Continuous Edge Spectrum of Topological Insulators on the Lattice

Alex Bols
joint work with Albert Werner and Christopher Cedzich

University of Copenhagen
22 juli 2022

Overview

- The quantum Hall effect
- The need for edge currents and absolutely continuous edge spectrum
- Two theorems (arXiv:2101.08603 [math-ph], arXiv:2203.05474 [math-ph])
- Sketch of proof

The bulk quantum Hall effect

－Bulk Hall current \vec{j}_{B} in response to an electric field \vec{E} ：

$$
\overrightarrow{j_{B}}=\sigma \hat{z} \times \vec{E}
$$

The bulk quantum Hall effect

- Bulk Hall current $\overrightarrow{j_{B}}$ in response to an electric field \vec{E} :

$$
\overrightarrow{j_{B}}=\sigma \hat{z} \times \vec{E} .
$$

- The Hall conductance σ of an electrical insulator is quantized:

$$
\sigma \in \frac{e^{2}}{h} \mathbb{Z}
$$

where e is the charge of an electron and h is Planck's constant.

A finite Hall insulator in a background potential

- The electrons in the Hall insulator are described by a single-particle Hamiltonian H with a gap $\Delta \subset \mathbb{R}$ in its spectrum.

A finite Hall insulator in a background potential

- The electrons in the Hall insulator are described by a single-particle Hamiltonian H with a gap $\Delta \subset \mathbb{R}$ in its spectrum.
- Apply a small external potential V and fill all single particle states of $H+V$ up to the Fermi energy $\mu \in \Delta$.

A finite Hall insulator in a background potential

- The electrons in the Hall insulator are described by a single-particle Hamiltonian H with a gap $\Delta \subset \mathbb{R}$ in its spectrum.
- Apply a small external potential V and fill all single particle states of $H+V$ up to the Fermi energy $\mu \in \Delta$.
- A bulk Hall current $\overrightarrow{j_{B}}$ flows along the equipotentials.

Necessity of Edge Currents

- No net current can flow through \mathcal{C}. The bulk current flowing through \mathcal{C} is

$$
\int_{C} \mathrm{~d} \hat{n} \cdot \overrightarrow{j_{B}}=-\sigma \int_{C} \mathrm{~d} \vec{l} \cdot \nabla V=\sigma(V(a)-V(b))
$$

Necessity of Edge Currents

- Vanishing net current is achieved by positing the existence of an edge current

$$
j_{E}(x)=\sigma V(x)+c .
$$

Necessity of Edge Currents

- Vanishing net current is achieved by positing the existence of an edge current

$$
j_{E}(x)=\sigma V(x)+c .
$$

- By what mechanism could such an edge current arise?

Mechanism of the Edge Current

- The potential leads to a changed occupation of edge modes.

Mechanism of the Edge Current

－The potential leads to a changed occupation of edge modes．
－The appropriate edge current arises if the edge modes carry a net current along the edge．

Mechanism of the Edge Current

- The potential leads to a changed occupation of edge modes.
- The appropriate edge current arises if the edge modes carry a net current along the edge.
- If a spectral window I of edge modes is occupied, then the electrons carry an edge current $\sigma|I|$.

Mechanism of the Edge Current

- The potential leads to a changed occupation of edge modes.
- The appropriate edge current arises if the edge modes carry a net current along the edge.
- If a spectral window I of edge modes is occupied, then the electrons carry an edge current $\sigma|I|$.
- An infinite edge supports ballistic motion along a line. This suggests absolutely continuous spectrum (cf. RAGE theorems).

Theorem for Hall insulators

－Let H be a single－particle local Hamiltonian on $I^{2}\left(\mathbb{Z}^{2}\right) \otimes \mathbb{C}^{n}$ with spectral gap $\Delta \subset \mathbb{R}$ ，and let σ be the bulk Hall conductance of H filled up to the gap Δ ．

