The Energy of the Interacting Bose Gas

Chiara Boccato
University of Milan

Quantissima in the Serenissima IV, August 22th 2022

InTRODUCTION

The Bose gas: a Many-Body Quantum Problem

 N bosonic particles in $\Lambda=[-L / 2, L / 2]^{3}$$$
H_{N}=-\sum_{i=1}^{N} \Delta_{i}+\kappa \sum_{i<j}^{N} V\left(x_{i}-x_{j}\right)
$$

acting on $\psi \in L_{s}^{2}\left(\Lambda^{N}\right)$: symmetric tensor product $(\underbrace{L^{2}(\Lambda) \otimes \cdots \otimes L^{2}(\Lambda)}_{N})_{\text {sym }}$

Bose-Einstein condensation

- $V=0$ [Bose, Einstein 1924]

The problem factorizes

$$
\psi\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\prod_{i=1} \varphi_{0}\left(x_{i}\right)
$$

- $V \neq 0$: complicated linear combination of elementary tensors many-body correlations are crucial

BEC proved only for lattice systems:
[Dyson, Lieb, Simon 1978], [Kennedy,
Lieb, Shastry 1988]

The Dilute Bose Gas

The dilute regime is the regime where ρa^{3} small.
$\rho=N /|\Lambda|$ is the density of the gas, \mathfrak{a} is the scattering length of V

To define the scattering length, we consider the two-body problem

$$
\begin{gathered}
{\left[-\Delta+\frac{1}{2} V\right] f_{0}=0} \\
f_{0}(x)=1 \quad \text { for } \quad|x| \rightarrow \infty
\end{gathered}
$$

Outside the range of V, f is harmonic in the form:

$$
f_{0}(x)=1-\frac{\mathfrak{a}}{|x|}
$$

\mathfrak{a} is the scattering length of V.

What We Know

The thermodynamic limit of the Bose gas

Thermodynamic limit:

$N \rightarrow \infty, L \rightarrow \infty$ with $\rho=N /|\Lambda|$ fixed .

We define the ground state energy of H_{N}

$$
E(N, L)=\inf _{\psi \in L_{s}^{2}\left(\Lambda^{N}\right),\|\psi\|=1}\left\langle\psi, H_{N} \psi\right\rangle
$$

The ground state energy per particle

$$
e(\rho)=\lim _{\substack{N, L \rightarrow \infty \\ \rho=N /|\Lambda|}} \frac{E(N, L)}{N}
$$

Lee-Huang-Yang formula: for $\rho \mathfrak{a}^{3}$ small

$$
e(\rho)=4 \pi \rho \mathfrak{a}\left[1+\frac{128}{15 \sqrt{\pi}}\left(\rho \mathfrak{a}^{3}\right)^{1 / 2}+o\left(\left(\rho \mathfrak{a}^{3}\right)^{1 / 2}\right)\right]
$$

[Yau, Yin 2009], [Fournais, Solovej 2020], [Basti, Cenatiempo, Schlein 2021]
Remark. Universality: no dependence on details of V

The Gross-Pitaevskil limit of the Bose Gas

Gross-Pitaevskii limit:

$N \rightarrow \infty, L=N$ with $\rho=1 / N^{2}$.
(Simultaneous large volume and low density limit)

Rescaling lengths: fixed box $\Lambda_{1}=[-1 / 2,1 / 2]^{3}$ the Hamiltonian takes the form

$$
\begin{aligned}
& H_{N}=-\sum_{i=1}^{N} \Delta_{x_{i}}+\sum_{i<j}^{N} N^{2} V\left(N\left(x_{i}-x_{j}\right)\right) \\
& \text { acting on } L_{s}^{2}\left(\Lambda^{N}\right) \text {. } \\
& \text { Call } \quad E_{N}=\inf _{\substack{\psi \in L_{s}^{2}\left(\Lambda^{N}\right),\|\psi\|_{2}=1}}\left\langle\psi, H_{N} \psi\right\rangle
\end{aligned}
$$

The Gross-Pitaevski Limit, Periodic B.C.

- Ground state energy: $V \in L^{3}\left(\mathbb{R}^{3}\right)$ positive, spherically symmetric, compactly supported
$E_{N}=4 \pi \mathfrak{a}(N-1)+e_{\wedge} \mathfrak{a}^{2}$

$$
-\frac{1}{2} \sum_{p \in \Lambda_{+}^{*}}\left[p^{2}+8 \pi \mathfrak{a}-\sqrt{|p|^{4}+16 \pi \mathfrak{a} p^{2}}-\frac{(8 \pi \mathfrak{a})^{2}}{2 p^{2}}\right]+\mathcal{O}\left(N^{-1 / 4}\right)
$$

where $\Lambda_{+}^{*}=2 \pi \mathbb{Z}^{3} \backslash\{0\}$ and $e_{\Lambda} \simeq 10.0912$.

