Combined mean-field and semiclassical limit to Vlassov-Poisson equation from many fermionis joint work with Li Chen and Matthew Liew

Jinyeop Lee
LMU München

25th of August, 2022
Venice 2022 - Quantissima in the Serenissima IV

(Heuristic) Derivation of Vlasov equation

$f(\mathbf{x}, \mathbf{v}, t) d x d v$: the total \# of particles in the differential volume $d x d v$

If collisions are neglected, particles in an element in A will wander in continuous curves to B.
Thus, the total number in the element is conserved.
So that we have the following continuity equation:

$$
\partial_{t} f(\mathbf{x}, \mathbf{v}, t)+\nabla_{\mathbf{x}, \mathbf{v}} \cdot[f(\mathbf{x}, \mathbf{v}, t)(\dot{\mathbf{x}}, \dot{\mathbf{v}})]=0
$$

(Heuristic) Derivation of Vlasov equation

$$
\partial_{t} f(\mathbf{x}, \mathbf{v}, t)+\nabla_{\mathbf{x}, \mathbf{v}} \cdot[f(\mathbf{x}, \mathbf{v}, t)(\dot{\mathbf{x}}, \dot{\mathbf{v}})]=0
$$

note that

$$
\begin{aligned}
\nabla_{\mathbf{x}, \mathbf{v}} \cdot f(\mathbf{x}, \mathbf{v}, t)(\dot{\mathbf{x}}, \dot{\mathbf{v}}) & :=\nabla_{\mathbf{x}} \cdot f(\mathbf{x}, \mathbf{v}, t) \dot{\mathbf{x}}+\nabla_{\mathbf{v}} \cdot f(\mathbf{x}, \mathbf{v}, t) \dot{\mathbf{v}} \\
& =f \nabla_{\mathbf{x}} \cdot \mathbf{v}+\mathbf{v} \cdot \nabla_{\mathbf{x}} f+f \nabla_{\mathbf{v}} \cdot \dot{\mathbf{v}}+\dot{\mathbf{v}} \cdot \nabla_{\mathbf{v}} f
\end{aligned}
$$

Because

$$
\begin{aligned}
\nabla_{\mathbf{x}} \cdot \mathbf{v} & =0 \\
\dot{\mathbf{v}} & =\frac{q}{m}\left(\mathbf{E}+\frac{1}{c} \mathbf{v} \times \mathbf{B}\right) \Longrightarrow \nabla_{\mathbf{v}} \cdot \dot{\mathbf{v}}=0 \quad \text { if } B=0 \text { or } c=\infty
\end{aligned}
$$

we have that

$$
\partial_{t} f(\mathbf{x}, \mathbf{v}, t)+\mathbf{v} \cdot \nabla_{\mathbf{x}} f+\frac{q}{m} \mathbf{E} \cdot \nabla_{\mathbf{v}} f=0
$$

N-fermionic system in 3D

N-body Hamiltonian

$$
H_{N}=\sum_{j=1}^{N}\left(-\frac{1}{2} \Delta_{x_{j}}\right)+\lambda \sum_{i<j}^{N} V\left(x_{i}-x_{j}\right)
$$

Fermionic mean-field regime

Consider a system of N interacting fermions with wave function:

$$
\begin{gathered}
H_{N}=-\frac{1}{2} \sum_{j=1}^{N} \Delta_{x_{j}}+\lambda \sum_{i \neq j}^{N} V\left(x_{i}-x_{j}\right) \\
E_{k i n}=\left\langle\psi_{N}, \sum_{j=1}^{N}\left(-\Delta_{x_{j}}\right) \psi_{N}\right\rangle \sim N^{5 / 3} \\
E_{\text {int }}=\left\langle\psi_{N}, \lambda \sum_{i<j}^{N} V\left(x_{i}-x_{j}\right) \psi_{N}\right\rangle \sim \lambda N^{2} \\
\Longrightarrow \lambda=N^{-1 / 3} \\
H_{N}=-\frac{1}{2} \sum_{j=1}^{N} \Delta_{x_{j}}+\frac{1}{N^{1 / 3}} \sum_{i \neq j}^{N} V\left(x_{i}-x_{j}\right)
\end{gathered}
$$

Time-dependent Schrödinger equation

$$
E_{k i n} \sim N^{5 / 3} \sim N v^{2} \Longrightarrow v \sim N^{1 / 3}
$$

Relevant time scale $\sim N^{-1 / 3}$

$$
N^{\frac{1}{3}} \mathrm{i} \partial_{t} \psi_{N, t}=\left[-\frac{1}{2} \sum_{j=1}^{N} \Delta_{x_{j}}+\frac{1}{2 N^{1 / 3}} \sum_{i \neq j}^{N} V_{N}\left(x_{i}-x_{j}\right)\right] \psi_{N, t}
$$

