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THE BOSE GAS: A MANY-BODY QUANTUM PROBLEM
N bosonic particles in A = [-L/2, L/2]?

N N
Hy = —ZA;+KZ V(X,' —Xj)
i=1 i<j

acting on ¢ € L2(AV): symmetric tensor product (L2(/\) ®® L2(/\))

sym

N

BOSE-EINSTEIN CONDENSATION

m V =0 [Bose, Einstein 1924]
The problem factorizes

1/1(X1»X27 s 7XN) = HSOO(X")
i=1

m V # 0: complicated linear
combination of elementary tensors
many-body correlations are crucial

BEC proved only for lattice systems:
[Dyson, Lieb, Simon 1978], [Kennedy,
Lieb, Shastry 1988]
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THE DILUTE BOSE GAS

The dilute regime is the regime where pa’® small.

p = N/|A] is the density of the gas, a is the scattering length of V

To define the scattering length, we consider the two-body problem

1
% [-A+ - VIfh=0

fo(x) =1 for |x|] = oo

Outside the range of V, f is harmonic in the form:
fox) =1
Ix|

a is the scattering length of V.
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WHAT WE KNOW
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THE THERMODYNAMIC LIMIT OF THE BOSE GAS

Thermodynamic limit:
N — oo, L — oo with p = N/|A| fixed.

We define the ground state energy of Hy

E(N, L) = inf b, Hyth).
D= iz gt )

The ground state energy per particle

. E(N,L)
= |
)= m_—n
p=N/|A|

LEE-HUANG-YANG FORMULA: for pa® small

)%+ o((pa)!'?)

e(p) = 4mpa |1+ 15f(pa

[Yau, Yin 2009], [Fournais, Solovej 2020], [Basti, Cenatiempo, Schlein 2021]

Remark. Universality: no dependence on details of V
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THE GROSS-PITAEVSKII LIMIT OF THE BOSE GAS

Gross-Pitaevskii limit:
N — oo, L = N with p = 1/N°.

(Simultaneous large volume and low density limit)

Rescaling lengths: fixed box A; = [-1/2,1/2]®

the Hamiltonian takes the form

ZAX,+ZN2

i<j
N1 @ acting on L2(AM).
. Call
En = inf
_ ' pelZ(\Y),
L=1 lFelo=1

L=N
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THE GrOSss-PiraEvskil Limit, PERIODIC B.C.

m Ground state energy: V € L3(]R3) positive, spherically symmetric,
compactly supported

Eny = 47TC1(N71) —+ e/\a2

2
Lf +oma— [+ 16map? - 79S| 1 ot/

1
2
pCAT

where A% = 27Z*\{0} and e ~ 10.0912.

m The spectrum of Hy — Ey is given by

> np/Ipl* + 16map? + O(N~V*)

pENT

with n, € N and n, # 0 for finitely many p € A} only (n, is the number of
excited states with momentum p).

[Boccato, Brennecke, Cenatiempo, Schlein 2019], [Hainzl, Schlein, Triay 2022]
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THE GrOSss-PiraEvskil Limit, PERIODIC B.C.

Ground state vector: Hyyy = Enyyn
One-particle reduced density matrix (quantum marginal): 71(;,3/ =Ty, n|Yw) (Un|
m Bose-Einstein condensation in the ground state ¥y means that

; 1) — _
Jim (po, 7y, p0) =1 po=1
Optimal rate (bound for the number of excitations) 1 — (cpo,'ygl\)lcpo) <<

m Approximation of eigenvectors
If ¢y denotes a ground state vector of Hy, and 01,60, are the first two

eigenvalues of Hy

”wN_ein*eB(n)eAeB(T)QH2 < ; C LA

> — 01
for a phase w € [0; 27)

[Lieb, Seiringer 2002], [Boccato, C. Brennecke, S. Cenatiempo, B. Schlein 2020]
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SYSTEMS IN R3® TRAPPED BY AN EXTERNAL POTENTIAL

Hamiltonian acting on L2(R3")

Hy = Z (= Dy + Verr(x)) + Z N?V(N(x = x;))

Bose-Einstein condensation, ground state energy and excitation spectrum
obtained in [Lieb, Seiringer 2002],

[Nam, Napiérkowski, Ricaud, Triay 2020],

[Brennecke, Schlein, Schraven 2021,2022],

[Nam, Triay 2021]
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MAIN RESULT:
BEC wiTH NEUMANN BOUNDARY CONDITIONS
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MOTIVATION: BETTER CONTROL OF THERMODYNAMIC LIMIT
Difficulty in the thermodynamic limit: absence of an energy gap!