- The spectrum of $H_{N}-E_{N}$ is given by

$$
\sum_{p \in \Lambda_{+}^{*}} n_{p} \sqrt{|p|^{4}+16 \pi a p^{2}}+\mathcal{O}\left(N^{-1 / 4}\right)
$$

with $n_{p} \in \mathbb{N}$ and $n_{p} \neq 0$ for finitely many $p \in \Lambda_{+}^{*}$ only (n_{p} is the number of excited states with momentum p).
[Boccato, Brennecke, Cenatiempo, Schlein 2019], [Hainzl, Schlein, Triay 2022]

The Gross-Pitaevski Limit, Periodic B.C.

Ground state vector: $H_{N} \psi_{N}=E_{N} \psi_{N}$
One-particle reduced density matrix (quantum marginal): $\gamma_{\psi_{N}}^{(1)}:=\operatorname{Tr}_{2, \ldots, N}\left|\psi_{N}\right\rangle\left\langle\psi_{N}\right|$

- Bose-Einstein condensation in the ground state ψ_{N} means that

$$
\lim _{N \rightarrow \infty}\left\langle\varphi_{0}, \gamma_{\psi_{N}}^{(1)} \varphi_{0}\right\rangle=1 \quad \varphi_{0}=1
$$

Optimal rate (bound for the number of excitations) $1-\left\langle\varphi_{0}, \gamma_{\psi_{N}}^{(1)} \varphi_{0}\right\rangle \leq \frac{C}{N}$

- Approximation of eigenvectors

If ψ_{N} denotes a ground state vector of H_{N}, and θ_{1}, θ_{2} are the first two eigenvalues of H_{N}

$$
\left\|\psi_{N}-e^{i \omega} U^{*} e^{B(\eta)} e^{A} e^{B(\tau)} \Omega\right\|^{2} \leq \frac{C}{\theta_{2}-\theta_{1}} N^{-1 / 4}
$$

for a phase $\omega \in[0 ; 2 \pi)$
[Lieb, Seiringer 2002], [Boccato, C. Brennecke, S. Cenatiempo, B. Schlein 2020]

Systems in \mathbb{R}^{3} trapped by an External Potential

Hamiltonian acting on $L_{s}^{2}\left(\mathbb{R}^{3 N}\right)$

$$
H_{N}=\sum_{i=1}^{N}\left(-\Delta_{x_{i}}+V_{\text {ext }}\left(x_{i}\right)\right)+\sum_{i<j}^{N} N^{2} V\left(N\left(x_{i}-x_{j}\right)\right)
$$

Bose-Einstein condensation, ground state energy and excitation spectrum obtained in [Lieb, Seiringer 2002], [Nam, Napiórkowski, Ricaud, Triay 2020], [Brennecke, Schlein, Schraven 2021,2022], [Nam, Triay 2021]

Main Result:
 BEC with Neumann Boundary Conditions

Motivation: Better control of Thermodynamic Limit

Difficulty in the thermodynamic limit: absence of an energy gap!
Partition the volume in cells of side-length ℓ and study
$H_{n, \ell}=-\sum_{i=1}^{n} \Delta_{i}+\kappa \sum_{i<j}^{n} \ell^{2} V\left(\ell\left(x_{i}-x_{j}\right)\right)$
acting on $L_{s}^{2}\left(\Lambda_{1}\right)$, with $\Lambda_{1}=[-1 / 2,1 / 2]$.

- ℓ to be chosen as a suitable function of ρ
- control of boundary effects needed!

For lower bounds, impose Neumann boundary conditions on Λ_{1}

$$
E(N, L) \geq \frac{1}{\ell^{2}} \inf _{\left\{n_{k}\right\}: \sum_{k} n_{k}=N} \sum_{k} e_{n_{k}, \ell}
$$

with

$$
e_{n, \ell}=\inf _{\psi \in L_{s}^{2}\left(\Lambda_{1}\right),\|\psi\|=1}\left\langle\psi, H_{n, \ell} \psi\right\rangle
$$

(n is the particle number in the small box)

Ground State Energy and BEC in the Neumann box

Theorem (B., Seiringer 2022)

Let $V>0$ be compactly supported, spherically symmetric and bounded. Assume κ small enough and $n \ell^{-1} \leq 1$. Then

$$
\left|e_{n, \ell}-4 \pi \mathfrak{a} \frac{n^{2}}{\ell}\right| \leq C\left(\frac{n}{\ell}+\frac{n^{2}}{\ell^{2}} \ln (\ell)\right)
$$

for a constant $C>0$.
Let $\psi_{n} \in L_{s}^{2}\left(\Lambda_{1}^{n}\right)$ be a normalized wave function, with

$$
\left\langle\psi_{n}, H_{n, \ell} \psi_{n}\right\rangle \leq e_{n, \ell}+\zeta
$$

for some $\zeta>0$. Then there exists a constant $C>0$ such that

$$
1-\left\langle\varphi_{0}, \gamma_{n}^{(1)} \varphi_{0}\right\rangle \leq C\left(\frac{\zeta}{n}+\frac{1}{\ell}\right)
$$

where $\varphi_{0}(x)=1$ for all $x \in \Lambda_{1}$.