Setting $\hbar=N^{-1 / 3}$ and multiplying \hbar^{2} on both sides, we get

$$
\mathrm{i} \hbar \partial_{t} \psi_{N, t}=\left[-\frac{\hbar^{2}}{2} \sum_{j=1}^{N} \Delta_{x_{j}}+\frac{1}{2 N} \sum_{i \neq j}^{N} V_{N}\left(x_{i}-x_{j}\right)\right] \psi_{N, t}
$$

Particle systems

- Classical System: Follows Vlasov equation

$$
\partial_{t} f+2 p \cdot \nabla_{q} f-\nabla\left(V * \rho_{t}\right) \cdot \nabla_{p} f=0
$$

- Quantum System: Follows N-particle Schrödinger equation

$$
\mathrm{i} \hbar \partial_{t} \Psi_{N, t}=\sum_{j=1}^{N}\left(-\frac{\hbar^{2}}{2 m} \Delta\right) \Psi_{N, t}+\frac{1}{N} \sum_{i<j}^{N} V\left(x_{i}-x_{j}\right) \Psi_{N, t}
$$

Problem

Figure: N-fermionic Schrödinger systems to other equations

Literature review I

Mean field limit (S) \rightarrow (HF)

- 2003: Elgart, Erdős, Schlein, Yau
- 2013: Benedikter, Porta, Schlein
- 2015: Benedikter, Jakšić, Porta, Saffirio, Schlein
- 2017: Porta, Rademacher, Saffirio, Schlein
- 2018: Saffirio

Semiclassical Limit (HF) \rightarrow (V)

- 1993: Lions, Paul
- 2014: Figalli, Ligabò, Paul.
- 2017-19: Golse, Paul, Pulvirenti, Laflèche
- 2009: Athanassoulis, Paul, Pezzotti, Pulvirenti
- 2016: Benedikter, Porta, Saffirio, Schlein
- 2019: Saffirio

Literature review II

Semiclassical Limit (S) \rightarrow (L)

- 1993: Lions, Paul

Mean field limit (L) \rightarrow (HF)

- 1979: Dobrushin

Combined limit (S) \rightarrow (HF)

- 1981: Narnhofer, Swell
- 1981: Spohn
- 2017: Golse, Paul
- 2021: Chen, L. Liew
- 2021: Chong, Laflèche, Saffirio
- 2021: Chen, L. Liew

How can we compare two systems?

Remark that

- Classical System: Follows Vlasov equation, domain is in phase space

$$
\partial_{t} f+2 p \cdot \nabla_{q} f-\nabla\left(V * \rho_{t}\right) \cdot \nabla_{p} f=0
$$

- Quantum System: Follows N-particle Schrödinger equation

$$
\mathrm{i} \hbar \partial_{t} \Psi_{N, t}=\sum_{j=1}^{N}\left(-\frac{\hbar^{2}}{2 m} \Delta\right) \Psi_{N, t}+\lambda \sum_{i<j}^{N} V\left(x_{i}-x_{j}\right) \Psi_{N, t}
$$

Note that

$$
\begin{aligned}
& f: \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0} \\
& \psi: \mathbb{R}^{3 N} \times \mathbb{R} \rightarrow \mathbb{C}
\end{aligned}
$$

Wigner-Weyl transform

Weyl transform of a function f

$$
\Phi[f]=\frac{1}{(2 \pi)^{2 d}} \iiint \int f(q, p)\left(e^{i(a(Q-q)+b(P-p))}\right) \mathrm{d} q \mathrm{~d} p \mathrm{~d} a \mathrm{~d} b .
$$

Wigner map of an operator Φ

$$
f(q, p)=2 \int_{-\infty}^{\infty} \mathrm{d} y e^{-2 i p y / \hbar}\langle q+y| \Phi[f]|q-y\rangle
$$

Let $R \in \mathcal{L}(\mathfrak{h})$ be the integral operator having kernel r

$$
R \phi(x)=\int_{\mathbb{R}^{d}} r(x, y) \phi(y) d y
$$

Wigner transform of R

$$
W_{\hbar}[R](q, p)=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} r\left(q+\frac{\hbar}{2} y, q-\frac{\hbar}{2} y\right) e^{i p \cdot y} d y
$$

