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Introduction
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The Bose gas: a Many-Body Quantum Problem

N bosonic particles in Λ = [−L/2, L/2]3

HN = −
N∑
i=1

∆i + κ

N∑
i<j

V (xi − xj)

acting on ψ ∈ L2
s (ΛN): symmetric tensor product

(
L2(Λ)⊗ · · · ⊗ L2(Λ)︸ ︷︷ ︸

N

)
sym

Bose-Einstein condensation

V = 0 [Bose, Einstein 1924]

The problem factorizes

ψ(x1, x2, . . . , xN) =
∏
i=1

ϕ0(xi )

V 6= 0: complicated linear
combination of elementary tensors
many-body correlations are crucial

BEC proved only for lattice systems:

[Dyson, Lieb, Simon 1978], [Kennedy,

Lieb, Shastry 1988]
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The Dilute Bose Gas

The dilute regime is the regime where ρa3 small.

ρ = N/|Λ| is the density of the gas, a is the scattering length of V

To define the scattering length, we consider the two-body problem

f

V [−∆ +
1

2
V ]f0 = 0

f0(x) = 1 for |x | → ∞

Outside the range of V , f is harmonic in the form:

f0(x) = 1−
a

|x |
a is the scattering length of V .
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What We Know
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The thermodynamic limit of the Bose gas

Thermodynamic limit:
N →∞, L→∞ with ρ = N/|Λ| fixed.

Λ

L

We define the ground state energy of HN

E(N, L) = inf
ψ∈L2

s (ΛN ), ||ψ||=1
〈ψ,HNψ〉.

The ground state energy per particle

e(ρ) = lim
N,L→∞
ρ=N/|Λ|

E(N, L)

N

Lee-Huang-Yang formula: for ρa3 small

e(ρ) = 4πρa

[
1 +

128

15
√
π

(ρa3)1/2 + o((ρa3)1/2)

]
[Yau, Yin 2009], [Fournais, Solovej 2020], [Basti, Cenatiempo, Schlein 2021]

Remark. Universality: no dependence on details of V
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The Gross-Pitaevskii limit of the Bose Gas

Gross-Pitaevskii limit:
N →∞, L = N with ρ = 1/N2.

(Simultaneous large volume and low density limit)

Λ

L=N

Rescaling lengths: fixed box Λ1 = [−1/2, 1/2]3

L=1

N−1

the Hamiltonian takes the form

HN = −
N∑
i=1

∆xi +
N∑
i<j

N2V
(
N(xi − xj)

)
acting on L2

s (ΛN).

Call
EN = inf

ψ∈L2
s (ΛN ),

‖ψ‖2=1

〈ψ,HNψ〉
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The Gross-Pitaevskii Limit, Periodic B.C.

Ground state energy: V ∈ L3(R3) positive, spherically symmetric,
compactly supported

EN = 4πa(N−1) + eΛa
2

−1

2

∑
p∈Λ∗

+

[
p2 + 8πa−

√
|p|4 + 16πap2 − (8πa)2

2p2

]
+O(N−1/4)

where Λ∗+ = 2πZ3\{0} and eΛ ' 10.0912.

The spectrum of HN − EN is given by∑
p∈Λ∗

+

np
√
|p|4 + 16πap2 +O(N−1/4)

with np ∈ N and np 6= 0 for finitely many p ∈ Λ∗+ only (np is the number of
excited states with momentum p).

[Boccato, Brennecke, Cenatiempo, Schlein 2019], [Hainzl, Schlein, Triay 2022]
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The Gross-Pitaevskii Limit, Periodic B.C.

Ground state vector: HNψN = ENψN

One-particle reduced density matrix (quantum marginal): γ
(1)
ψN

:= Tr2,...,N |ψN〉〈ψN |

Bose-Einstein condensation in the ground state ψN means that

lim
N→∞

〈ϕ0, γ
(1)
ψN
ϕ0〉 = 1 ϕ0 = 1

Optimal rate (bound for the number of excitations) 1− 〈ϕ0, γ
(1)
ψN
ϕ0〉 ≤ C

N

Approximation of eigenvectors
If ψN denotes a ground state vector of HN , and θ1, θ2 are the first two
eigenvalues of HN∥∥ψN − e iωU∗eB(η)eAeB(τ)Ω

∥∥2 ≤ C

θ2 − θ1
N−1/4

for a phase ω ∈ [0; 2π)

[Lieb, Seiringer 2002], [Boccato, C. Brennecke, S. Cenatiempo, B. Schlein 2020]
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Systems in R3 trapped by an External Potential

Hamiltonian acting on L2
s (R3N)

HN =
N∑
i=1

(
−∆xi + Vext(xi )

)
+

N∑
i<j

N2V (N(xi − xj))

Bose-Einstein condensation, ground state energy and excitation spectrum
obtained in [Lieb, Seiringer 2002],
[Nam, Napiórkowski, Ricaud, Triay 2020],
[Brennecke, Schlein, Schraven 2021,2022],
[Nam, Triay 2021]
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Main Result:
BEC with Neumann Boundary Conditions
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Motivation: Better control of Thermodynamic Limit

Difficulty in the thermodynamic limit: absence of an energy gap!