Corollary (Thermodynamic Limit)

Let V satisfy the same assumptions as above and κ small enough. Then there exists a constant $C>0$ such that

$$
e(\rho) \geq 4 \pi \mathfrak{a} \rho\left(1-C\left(\rho \mathfrak{a}^{3}\right)^{1 / 2} \ln (\rho)\right)
$$

Remarks.

- For $n=\ell=N$:
- Condensate depletion rate N^{-1} as for periodic boundary conditions
- Logarithmic behavior of the error bound for the ground state energy

$$
\left|e_{N, N}-4 \pi \mathfrak{a} N\right| \leq C(1+\ln (N))
$$

Sharp and specific to the Neumann boundary conditions
■ κ small needed for properties of the two-body Neumann problem

- Bound for $e(\rho)$ is not optimal (optimal in [Fournais Solovej 2021], different localization method, modified kinetic energy)
- We take $\ell \simeq \rho^{-1 / 2}$; larger lengths ℓ allow for a better precision but require a more precise study of $H_{n, \ell}$, with larger n / ℓ (with larger ℓ and periodic b.c.: [Adhikari, Brennecke, Schlein 2021], [Fournais 2021], [Brennecke, Caporaletti, Schlein 2021])

Proof: Control of Neumann Boundary Effects

Many-body analysis: conjugate the Hamiltonian with unitary transformations

$$
e^{-B} U_{n} H_{n, \ell} U_{n}^{*} e^{B}
$$

- \mathcal{U} extracts the contribution of the factorized part of wave functions $U_{n}^{*} \Omega=\varphi^{\otimes n}$
[Lewin, Nam, Serfaty, Solovej 2014]
- $e^{B}=\exp \left[\frac{1}{2} \int_{\Lambda_{1} \times \Lambda_{1}} d x d y \eta(x, y) b_{x}^{*} b_{y}^{*}-\right.$ h.c. $]$ generalized Bogoliubov transformation implements correlations
[Boccato, Brennecke, Cenatiempo, Schlein 2018]

With a suitable choice of $\eta(x, y)$

$$
e_{n, \ell} \leq\left\langle\Omega, e^{-B} U_{n}^{*} H_{n, \ell} U_{n} e^{B} \Omega\right\rangle \leq C_{n, \ell}+C \kappa \frac{n}{\ell}
$$

with $C_{n, \ell}=4 \pi \mathfrak{a} \frac{n^{2}}{\ell}\left(1+\mathcal{O}\left(\frac{\mathfrak{a}}{\ell} \ln (\ell / \mathfrak{a})\right)\right)$
Use the energy gap $\mathcal{K}=\sum_{p \in \Lambda_{1,+}^{*}} p^{2} a_{p}^{*} a_{p} \geq \pi^{2} \sum_{p \in \Lambda_{1,+}^{*}} a_{p}^{*} a_{p}=\pi^{2} \mathcal{N}_{+}$for proving the lower bound and condensation.

Proof: Control of Neumann Boundary Effects

Neumann boundary conditions: choose $\eta(x, y) \simeq-n\left(1-\ell^{3} f(\ell x, \ell y)\right), f$ minimizer of

$$
F[g]=\int_{\Lambda_{\ell} \times \Lambda_{\ell}} d x d y\left[\kappa V(x-y)|g(x, y)|^{2}+\left|\nabla_{x} g(x, y)\right|^{2}+\left|\nabla_{y} g(x, y)\right|^{2}\right]
$$

$g \in H^{1}\left(\Lambda_{\ell} \times \Lambda_{\ell}\right)$ with $\|g\|_{L^{2}\left(\Lambda_{\ell} \times \Lambda_{\ell}\right)}=1$

Proof: Control of Neumann Boundary Effects

Neumann boundary conditions: choose $\eta(x, y) \simeq-n\left(1-\ell^{3} f(\ell x, \ell y)\right), f$ minimizer of

$$
F[g]=\int_{\Lambda_{\ell} \times \Lambda_{\ell}} d x d y\left[\kappa V(x-y)|g(x, y)|^{2}+\left|\nabla_{x} g(x, y)\right|^{2}+\left|\nabla_{y} g(x, y)\right|^{2}\right]
$$

$g \in H^{1}\left(\Lambda_{\ell} \times \Lambda_{\ell}\right)$ with $\|g\|_{L^{2}\left(\Lambda_{\ell} \times \Lambda_{\ell}\right)}=1$
Pointwise estimates of the minimizer needed for the many-body analysis

- six-dimensional problem, f not explicitly known
- method of image charges to express Green functions

Remark. Very different from the trapped Bose gas: there the problem naturally decouples in relative coordinates and center of mass and
$\eta^{\text {Trap }}(x, y) \simeq-n(1-f(x-y)) \varphi_{0}^{2}(x+y)$

$$
\begin{aligned}
& (-\Delta+\varepsilon) G(x, y)=\delta_{x}(y) \\
& G(x, y)=\sigma_{\mathbb{R}^{3}(x-y)+} \sum_{m \in \mathbb{Z}^{6}\{\{0\}} \sigma_{\mathbb{R}^{3}}\left(x-y_{n}\right)
\end{aligned}
$$