Husimi measure

- k-particle Husimi measure: For $1 \leq k \leq N$,

$$
\mathfrak{m}_{N, t}^{(k)}:=\frac{N(N-1) \cdots(N-k+1)}{N^{k}} W_{N, t}^{(k)} * \mathcal{G}^{\hbar}
$$

where

$$
\mathcal{G}^{\hbar}\left(q_{1}, p_{1}, \ldots, q_{k}, p_{k}\right):=\frac{1}{(\pi \hbar)^{3 k}} \exp \left(-\frac{\sum_{j=1}^{k} q_{j}^{2}+p_{j}^{2}}{\hbar}\right)
$$

- generalized k-particle Husimi measure: For $p, q \in \mathbb{R}^{3}$ and $\psi_{N, t} \in L_{a}^{2}\left(\mathbb{R}^{3 N}\right)$ $m_{N, t}^{(k)}\left(q_{1}, p_{1}, \ldots, q_{k}, p_{k}\right)=\left\langle\psi_{N, t}, a^{*}\left(f_{q_{1}, p_{1}}^{\hbar}\right) \cdots a^{*}\left(f_{q_{k}, p_{k}}^{\hbar}\right) a\left(f_{q_{k}, p_{k}}^{\hbar}\right) \cdots a\left(f_{q_{1}, p_{1}}^{\hbar}\right) \psi_{N, t}\right\rangle$ where $a^{*}\left(f_{q, p}^{\hbar}\right)$ and $a\left(f_{q, p}^{\hbar}\right)$ are standard creation- and annihilation-operator respectively with respect to the coherent state $f_{q, p}^{\hbar}$ given by

$$
f_{q, p}^{\hbar}(y):=\hbar^{-\frac{3}{4}} f\left(\frac{y-q}{\sqrt{\hbar}}\right) e^{\frac{i}{\hbar} p \cdot y}
$$

for any real-valued function f satisfying $\|f\|_{2}=1$.

Properties of k-Husimi measure

For all $t \geq 0$ and $1 \leq k \leq N$., the following properties hold true for $m_{N, t}^{(k)}$,

1. $m_{N, t}^{(k)}$ is symmetric,
2. $\frac{1}{(2 \pi)^{3 k}} \int \cdots \int(d q d p)^{\otimes k} m_{N, t}^{(k)}=\frac{N(N-1) \cdots(N-k+1)}{N^{k}}$,
3. $\frac{1}{(2 \pi \hbar)^{3}} \iint d q_{k} d p_{k} m_{N, t}^{(k)}=(N-k+1) m_{N, t}^{(k-1)}$,
4. $0 \leq m_{N, t}^{(k)} \leq 1$ a.e.,
5. If chose $f(x)=\pi^{-3 / 4} e^{-|x|^{2} / 2}$, then

$$
m_{N, t}^{(k)}=\frac{N(N-1) \cdots(N-k+1)}{N^{k}} W_{N, t}^{(k)} * \mathcal{G}^{\hbar}
$$

where

$$
\mathcal{G}^{\hbar}\left(q_{1}, p_{1}, \ldots, q_{k}, p_{k}\right):=(\pi \hbar)^{-3 k} \exp \left(-\hbar^{-1}\left(\sum_{j=1}^{k}\left|q_{j}\right|^{2}+\left|p_{j}\right|^{2}\right)\right) .
$$

Main goal

Vlasov Equation: For given initial data m_{0}, let m_{t} be the solution to the following Vlasov equation

$$
\left\{\begin{array}{l}
\partial_{t} m_{t}(q, p)+p \cdot \nabla_{q} m_{t}(q, p)=\nabla_{q}\left(V * \varrho_{t}\right)(q) \cdot \nabla_{p} m_{t}(q, p), \\
\left.m_{t}(q, p)\right|_{t=0}=m_{0}(q, p),
\end{array}\right.
$$

where $\varrho_{t}(q):=\int m_{t}(q, p) d p$.
Goal: To prove that $m_{N, t}^{(1)}$ converges to m_{t} in the sense of distribution as $N \rightarrow \infty$.

Theorem (L. Chen, J. L. , M. Liew (AHP 2021))

Let $m_{N, t}^{(1)}:=m_{N, t}$ be the 1-particle Husimi measure and suppose the following assumptions hold:
(1) V_{N} is the truncated Coulomb potential with $\beta_{N}:=N^{-\epsilon}, 0<\epsilon<\frac{1}{24}$.
(2) For fixed $T>0$, let $\Psi_{N, t} \in \mathcal{F}_{a}^{N}, t \in[0, T]$, be the solution to the Schrödinger equation with the Slater determinant as the initial data .
(3) $f \geq 0$ is a compact supported and it is in $H^{1}\left(\mathbb{R}^{3}\right)$ with $\|f\|_{2}=1$.
(4) Let m_{N} be the initial 1-particle Husimi measure with L^{1}-weak limit m_{0} and satisfies the uniform bound:

$$
\iint d q d p\left(|p|^{2}+|q|\right) m_{N}(q, p)<\infty
$$

Then, $m_{N, t}$ has a weak-ᄎ convergent subsequence in $L^{\infty}\left((0, T] ; L^{1}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)\right)$ with limit m_{t}, where m_{t} is the solution of the Vlasov-Poisson equation with repulsive Coulomb potential in the sense of distribution.

