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Overview

The quantum Hall effect

The need for edge currents and absolutely continuous edge
spectrum

Two theorems (arXiv:2101.08603 [math-ph], arXiv:2203.05474
[math-ph])

Sketch of proof



The bulk quantum Hall effect

Bulk Hall current j⃗B in response to an electric field E⃗ :

j⃗B = σ ẑ × E⃗ .

The Hall conductance σ of an electrical insulator is quantized:

σ ∈ e2

h
Z,

where e is the charge of an electron and h is Planck’s
constant.
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A finite Hall insulator in a background potential

The electrons in the Hall insulator are described by a
single-particle Hamiltonian H with a gap ∆ ⊂ R in its
spectrum.

Apply a small external potential V and fill all single particle
states of H + V up to the Fermi energy µ ∈ ∆.

A bulk Hall current j⃗B flows along the equipotentials.
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Necessity of Edge Currents

No net current can flow through C. The bulk current flowing
through C is∫

C
dn̂ · j⃗B = −σ

∫
C
dl⃗ · ∇V = σ(V (a)− V (b)).



Necessity of Edge Currents

Vanishing net current is achieved by positing the existence of
an edge current

jE (x) = σV (x) + c .

By what mechanism could such an edge current arise?
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Mechanism of the Edge Current

The potential leads to a
changed occupation of edge
modes.

The appropriate edge
current arises if the edge
modes carry a net current
along the edge.

If a spectral window I of
edge modes is occupied,
then the electrons carry an
edge current σ |I |.
An infinite edge supports
ballistic motion along a line.
This suggests absolutely
continuous spectrum (cf.
RAGE theorems).
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Theorem for Hall insulators

Let H be a single-particle local Hamiltonian on l2(Z2)⊗ Cn

with spectral gap ∆ ⊂ R, and let σ be the bulk Hall
conductance of H filled up to the gap ∆.

Concretely, for µ ∈ ∆ and a ∈ R2 \ Z2 let

P = χ≤µ(H), Ua = ei arg(X−a)

where X = (X1,X2) is the vector of position operators on
l2(Z2)⊗ Cn and put

σ =
e2

h

(
dim ker(U∗

aPUa−P −1)− dim ker(U∗
aPUa−P +1)

)
.

Let H̃ be the restriction of H to the half-space N× Z.

Theorem

If σ ̸= 0, then ∆ ⊂ σa.c.(H̃).
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Theorem for time-reversal invariant topological insulators

Let τ be an on-site fermionic time-reversal action on
l2(Z2)⊗ C2, i.e. τ is an anti-unitary operator such that
τ2 = −1 and [τ,Xi ⊗ 1] = 0 for i = 1, 2.

Assume now that H is time-reversal symmetric:

τHτ∗ = H. (1)

It follows that the restriction H̃ is also time-reversal
symmetric.

Although σ = 0, we can consider a Z2-valued index

ind2 := dim ker(U∗
aPUa − P − 1) mod 2. (2)

Theorem

If ind2 = 1, then ∆ ⊂ σa.c.(H̃).
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Sketch of proof

We consider the edge unitary

U := exp{2πif (H̃)}

where f : R → [0, 1] is a smooth function interpolating
between 0 and 1 such that f ′ is supported on ∆.

The unitary U acts non-trivially only on the edge states and
therefore acts as the identity far away from the edge.
Moreover, U is a smooth function of H̃ and therefore local.

In fact one can show that [U ,Π] is trace class with Π is
projection on N× N ⊂ N× Z. In particular, U∗ΠU − Π is
compact. (P. Elbau, G. Graf ’02)

We can associate to U a Z-valued edge index

indE (U) := dim ker(U∗ΠU −Π−1)− dim ker(U∗ΠU −Π+1)

which measures the amount of charge transported by U along
the edge of the Hall insulator.
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Sketch of proof

If H and therefore H̃ are time-reversal symmetric then
τUτ∗ = U∗. We can associate to quasi one-dimensional
unitaries with this symmetry constraint a Z2-valued index

indE2 (U) := dim ker(U∗ΠU − Π− 1) mod 2. (3)

In either case we have the bulk-boundary correspondence (J.
Shapiro et al. : arXiv:1908.00910)

σ = indE (4)

and, if there is time-reversal symmetry,

ind2 = indE2 . (5)

(See also (A.B., J. Schenker, J. Shapiro : arXiv:2110.07068)
for a more direct proof using explicit homotopies of Fredholm
operators.)
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Sketch of proof

We now want to show that a non-trivial edge index implies
a.c. spectrum for the edge unitary U .

In the quantum Hall case this follows from a result of Joachim
Asch, Olivier Bourget, Alain Joye (arXiv:1906.08181):

Theorem (J. Asch, O. Bourget, A. Joye)

If U is unitary and Π is a projection such that [U ,Π] is trace class
then indE is well defined and

U = (S indE ⊕W ) + T

where W has trivial index, S is a shift and T is trace-class.

This Theorem can be regarded as a sort of Wold
decomposition of 1D unitaries.
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Sketch of proof

For the time-reversal symmetric case, we provide an analogous
‘symmetric Wold decomposition’.

Theorem (C. Cedzich, A. B.)

If U is unitary, Π a projection such that [U ,Π] is trace class and
τUτ∗ = U∗ and τΠτ∗ = Π then the edge index indE2 is well
defined. Moreover, if indE2 = 1 is non-trivial then

U = (S ⊕ S∗ ⊕W ) + T (6)

where T is trace class.
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Sketch of proof

The shift has a.c. spectrum covering the whole unit circle and
a.c. spectrum is stable under trace-class perturbations, so

σa.c.(U) = U(1)

if the edge index is non-trivial.

Finally, by spectral mapping we pull the a.c. spectrum of U
back to H̃ to obtain

σa.c.(H̃) ⊃ ∆,

concluding the proof.
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Symmetric Wold decomposition and approximate edge
channels

Suppose the edge unitary U has non-trivial index indE2 (U) = 1.
Following (arXiv:1611.04439), one can construct a unitary W
which is a trace-class perturbation of U such that

WΠW∗ − Π = Π+ − Π− (7)

where Π+ and Π− are one-dimensional projections.

We then apply a Wold-like construction to Π+ and Π−. In
particular, we set

Π
(k)
+ := Ad

(k−1)
W (Π+), Π

(k)
− := AdkW∗(Π−). (8)
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Symmetric Wold decomposition and approximate edge
channels

We then show (inductively) that

These projections are mutually orthogonal

Π(k)
σ Π

(l)
σ′ = δk,l δσ,σ′Π(k)

σ . (9)

For k ≤ 0 we have Π
(k)
σ Π = Π

(k)
σ and for k ≥ 1 we have

Π
(k)
σ Π⊥ = Π

(k)
σ .

For each k, the projections Π
(k)
± form a Kramers pair, i.e.

τΠ
(k)
+ τ∗ = Π

(k)
− . (10)

W acts as a right shift on the subspace spanned by the Π
(k)
+

and as a left-shift on the subspace spanned by the Π
(k)
− ,

proving the theorem.

U is close to W far away from the cut. The spaces spanned

by the Π
(
+k) and the Π

(k)
− are therefore approximate edge

channels for the edge unitary U .
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