Partition the volume in cells of side-length ` and study

Hn,` = −
n∑

i=1

∆i + κ

n∑
i<j

`2V
(
`(xi − xj)

)
acting on L2

s (Λ1), with Λ1 = [−1/2, 1/2].

Λ
n1 n2 n3

L

`
Λ`

` to be chosen as a suitable function of ρ

control of boundary effects needed!

For lower bounds, impose Neumann boundary conditions on Λ1

E(N, L) ≥ 1

`2
inf

{nk}:
∑

k nk=N

∑
k

enk ,`

with
en,` = inf

ψ∈L2
s (Λ1), ||ψ||=1

〈ψ,Hn,`ψ〉.

(n is the particle number in the small box)
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Ground State Energy and BEC in the Neumann box

Theorem (B., Seiringer 2022)
Let V > 0 be compactly supported, spherically symmetric and bounded. Assume κ
small enough and n`−1 ≤ 1. Then∣∣∣en,` − 4πa

n2

`

∣∣∣ ≤ C
(n

`
+

n2

`2
ln(`)

)
for a constant C > 0.

Let ψn ∈ L2
s (Λn

1) be a normalized wave function, with

〈ψn,Hn,`ψn〉 ≤ en,` + ζ

for some ζ > 0. Then there exists a constant C > 0 such that

1− 〈ϕ0, γ
(1)
n ϕ0〉 ≤ C

( ζ
n

+
1

`

)
where ϕ0(x) = 1 for all x ∈ Λ1.

Corollary (Thermodynamic Limit)
Let V satisfy the same assumptions as above and κ small enough. Then there exists a
constant C > 0 such that

e(ρ) ≥ 4πaρ
(

1− C(ρa3)1/2 ln(ρ)
)
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Remarks.

For n = ` = N:
− Condensate depletion rate N−1 as for periodic boundary conditions

− Logarithmic behavior of the error bound for the ground state energy∣∣∣eN,N − 4πaN
∣∣∣ ≤ C

(
1 + ln(N)

)
.

Sharp and specific to the Neumann boundary conditions

κ small needed for properties of the two-body Neumann problem

Bound for e(ρ) is not optimal (optimal in [Fournais Solovej 2021],
different localization method, modified kinetic energy)

We take ` ' ρ−1/2; larger lengths ` allow for a better precision but require
a more precise study of Hn,`, with larger n/`

(with larger ` and periodic b.c.: [Adhikari, Brennecke, Schlein 2021],

[Fournais 2021], [Brennecke, Caporaletti, Schlein 2021])



15/16

Proof: Control of Neumann Boundary Effects

Many-body analysis: conjugate the Hamiltonian with unitary transformations

e−BUnHn,` U
∗
n e

B

U extracts the contribution of the factorized part of wave functions
U∗n Ω = ϕ⊗n

[Lewin, Nam, Serfaty, Solovej 2014]

eB = exp
[

1
2

∫
Λ1×Λ1

dxdy η(x , y) b∗x b
∗
y − h.c.

]
generalized Bogoliubov

transformation implements correlations
[Boccato, Brennecke, Cenatiempo, Schlein 2018]

With a suitable choice of η(x , y)

en,` ≤ 〈Ω, e−BU∗nHn,` Une
BΩ〉 ≤ Cn,` + Cκ

n

`

with Cn,` = 4πa n2

`

(
1 +O

(
a
`

ln(`/a)
))

Use the energy gap K =
∑

p∈Λ∗
1,+

p2a∗pap ≥ π2∑
p∈Λ∗

1,+
a∗pap = π2N+ for

proving the lower bound and condensation.
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Proof: Control of Neumann Boundary Effects

Neumann boundary conditions: choose η(x , y) ' −n(1− `3f (`x , `y)), f
minimizer of

F [g ] =

∫
Λ`×Λ`

dxdy
[
κV (x − y)|g(x , y)|2 + |∇xg(x , y)|2 + |∇yg(x , y)|2

]
g ∈ H1(Λ` × Λ`) with ‖g‖L2(Λ`×Λ`) = 1

Pointwise estimates of the minimizer
needed for the many-body analysis

six-dimensional problem, f not
explicitly known

method of image charges to express
Green functions

Remark. Very different from the trapped

Bose gas: there the problem naturally de-

couples in relative coordinates and center of

mass and

ηTrap(x , y) ' −n(1− f (x − y))ϕ2
0(x + y)
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