Truncated repulsive Coulomb potential

We consider the mollification of repulsive Coulomb potential, i.e.

$$
V_{N}(x)=\left(V * \mathcal{G}_{\beta_{N}}\right)(x)
$$

where $V(x)=|x|^{-1}$ and $\mathcal{G}_{\beta_{N}}(x):=\frac{1}{\left(2 \pi \beta_{N}^{2}\right)^{3 / 2}} e^{-\left(x / \beta_{N}\right)^{2}}$.
Remark

$$
\left\|\nabla V_{N}\right\|_{L^{\infty}} \leq C \beta_{N}^{-2}
$$

we will set $\beta_{N} \sim N^{-\epsilon}$ with $0<\epsilon<1 / 24$.

Proof strategy

Recall,

$$
m_{N, t}^{(1)}(q, p)=\left\langle\psi_{N, t}, a^{*}\left(f_{q, p}^{\hbar}\right) a\left(f_{q, p}^{\hbar}\right) \psi_{N, t}\right\rangle
$$

where $\Psi_{N, t}$ is the solution to the Schrödinger equation.
Taking the $i \hbar \partial_{t} m_{N, t}$ and divide both side with $i \hbar$, we will obtain the following term:

$$
\begin{aligned}
& \partial_{t} m_{N, t}(q, p)+p \cdot \nabla_{q} m_{N, t}(q, p)-\nabla_{q} \cdot\left(\hbar \operatorname{lm}\left\langle\nabla_{q} a\left(f_{q, p}^{\hbar}\right) \psi_{N, t}, a\left(f_{q, p}^{\hbar}\right) \psi_{N, t}\right\rangle\right) \\
& =\frac{1}{(2 \pi)^{3}} \nabla_{p} \cdot \int d w_{1} d u_{1} d w_{2} d u_{2} d q_{2} d p_{2}\left(f_{q, p}^{\hbar}(w) \overline{f_{q, p}^{\hbar}(u)}\right)^{\otimes 2} \\
& \quad \times \int_{0}^{1} d s \nabla V_{N}\left(s u_{1}+(1-s) w_{1}-w_{2}\right)\left\langle\Psi_{N, t}, a_{w_{1}} a_{w_{2}} a_{u_{2}}^{*} a_{u_{1}}^{*} \Psi_{N, t}\right\rangle
\end{aligned}
$$

where we denote

$$
\left(f_{q, p}^{\hbar}(w) \overline{f_{q, p}^{\hbar}(u)}\right)^{\otimes 2}:=f_{q, p}^{\hbar}\left(w_{1}\right) \overline{f_{q, p}^{\hbar}\left(u_{1}\right)} f_{q_{2}, p_{2}}^{\hbar}\left(w_{2}\right) \overline{f_{q_{2}, p_{2}}^{\hbar}\left(u_{2}\right)} .
$$

Proof strategy: Vlasov equation with remainders I

$$
\partial_{t} m_{N, t}+p \cdot \nabla_{q} m_{N, t}=\frac{1}{(2 \pi)^{3}} \nabla_{q}\left(V_{N} * \varrho_{N, t}\right) \nabla_{p} \cdot m_{N, t}+\nabla_{q} \cdot \widetilde{\mathcal{R}}+\nabla_{p} \cdot \mathcal{R}
$$

where $\varrho_{N, t}(q):=\int \mathrm{d} p m_{N, t}(q, p), \widetilde{\mathcal{R}}$ and $\mathcal{R}=\mathcal{R}_{\mathrm{s}}+\mathcal{R}_{\mathrm{m}}$ are given by

