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Overview

@ The quantum Hall effect

@ The need for edge currents and absolutely continuous edge
spectrum

@ Two theorems (arXiv:2101.08603 [math-ph], arXiv:2203.05474
[math-ph])

@ Sketch of proof
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o Bulk Hall current ﬁg in response to an electric field E:
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@ The Hall conductance o of an electrical insulator is quantized:
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where e is the charge of an electron and h is Planck's
constant.
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A finite Hall insulator in a background potential

@ The electrons in the Hall insulator are described by a
single-particle Hamiltonian H with a gap A C R in its
spectrum.

@ Apply a small external potential V' and fill all single particle
states of H + V up to the Fermi energy u € A.

@ A bulk Hall current j_;g flows along the equipotentials.



Necessity of Edge Currents

@ No net current can flow through C. The bulk current flowing
through C is

/Cdﬁ' ﬁs:—o—/ AT~ VV = a(V(a) — V(b)).

C
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Necessity of Edge Currents

@ Vanishing net current is achieved by positing the existence of
an edge current
JE(x) =aV(x)+c.

@ By what mechanism could such an edge current arise?
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Mechanism of the Edge Current

@ The potential leads to a
changed occupation of edge

. modes.
£, . _
vod . 0 @ The appropriate edge
oo °°° "% current arises if the edge
/*@ ****** e ; modes carry a net current
e ee e, along the edge.
< e - o If a spectral window / of
f 2 e N edge modes is occupied,
V40 Sfeceec0, g o0 then the electrons carry an
[ o edge current o |/|.
. .
;. 2T TP O @ An infinite edge supports
g ballistic motion along a line.
L

This suggests absolutely
continuous spectrum (cf.
RAGE theorems).
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Theorem for Hall insulators

o Let H be a single-particle local Hamiltonian on /2(Z?) ® C"
with spectral gap A C R, and let o be the bulk Hall
conductance of H filled up to the gap A.

o Concretely, for u € A and a € R? \ Z2 let
pP— XSH(H)’ U, = eiarg(X—a)

where X = (X1, X2) is the vector of position operators on
I?(Z?) ® C" and put

N

o= %(dim ker(UzPU, — P — 1) — dim ker(U: PU, — P+ 1)).

o Let H be the restriction of H to the half-space N x Z.

If o #0, then A C 0a.c.(H).
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Theorem for time-reversal invariant topological insulators

@ Let 7 be an on-site fermionic time-reversal action on
I?(Z?) ® C?, i.e. T is an anti-unitary operator such that
=—T1and [1,X;®@1] =0 fori=1,2.

@ Assume now that H is time-reversal symmetric:
THT* = H. (1)

It follows that the restriction M is also time-reversal
symmetric.

@ Although o0 = 0, we can consider a Zj-valued index

indp := dimker(U;PU, — P —1) mod 2. (2)

Ifindy = 1, then A C 0,..(H).
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@ We consider the edge unitary
U = exp{2mif(H)}

where f : R — [0, 1] is a smooth function interpolating
between 0 and 1 such that f’ is supported on A.

@ The unitary U acts non-trivially only on the edge states and
therefore acts as the identity far away from the edge.
Moreover, U is a smooth function of H and therefore local.

@ In fact one can show that [i/, 1] is trace class with I is
projection on N x N C N x Z. In particular, U*TTU — I is
compact. (P. Elbau, G. Graf '02)

@ We can associate to U a Z-valued edge index
indf(U) = dimker(U*NU — N — 1) — dim ker(U*NU — T + 1)

which measures the amount of charge transported by I/ along
the edge of the Hall insulator.



Sketch of proof

o If H and therefore H are time-reversal symmetric then
TUT* = U*. We can associate to quasi one-dimensional
unitaries with this symmetry constraint a Zy-valued index

indf(U) .= dimker(U*NU —N—1) mod2.  (3)



Sketch of proof

o If H and therefore H are time-reversal symmetric then
TUT* = U*. We can associate to quasi one-dimensional
unitaries with this symmetry constraint a Zy-valued index

indf(U) .= dimker(U*NU —N—1) mod2.  (3)

@ In either case we have the bulk-boundary correspondence (J.
Shapiro et al. : arXiv:1908.00910)

o = indf (4)
and, if there is time-reversal symmetry,
indy = ind§. (5)

(See also (A.B., J. Schenker, J. Shapiro : arXiv:2110.07068)
for a more direct proof using explicit homotopies of Fredholm
operators.)
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@ We now want to show that a non-trivial edge index implies
a.c. spectrum for the edge unitary U.

@ In the quantum Hall case this follows from a result of Joachim
Asch, Olivier Bourget, Alain Joye (arXiv:1906.08181):

Theorem (J. Asch, O. Bourget, A. Joye)

IfU is unitary and N is a projection such that [U, ] is trace class
then ind is well defined and

U=(S""aoW)+T

where W has trivial index, S is a shift and T is trace-class.

@ This Theorem can be regarded as a sort of Wold
decomposition of 1D unitaries.
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Sketch of proof

@ For the time-reversal symmetric case, we provide an analogous
‘symmetric Wold decomposition’.

Theorem (C. Cedzich, A. B.)

IfU is unitary, I a projection such that [U, ] is trace class and
TUT* = U* and TTI7* = T then the edge index ind5 is well
defined. Moreover, if ind5 = 1 is non-trivial then

U=(SeS dW)+ T (6)

where T s trace class.
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Sketch of proof

@ The shift has a.c. spectrum covering the whole unit circle and
a.c. spectrum is stable under trace-class perturbations, so

oac(U)=UQ1)

if the edge index is non-trivial.

o Finally, by spectral mapping we pull the a.c. spectrum of U
back to H to obtain

Ua.c.(l:l) D) A>

concluding the proof.
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Symmetric Wold decomposition and approximate edge

channels

@ Suppose the edge unitary U has non-trivial index indE(Z/{) =1
Following (arXiv:1611.04439), one can construct a unitary VW
which is a trace-class perturbation of U/ such that

WIW* — M =M, —N_ (7)

where N} and l_ are one-dimensional projections.

@ We then apply a Wold-like construction to N} and _. In
particular, we set

n®.— aals- Dy, n® .= adk,.(n2).  (8)
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Symmetric Wold decomposition and approximate edge

channels

@ We then show (inductively) that
e These projections are mutually orthogonal

NANY = 6 6.0 M. (9)
o For kK <0 we have I'I(gk)l'l = I'ng) and for k > 1 we have

n¥nt = nl.
e For each k, the projections I'Igf) form a Kramers pair, i.e.

N = n®. (10)
@ W acts as a right shift on the subspace spanned by the I'Igf()

and as a left-shift on the subspace spanned by the I_I(_k)
proving the theorem.
@ U is close to W far away from the cut. The spaces spanned

by the I'I(+k) and the n(f) are therefore approximate edge
channels for the edge unitary .



Thank You!