Theorem for Hall insulators

－Let H be a single－particle local Hamiltonian on $I^{2}\left(\mathbb{Z}^{2}\right) \otimes \mathbb{C}^{n}$ with spectral gap $\Delta \subset \mathbb{R}$ ，and let σ be the bulk Hall conductance of H filled up to the gap Δ ．
－Concretely，for $\mu \in \Delta$ and $a \in \mathbb{R}^{2} \backslash \mathbb{Z}^{2}$ let

$$
P=\chi_{\leq \mu}(H), \quad U_{a}=\mathrm{e}^{\mathrm{i} \operatorname{iag}(X-a)}
$$

where $X=\left(X_{1}, X_{2}\right)$ is the vector of position operators on $I^{2}\left(\mathbb{Z}^{2}\right) \otimes \mathbb{C}^{n}$ and put
$\sigma=\frac{e^{2}}{h}\left(\operatorname{dim} \operatorname{ker}\left(U_{a}^{*} P U_{a}-P-\mathbb{1}\right)-\operatorname{dim} \operatorname{ker}\left(U_{a}^{*} P U_{a}-P+\mathbb{1}\right)\right)$.

Theorem for Hall insulators

- Let H be a single-particle local Hamiltonian on $I^{2}\left(\mathbb{Z}^{2}\right) \otimes \mathbb{C}^{n}$ with spectral gap $\Delta \subset \mathbb{R}$, and let σ be the bulk Hall conductance of H filled up to the gap Δ.
- Concretely, for $\mu \in \Delta$ and $a \in \mathbb{R}^{2} \backslash \mathbb{Z}^{2}$ let

$$
P=\chi_{\leq \mu}(H), \quad U_{a}=\mathrm{e}^{\mathrm{i} \operatorname{iag}(X-a)}
$$

where $X=\left(X_{1}, X_{2}\right)$ is the vector of position operators on $I^{2}\left(\mathbb{Z}^{2}\right) \otimes \mathbb{C}^{n}$ and put
$\sigma=\frac{e^{2}}{h}\left(\operatorname{dim} \operatorname{ker}\left(U_{a}^{*} P U_{a}-P-\mathbb{1}\right)-\operatorname{dim} \operatorname{ker}\left(U_{a}^{*} P U_{a}-P+\mathbb{1}\right)\right)$.

- Let \tilde{H} be the restriction of H to the half-space $\mathbb{N} \times \mathbb{Z}$.

Theorem for Hall insulators

- Let H be a single-particle local Hamiltonian on $I^{2}\left(\mathbb{Z}^{2}\right) \otimes \mathbb{C}^{n}$ with spectral gap $\Delta \subset \mathbb{R}$, and let σ be the bulk Hall conductance of H filled up to the gap Δ.
- Concretely, for $\mu \in \Delta$ and $a \in \mathbb{R}^{2} \backslash \mathbb{Z}^{2}$ let

$$
P=\chi_{\leq \mu}(H), \quad U_{a}=\mathrm{e}^{\mathrm{i} \operatorname{iag}(X-a)}
$$

where $X=\left(X_{1}, X_{2}\right)$ is the vector of position operators on $I^{2}\left(\mathbb{Z}^{2}\right) \otimes \mathbb{C}^{n}$ and put
$\sigma=\frac{e^{2}}{h}\left(\operatorname{dim} \operatorname{ker}\left(U_{a}^{*} P U_{a}-P-\mathbb{1}\right)-\operatorname{dim} \operatorname{ker}\left(U_{a}^{*} P U_{a}-P+\mathbb{1}\right)\right)$.

- Let \tilde{H} be the restriction of H to the half-space $\mathbb{N} \times \mathbb{Z}$.

Theorem

If $\sigma \neq 0$, then $\Delta \subset \sigma_{\text {a.c. }}(\tilde{H})$.

Theorem for time-reversal invariant topological insulators

- Let τ be an on-site fermionic time-reversal action on $I^{2}\left(\mathbb{Z}^{2}\right) \otimes \mathbb{C}^{2}$, i.e. τ is an anti-unitary operator such that $\tau^{2}=-\mathbb{1}$ and $\left[\tau, X_{i} \otimes \mathbb{1}\right]=0$ for $i=1,2$.