Partition the volume in cells of side-length ¢ and study

A T
Hne=— ZA —|—/€Z€Vﬁ(x,—xj)) &
i<j - L
acting on L2(Aq), with Ay = [~1/2,1/2]. ’ .

m / to be chosen as a suitable function of p

m control of boundary effects needed!

For lower bounds, impose Neumann boundary conditions on A;

1
E(N,L > e
(N, 1) i e NZ ot

with

€ne = inf (¥, Hn,et)).
YELZ(M), [19]l=1

(n is the particle number in the small box)
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GROUND STATE ENERGY AND BEC IN THE NEUMANN BOX

THEOREM (B., SEIRINGER 2022)

Let V > 0 be compactly supported, spherically symmetric and bounded. Assume
small enough and n¢=1 < 1. Then

ent — 47ran7f’ < C(% n Zé In(0))

for a constant C > 0.

Let v, € L2(AD) be a normalized wave function, with

<¢n, Hn,Ewn> < €n,e + C

for some ( > 0. Then there exists a constant C > 0 such that

_ o ¢, 1
1 — (0, 7n wo)SC(nnLe)

where po(x) =1 for all x € A;.

COROLLARY (THERMODYNAMIC LIMIT)

Let V satisfy the same assumptions as above and k small enough. Then there exists a
constant C > 0 such that

e(p) > 4map(1 - C(pa*)"/2In(p))
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Remarks.

m Forn=/¢=N:
— Condensate depletion rate N~! as for periodic boundary conditions

— Logarithmic behavior of the error bound for the ground state energy
enn — 47ruN’ < C(1 + In(N)).
Sharp and specific to the Neumann boundary conditions
m x small needed for properties of the two-body Neumann problem

m Bound for e(p) is not optimal (optimal in [Fournais Solovej 2021],
different localization method, modified kinetic energy)

m We take ¢ ~ p~/?; larger lengths ¢ allow for a better precision but require
a more precise study of H, ¢, with larger n/¢
(with larger £ and periodic b.c.: [Adhikari, Brennecke, Schlein 2021],
[Fournais 2021], [Brennecke, Caporaletti, Schlein 2021])
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PROOF: CONTROL OF NEUMANN BOUNDARY EFFECTS
Many-body analysis: conjugate the Hamiltonian with unitary transformations

-8B B
e "UsH,o Use

m U{ extracts the contribution of the factorized part of wave functions
UrQ = o®"
[Lewin, Nam, Serfaty, Solovej 2014]

mef =exp [% fAlel dxdy n(x, y) bi b} — h.c.] generalized Bogoliubov
transformation implements correlations
[Boccato, Brennecke, Cenatiempo, Schlein 2018]

With a suitable choice of n(x, y)

ene < (Q, e BU Hyy UnePQ) < Cop + cfg%

with G, = 4ma’” (1 +o(s |n(e/a)))

2 _x 2 * 2
Use the energy gap K = Zpe/\f# pfapap > ZPE/\T,Jr apap, = m- Ny for
proving the lower bound and condensation.
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Proor: CONTROL OF NEUMANN BOUNDARY EFFECTS

Neumann boundary conditions: choose 7(x,y) ~ —n(1 — £3f(¢x, Ly)), f
minimizer of

Flel= |y [mVix = yla(xy) + [Veglx ) + 19

g € H'(Av x A¢) with llgllza, xn,y =1
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Proor: CONTROL OF NEUMANN BOUNDARY EFFECTS

Neumann boundary conditions: choose 7(x,y) ~ —n(1 — £3f(¢x, Ly)), f
minimizer of

Flel = [y [xV(x = Dlgbn)l + [V-g(e )P + 19,80 )]
Ag XNy
g € H'(Av x A¢) with llgllza, xn,y =1

Pointwise estimates of the minimizer
needed for the many-body analysis

m six-dimensional problem, f not M
explicitly known R | de | e
m method of image charges to express N o &
Green functions
Remark. Very different from the trapped
Bose gas: there the problem naturally de-
couples in relative coordinates and center of
mass and DY oy = S
T ~ 2
n rap(ny)_ —n(l—f(x—y))gpo(x—i-y) G{x,y\—; leéu_a‘4 E GTR‘(X’J“]
m€Z8\o§
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