$$
\begin{aligned}
& \widetilde{\mathcal{R}}:= \hbar \\
& \operatorname{lm}\langle \left\langle\nabla_{q} a\left(f_{q, p}^{\hbar}\right) \Psi_{N, t}, a\left(f_{q, p}^{\hbar}\right) \Psi_{N, t}\right\rangle, \\
&\left.\mathcal{R}_{\mathrm{s}}:=\frac{1}{(2 \pi)^{3}} \int \mathrm{~d} w_{1} \mathrm{~d} u_{1} \mathrm{~d} w_{2} \mathrm{~d} u_{2} \mathrm{~d} q_{2} \mathrm{~d} p_{2}\left(f_{q, p}^{\hbar}(w) \overline{f_{q, p}^{\hbar}(u)}\right)\right)^{\otimes 2} \\
& \times\left[\int_{0}^{1} \mathrm{~d} s \nabla V_{N}\left(s u_{1}+(1-s) w_{1}-w_{2}\right)-\nabla V_{N}\left(q-q_{2}\right)\right] \gamma_{N, t}^{(2)}\left(u_{1}, u_{2} ; w_{1}, w_{2}\right), \\
& \mathcal{R}_{\mathrm{m}}:=\frac{1}{(2 \pi)^{3}} \int \mathrm{~d} w_{1} \mathrm{~d} u_{1} \mathrm{~d} w_{2} \mathrm{~d} u_{2} \mathrm{~d} q_{2} \mathrm{~d} p_{2}\left(f_{q, p}^{\hbar}(w) \overline{f_{q, p}^{\hbar}(u)}\right) \\
& \times \nabla 2 \\
& \times \nabla V_{N}\left(q-q_{2}\right)\left[\gamma_{N, t}^{(2)}\left(u_{1}, u_{2} ; w_{1}, w_{2}\right)-\gamma_{N, t}^{(1)}\left(u_{1} ; w_{1}\right) \gamma_{N, t}^{(1)}\left(u_{2} ; w_{2}\right)\right] .
\end{aligned}
$$

Proof Strategy

Lemma

For $g \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$ and

$$
\Omega_{\hbar}:=\left\{x \in \mathbb{R}^{3} ; \max _{1 \leq j \leq 3}\left|x_{j}\right| \leq \hbar^{\alpha}\right\}
$$

it holds that for every $\alpha \in(0,1)$, $s \in \mathbb{N}$, and $x \in \mathbb{R}^{3} \backslash \Omega_{\hbar}$,

$$
\left|\int_{\mathbb{R}^{3}} d p e^{\frac{i}{\hbar} p \cdot x} g(p)\right| \leq c_{1} \hbar^{(1-\alpha) s},
$$

where the constant c_{1} depends on the compact support as well as the $W^{s, \infty}$-norm of the test function g.

Proof strategy

For $\varphi, \phi \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$, there exists a positive constant K such that

$$
\begin{aligned}
\left|\iint d q d p \varphi(q) \phi(p) \nabla_{q} \cdot \widetilde{\mathcal{R}}(q, p)\right| & \leq K \hbar^{\frac{1}{2}-}, \\
\left|\iint d q d p \varphi(q) \phi(p) \nabla_{p} \cdot \mathcal{R}(q, p)\right| & \leq K\left(\hbar^{\frac{1}{4}-}+\hbar^{\frac{3}{4}-}\right) .
\end{aligned}
$$

This show that the residual terms converge to zero in the sense of distribution.

Remark

The constant K is depends on $\|\varphi\|_{W^{1, \infty}},\|\nabla \phi\|_{W^{s}, \infty}$ with s depends on α_{1} and $\alpha_{2}, \operatorname{supp} \phi,\|f\|_{L^{\infty} \cap L^{2}}$, supp f, and $\left\|\nabla V_{N}\right\|_{\infty}$.

Proof strategy

Lemma

Assuming that $V_{N}(x) \geq 0$ and the initial total energy is bounded in the sense that $\frac{1}{N}\left\langle\Psi_{N}, \mathcal{H}_{N} \Psi_{N}\right\rangle \leq C$, then the kinetic energy is bounded as follows

$$
\left\langle\Psi_{N, t}, \mathcal{K} \Psi_{N, t}\right\rangle \leq C N .
$$

Lemma

For $t \geq 0$, we have the following finite moments:

$$
\iint d q d p\left(|q|+|p|^{2}\right) m_{N, t}(q, p) \leq C(1+t)
$$

Theorem (mixed-norm estimate)
For given suitable condition, we have the following estimate

$$
\left(\iint \mathrm{d} w_{1} \mathrm{~d} u_{1}\left[\operatorname{Tr}^{(1)}\left|\gamma_{N, t}^{(2)}-\omega_{N, t}^{(1)} \otimes \omega_{N, t}^{(1)}\right|\left(u_{1} ; w_{1}\right)\right]^{2}\right)^{\frac{1}{2}} \leq C_{t} N,
$$

where the constant C_{t} depends on potential V and time t.

Thank you

Grazie

감사합니다

