eei
p
✏h)�1



Decay of Correlations

Theorem 5 Assume that space X is a regular la�ice, that E generates a stochastic process
and E � 0, and that the covariance for v = 0 (noninteracting particles) has exponential
decay. Assume that vx,y also decays exponentially in |x� y|.

There is µ0 < 0 s.t. for all µ = Re m  µ0 and all su�iciently small |v|

Z
(m,�,X,`)
g (J̄ , J) is analytic inm, �, J̄ , J

the connected correlation functions

G2m(x1, . . . , xn; x
0
1, . . . , x

0
n) =

�
2n

�J`,x1 . . . �J̄0,x0
n

lnZg(J̄ , J) |J=J̄=0

have exponential tree graph decay, uniform in X and in `.



Cycle Summations

Every permutation contributing in the sum for the permanent consists of K � 1 cycles with
lengths 1, . . . ,K . Then

1

N !
PN,X [C(E , h)0,`] =

NX

K=1

1

K!

X

1,...,K2N
1+...+K=N

KY

k=1

1

k
Tr (C(E , h)0,`

k)

With this, the grand canonical partition function becomes

Z
(�,µ+i⌫,X,`)
g (H) =

* 1X

K=1

1

K!

X

1,...,K2N

KY

k=1

ei�⌫k

k
Tr (C(Eµ, h)0,`

k)

+

h

=

* 1X

K=1

1

K!

⇣
�Tr ln(1� ei�⌫C(Eµ, h)0,`)

⌘K
+

h

=
D
e�Tr ln(1�ei�⌫C(Eµ,h)0,`)

E

h

=
D
det(1� ei�⌫C(Eµ, h)0,`)

�1
E

h



Cycle Summations

Thus the cycle expansion is simply an expansion of Tr log, as it arises from integrating
out the a fields,

Z
(�,µ+i⌫,X,`)
g (H) = hdetG(E , h)ih

namely, the expansion in the term that creates the periodic boundary condition.

As long as this expansion converges, the expected cycle length is finite.

Thus: infinite cycles occur when one reaches the convergence radius of the expansion.

Does this also correspond to a phase transition?

It does, if the closest singularity is on the positive real axis.



Condensate and Bogoliubov modes

Orthogonal decomposition a = b+ c

c = (c⌧ )⌧2T is independent of x and (1 | b(⌧))X =
R
x b(⌧, x) = 0 .

The canonical partition function then becomes

Z` = |X|N
NX

K=0

1
(N�K)!

Z
D

T
c e�A0(c)

⇣
c(�) c(0)

⌘N�K

Y
(�,K,X)
` (c)

with

Y
(�,K,X)
` (c) = 1

K!

Z
D

0
b e�A2(b,c)�A3(b,c)�A4(b)

✓
1

|X|

Z

x

b(�, x)b(0, x)

◆K

Summation over K $ the condensate plays the role of a particle reservoir: if K ⌧ N ,
the b-subsystem becomes e�ectively grand canonical.



�adratic form and Bogoliubov spectrum

The action

A2(b, c) =
v

2

Z

⌧,x

h
4|c(⌧)|2|b(⌧, x)|2 � c(⌧)2b(⌧, x)

2
� c(⌧)

2
b(⌧, x)2

i

+

Z

⌧

(b̄(⌧) | (�@⌧ + E)b(⌧))X

is a c-dependent quadratic form in b.

The lower eigenvalue exhibits the Bogoliubov spectrum: for time-independent c = c0 and
kinetic term p2 in the continuum limit,

EB(p) = |p|
p
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where w2 = 2v|c0|2.



Positivity and slow decay

Lemma 2 For all t � 0, the x-space kernel of e�t|p|
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w2+p2 is positive.

The decay is, however, slow since already
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This slow decay suggests that a stochastic representation as a random walk in a fluctua-
ting condensate background has long jumps, hence di�ers from the one corresponding
to Brownian motion.

The cubic term A3 also leads to branching and coalescence, corresponding to processes
where one of two sca�ering particles emerges from, or gets absorbed in, the condensate.



Concluding comments

The coherent-state functional integral has a rigorous mathematical justification.

It allows to derive the interacting random walk (Brownian motion) representation
straightforwardly.

The proof of the existence of the time-continuum limit, with a variety of actions, for
many-boson functional integrals is now as simple as in the fermionic case.

The method, in particular the uniform bounds for the covariance, also allow to prove
decay of correlations.

Standard random-walk expansions converge only in the unbroken phase.

A similar expansion in presence of a condensate involves processes with branching and
coalescence, and long-range jumps. This creates infrared divergences in expansions,
which make renormalization necessary.