Theorem for time－reversal invariant topological insulators

－Let τ be an on－site fermionic time－reversal action on $I^{2}\left(\mathbb{Z}^{2}\right) \otimes \mathbb{C}^{2}$ ，i．e．τ is an anti－unitary operator such that $\tau^{2}=-\mathbb{1}$ and $\left[\tau, X_{i} \otimes \mathbb{1}\right]=0$ for $i=1,2$.
－Assume now that H is time－reversal symmetric：

$$
\begin{equation*}
\tau H \tau^{*}=H \tag{1}
\end{equation*}
$$

It follows that the restriction \tilde{H} is also time－reversal symmetric．

Theorem for time－reversal invariant topological insulators

－Let τ be an on－site fermionic time－reversal action on $I^{2}\left(\mathbb{Z}^{2}\right) \otimes \mathbb{C}^{2}$ ，i．e．τ is an anti－unitary operator such that $\tau^{2}=-\mathbb{1}$ and $\left[\tau, X_{i} \otimes \mathbb{1}\right]=0$ for $i=1,2$.
－Assume now that H is time－reversal symmetric：

$$
\begin{equation*}
\tau H \tau^{*}=H \tag{1}
\end{equation*}
$$

It follows that the restriction \tilde{H} is also time－reversal symmetric．
－Although $\sigma=0$ ，we can consider a \mathbb{Z}_{2}－valued index

$$
\begin{equation*}
\operatorname{ind}_{2}:=\operatorname{dim} \operatorname{ker}\left(U_{a}^{*} P U_{a}-P-\mathbb{1}\right) \quad \bmod 2 . \tag{2}
\end{equation*}
$$

Theorem for time-reversal invariant topological insulators

- Let τ be an on-site fermionic time-reversal action on $I^{2}\left(\mathbb{Z}^{2}\right) \otimes \mathbb{C}^{2}$, i.e. τ is an anti-unitary operator such that $\tau^{2}=-\mathbb{1}$ and $\left[\tau, X_{i} \otimes \mathbb{1}\right]=0$ for $i=1,2$.
- Assume now that H is time-reversal symmetric:

$$
\begin{equation*}
\tau H \tau^{*}=H \tag{1}
\end{equation*}
$$

It follows that the restriction \tilde{H} is also time-reversal symmetric.

- Although $\sigma=0$, we can consider a \mathbb{Z}_{2}-valued index

$$
\begin{equation*}
\operatorname{ind}_{2}:=\operatorname{dim} \operatorname{ker}\left(U_{a}^{*} P U_{a}-P-\mathbb{1}\right) \quad \bmod 2 \tag{2}
\end{equation*}
$$

Theorem

If ind $_{2}=1$, then $\Delta \subset \sigma_{\text {a.c. }}(\tilde{H})$.

Sketch of proof

- We consider the edge unitary

$$
\mathcal{U}:=\exp \{2 \pi \mathrm{i} f(\tilde{H})\}
$$

where $f: R \rightarrow[0,1]$ is a smooth function interpolating between 0 and 1 such that f^{\prime} is supported on Δ.

Sketch of proof

－We consider the edge unitary

$$
\mathcal{U}:=\exp \{2 \pi \mathrm{i} f(\tilde{H})\}
$$

where $f: R \rightarrow[0,1]$ is a smooth function interpolating between 0 and 1 such that f^{\prime} is supported on Δ ．
－The unitary \mathcal{U} acts non－trivially only on the edge states and therefore acts as the identity far away from the edge． Moreover， \mathcal{U} is a smooth function of \tilde{H} and therefore local．

Sketch of proof

- We consider the edge unitary

$$
\mathcal{U}:=\exp \{2 \pi \mathrm{i} f(\tilde{H})\}
$$

where $f: R \rightarrow[0,1]$ is a smooth function interpolating between 0 and 1 such that f^{\prime} is supported on Δ.

- The unitary \mathcal{U} acts non-trivially only on the edge states and therefore acts as the identity far away from the edge. Moreover, \mathcal{U} is a smooth function of \tilde{H} and therefore local.
- In fact one can show that $[\mathcal{U}, \Pi]$ is trace class with Π is projection on $\mathbb{N} \times \mathbb{N} \subset \mathbb{N} \times \mathbb{Z}$. In particular, $\mathcal{U}^{*} \Pi \mathcal{U}-\Pi$ is compact. (P. Elbau, G. Graf '02)

Sketch of proof

- We consider the edge unitary

$$
\mathcal{U}:=\exp \{2 \pi \mathrm{i} f(\tilde{H})\}
$$

where $f: R \rightarrow[0,1]$ is a smooth function interpolating between 0 and 1 such that f^{\prime} is supported on Δ.

- The unitary \mathcal{U} acts non-trivially only on the edge states and therefore acts as the identity far away from the edge. Moreover, \mathcal{U} is a smooth function of \tilde{H} and therefore local.
- In fact one can show that $[\mathcal{U}, \Pi]$ is trace class with Π is projection on $\mathbb{N} \times \mathbb{N} \subset \mathbb{N} \times \mathbb{Z}$. In particular, $\mathcal{U}^{*} \Pi \mathcal{U}-\Pi$ is compact. (P. Elbau, G. Graf '02)
- We can associate to \mathcal{U} a \mathbb{Z}-valued edge index
$\operatorname{ind}^{E}(\mathcal{U}):=\operatorname{dim} \operatorname{ker}\left(\mathcal{U}^{*} \Pi \mathcal{U}-\Pi-\mathbb{1}\right)-\operatorname{dim} \operatorname{ker}\left(\mathcal{U}^{*} \Pi \mathcal{U}-\Pi+\mathbb{1}\right)$
which measures the amount of charge transported by \mathcal{U} along the edge of the Hall insulator.

Sketch of proof

－If H and therefore \tilde{H} are time－reversal symmetric then $\tau \mathcal{U} \tau^{*}=\mathcal{U}^{*}$ ．We can associate to quasi one－dimensional unitaries with this symmetry constraint a \mathbb{Z}_{2}－valued index

$$
\begin{equation*}
\operatorname{ind}_{2}^{E}(\mathcal{U}):=\operatorname{dim} \operatorname{ker}\left(\mathcal{U}^{*} \Pi \mathcal{U}-\Pi-\mathbb{1}\right) \quad \bmod 2 \tag{3}
\end{equation*}
$$

Sketch of proof

- If H and therefore \tilde{H} are time-reversal symmetric then $\tau \mathcal{U} \tau^{*}=\mathcal{U}^{*}$. We can associate to quasi one-dimensional unitaries with this symmetry constraint a \mathbb{Z}_{2}-valued index

$$
\begin{equation*}
\operatorname{ind}_{2}^{E}(\mathcal{U}):=\operatorname{dim} \operatorname{ker}\left(\mathcal{U}^{*} \Pi \mathcal{U}-\Pi-\mathbb{1}\right) \quad \bmod 2 \tag{3}
\end{equation*}
$$

- In either case we have the bulk-boundary correspondence (J. Shapiro et al. : arXiv:1908.00910)

$$
\begin{equation*}
\sigma=\operatorname{ind}^{E} \tag{4}
\end{equation*}
$$

and, if there is time-reversal symmetry,

$$
\begin{equation*}
\operatorname{ind}_{2}=\operatorname{ind}_{2}^{E} \tag{5}
\end{equation*}
$$

(See also (A.B., J. Schenker, J. Shapiro : arXiv:2110.07068) for a more direct proof using explicit homotopies of Fredholm operators.)

Sketch of proof

- We now want to show that a non-trivial edge index implies a.c. spectrum for the edge unitary \mathcal{U}.

Sketch of proof

- We now want to show that a non-trivial edge index implies a.c. spectrum for the edge unitary \mathcal{U}.
- In the quantum Hall case this follows from a result of Joachim Asch, Olivier Bourget, Alain Joye (arXiv:1906.08181):

Sketch of proof

- We now want to show that a non-trivial edge index implies a.c. spectrum for the edge unitary \mathcal{U}.
- In the quantum Hall case this follows from a result of Joachim Asch, Olivier Bourget, Alain Joye (arXiv:1906.08181):

Theorem (J. Asch, O. Bourget, A. Joye)

If \mathcal{U} is unitary and Π is a projection such that $[\mathcal{U}, \Pi]$ is trace class then ind ${ }^{E}$ is well defined and

$$
\mathcal{U}=\left(S^{\mathrm{ind}^{E}} \oplus W\right)+T
$$

where W has trivial index, S is a shift and T is trace-class.

Sketch of proof

- We now want to show that a non-trivial edge index implies a.c. spectrum for the edge unitary \mathcal{U}.
- In the quantum Hall case this follows from a result of Joachim Asch, Olivier Bourget, Alain Joye (arXiv:1906.08181):

Theorem (J. Asch, O. Bourget, A. Joye)

If \mathcal{U} is unitary and Π is a projection such that $[\mathcal{U}, \Pi]$ is trace class then ind ${ }^{E}$ is well defined and

$$
\mathcal{U}=\left(S^{\operatorname{ind}^{E}} \oplus W\right)+T
$$

where W has trivial index, S is a shift and T is trace-class.

- This Theorem can be regarded as a sort of Wold decomposition of 1D unitaries.

Sketch of proof

- For the time-reversal symmetric case, we provide an analogous 'symmetric Wold decomposition'.

Sketch of proof

－For the time－reversal symmetric case，we provide an analogous ＇symmetric Wold decomposition＇．

Theorem（C．Cedzich，A．B．）

If \mathcal{U} is unitary，Π a projection such that $[\mathcal{U}, \Pi]$ is trace class and $\tau \mathcal{U} \tau^{*}=\mathcal{U}^{*}$ and $\tau \Pi \tau^{*}=\Pi$ then the edge index $\operatorname{ind}_{2}^{E}$ is well defined．Moreover，if $\operatorname{ind}_{2}^{E}=1$ is non－trivial then

$$
\begin{equation*}
\mathcal{U}=\left(S \oplus S^{*} \oplus W\right)+T \tag{6}
\end{equation*}
$$

where T is trace class．

Sketch of proof

- The shift has a.c. spectrum covering the whole unit circle and a.c. spectrum is stable under trace-class perturbations, so

$$
\sigma_{\text {a.c. }}(\mathcal{U})=U(1)
$$

if the edge index is non-trivial.

Sketch of proof

- The shift has a.c. spectrum covering the whole unit circle and a.c. spectrum is stable under trace-class perturbations, so

$$
\sigma_{\text {a.c. }}(\mathcal{U})=U(1)
$$

if the edge index is non-trivial.

- Finally, by spectral mapping we pull the a.c. spectrum of \mathcal{U} back to \tilde{H} to obtain

$$
\sigma_{\text {a.c. }}(\tilde{H}) \supset \Delta
$$

concluding the proof.

Symmetric Wold decomposition and approximate edge channels

－Suppose the edge unitary \mathcal{U} has non－trivial index $\operatorname{ind}_{2}^{E}(\mathcal{U})=1$ ． Following（arXiv：1611．04439），one can construct a unitary \mathcal{W} which is a trace－class perturbation of \mathcal{U} such that

$$
\begin{equation*}
\mathcal{W} \Pi \mathcal{W}^{*}-\Pi=\Pi_{+}-\Pi_{-} \tag{7}
\end{equation*}
$$

where Π_{+}and Π_{-}are one－dimensional projections．

Symmetric Wold decomposition and approximate edge channels

- Suppose the edge unitary \mathcal{U} has non-trivial index $\operatorname{ind}_{2}^{E}(\mathcal{U})=1$. Following (arXiv:1611.04439), one can construct a unitary \mathcal{W} which is a trace-class perturbation of \mathcal{U} such that

$$
\begin{equation*}
\mathcal{W} \Pi \mathcal{W}^{*}-\Pi=\Pi_{+}-\Pi_{-} \tag{7}
\end{equation*}
$$

where Π_{+}and Π_{-}are one-dimensional projections.

- We then apply a Wold-like construction to Π_{+}and Π_{-}. In particular, we set

$$
\begin{equation*}
\Pi_{+}^{(k)}:=\operatorname{Ad}_{\mathcal{W}}^{(k-1)}\left(\Pi_{+}\right), \quad \Pi_{-}^{(k)}:=\operatorname{Ad}_{\mathcal{W}^{*}}^{k}\left(\Pi_{-}\right) \tag{8}
\end{equation*}
$$

Symmetric Wold decomposition and approximate edge channels

- We then show (inductively) that

Symmetric Wold decomposition and approximate edge channels

- We then show (inductively) that
- These projections are mutually orthogonal

$$
\begin{equation*}
\Pi_{\sigma}^{(k)} \Pi_{\sigma^{\prime}}^{(I)}=\delta_{k, l} \delta_{\sigma, \sigma^{\prime}} \Pi_{\sigma}^{(k)} \tag{9}
\end{equation*}
$$

Symmetric Wold decomposition and approximate edge channels

- We then show (inductively) that
- These projections are mutually orthogonal

$$
\begin{equation*}
\Pi_{\sigma}^{(k)} \Pi_{\sigma^{\prime}}^{(I)}=\delta_{k, l} \delta_{\sigma, \sigma^{\prime}} \Pi_{\sigma}^{(k)} . \tag{9}
\end{equation*}
$$

- For $k \leq 0$ we have $\Pi_{\sigma}^{(k)} \Pi=\Pi_{\sigma}^{(k)}$ and for $k \geq 1$ we have $\Pi_{\sigma}^{(k)} \Pi^{\perp}=\Pi_{\sigma}^{(k)}$.

Symmetric Wold decomposition and approximate edge channels

－We then show（inductively）that
－These projections are mutually orthogonal

$$
\begin{equation*}
\Pi_{\sigma}^{(k)} \Pi_{\sigma^{\prime}}^{(I)}=\delta_{k, I} \delta_{\sigma, \sigma^{\prime}} \Pi_{\sigma}^{(k)} \tag{9}
\end{equation*}
$$

－For $k \leq 0$ we have $\Pi_{\sigma}^{(k)} \Pi=\Pi_{\sigma}^{(k)}$ and for $k \geq 1$ we have $\Pi_{\sigma}^{(k)} \Pi^{\perp}=\Pi_{\sigma}^{(k)}$.
－For each k ，the projections $\Pi_{ \pm}^{(k)}$ form a Kramers pair，i．e．

$$
\begin{equation*}
\tau \Pi_{+}^{(k)} \tau^{*}=\Pi_{-}^{(k)} \tag{10}
\end{equation*}
$$

Symmetric Wold decomposition and approximate edge channels

- We then show (inductively) that
- These projections are mutually orthogonal

$$
\begin{equation*}
\Pi_{\sigma}^{(k)} \Pi_{\sigma^{\prime}}^{(l)}=\delta_{k, l} \delta_{\sigma, \sigma^{\prime}} \Pi_{\sigma}^{(k)} \tag{9}
\end{equation*}
$$

- For $k \leq 0$ we have $\Pi_{\sigma}^{(k)} \Pi=\Pi_{\sigma}^{(k)}$ and for $k \geq 1$ we have $\Pi_{\sigma}^{(k)} \Pi^{\perp}=\Pi_{\sigma}^{(k)}$.
- For each k, the projections $\Pi_{ \pm}^{(k)}$ form a Kramers pair, i.e.

$$
\begin{equation*}
\tau \Pi_{+}^{(k)} \tau^{*}=\Pi_{-}^{(k)} \tag{10}
\end{equation*}
$$

- \mathcal{W} acts as a right shift on the subspace spanned by the $\Pi_{+}^{(k)}$ and as a left-shift on the subspace spanned by the $\Pi_{-}^{(k)}$, proving the theorem.

Symmetric Wold decomposition and approximate edge channels

- We then show (inductively) that
- These projections are mutually orthogonal

$$
\begin{equation*}
\Pi_{\sigma}^{(k)} \Pi_{\sigma^{\prime}}^{(l)}=\delta_{k, l} \delta_{\sigma, \sigma^{\prime}} \Pi_{\sigma}^{(k)} \tag{9}
\end{equation*}
$$

- For $k \leq 0$ we have $\Pi_{\sigma}^{(k)} \Pi=\Pi_{\sigma}^{(k)}$ and for $k \geq 1$ we have $\Pi_{\sigma}^{(k)} \Pi^{\perp}=\Pi_{\sigma}^{(k)}$.
- For each k, the projections $\Pi_{ \pm}^{(k)}$ form a Kramers pair, i.e.

$$
\begin{equation*}
\tau \Pi_{+}^{(k)} \tau^{*}=\Pi_{-}^{(k)} \tag{10}
\end{equation*}
$$

- \mathcal{W} acts as a right shift on the subspace spanned by the $\Pi_{+}^{(k)}$ and as a left-shift on the subspace spanned by the $\Pi_{-}^{(k)}$, proving the theorem.
- \mathcal{U} is close to \mathcal{W} far away from the cut. The spaces spanned by the $\left.\Pi_{+}^{(} k\right)$ and the $\Pi_{-}^{(k)}$ are therefore approximate edge channels for the edge unitary \mathcal{U}.

Thank You！

