

On the spectral gap in mean field spin systems

Chokri Manai

Work in progress with Simone Warzel

Venice 2022 - Quantissima in the Serenissima IV, August 26, 2022

I. Thermodynamics of mean field models

Setup: N particles of spin s, Hilbert space $\mathcal{H}_N = (\mathbb{C}^{2s+1})^{\otimes N}$

fixed pair interaction $A=A^*\in \mathcal{B}((\mathbb{C}^{2s+1})^{\otimes 2})$

Mean field Hamiltonian: $H_N = \sum_{m \neq n} A(m, n)$

More general: *p*-interactions:

$$H = \sum_{n} A^{(1)}(n) + \sum_{m \neq n} A^{(2)}(m,n) + \sum_{k \neq m \neq n} A^{(3)}(k,m,n) + \cdots$$

with exchange symmetric p-spin interactions $A^{(p)}$

Pressure of mean-field models

pressure:
$$p_N(\beta) := \frac{1}{N} \ln Z_N(\beta) := \frac{1}{N} \ln \operatorname{Tr} e^{-\beta H}$$

Approach based on quantum de Finetti theorem:

infinite volume thermal state $\omega_{\beta}=\int d\mu_{\beta}(\rho)\,\omega_{\rho}$ with $\omega_{\rho}=\rho^{\otimes\infty}$; ρ one particle density matrix

Fannes-Spohn-Verbeurre'80
$$p(\beta) = \lim_{N \to \infty} p_N(\beta) = \sup_{\varrho} \left[I(\varrho) - \beta \left(\operatorname{Tr} A^{(1)} \varrho + \operatorname{Tr} A^{(2)} \varrho \otimes \varrho + \dots \right) \right]$$
with entropy $I(\varrho) = -\operatorname{Tr} \varrho \ln \varrho$.

Maximizers satisfy self-consistent eqn.: $\varrho = e^{-\beta H_{\varrho}}/Z_{\varrho}(\beta)$ $H_{\varrho} = A^{(1)} + \operatorname{Tr}_2 A^{(2)} \varrho + \dots$

Example: Exchange Hamiltonian $T(\psi \otimes \phi) := \phi \otimes \psi$ on \mathbb{C}^d

$$\operatorname{Tr} T\varrho \otimes \varrho = \sum_{i,j} \lambda_i \lambda_j \operatorname{Tr} T |u_i\rangle \langle u_i| \otimes |u_j\rangle \langle u_j| = \sum_i \lambda_i^2$$

$$\Rightarrow p(\beta) = \sup_{\lambda \in \Lambda^d} \sum_i -\beta \lambda_i^2 - \lambda_i \ln \lambda_i$$

Björnberg 15, ...

Mean-field spin systems

From now on $\mathbf{s} = \mathbf{1/2}$: model may be rewritten as

$$H = NP\left(\frac{2}{N}S\right)$$
 on $\bigotimes_{n=1}^{N}\mathbb{C}^2$

with a multivariate polynomial P and $S = \sum_{n=1}^{N} S(n)$ the vector of **total spin**.

Prototype:
$$H = -\frac{2^p}{N^{p-1}} \left(\alpha S_z^p + \beta S_y^p \right) - 2\gamma S_x$$
 $\alpha = 1, \beta = 0$: Quantum *p*-Curie-Weiss

Why interesting? Mean-field models ('Kac potentials') in effective descriptions for:

shape transitions of nuclei interacting Bosons in a double well quantum annealing

- Lipkin-Meshkov-Glick 65, . . .
- Turbiner '88, ... Cirac-Lewenstein-Mølmer-Zoller '98, ...
 - Bapst-Semerjian '12, ...

- Equilibrium statistical mechanics and phase transitions
- Spectral gap away from quantum critical points

..., Fannes-Spohn-Verbeurre '80, ..., Ribeiro-Vidal-Mosseri '08, ... Cayes-Crawford-Ioffe-Levit '08, ..., Björnberg-Fröhlich-Ueltschi '20, ...

Bloch coherent states

Spin *J* operators:
$$[S_x, S_y] = iS_z$$
 (and cyclically) $S_{\pm} = S_x \pm iS_y$ on Hilbert space \mathbb{C}^{2J+1}

Bloch coherent state:
$$\Omega = (\theta, \varphi), \quad 0 \le \theta \le \pi, \ 0 \le \varphi \le 2\pi$$

$$ig|\Omega
angle:= \exp\left(rac{ heta}{2}\left(m{e}^{iarphi}m{\mathcal{S}}_{\!-} - m{e}^{-iarphi}m{\mathcal{S}}_{\!+}
ight)
ight)\,ig|m{J}
angle$$

Properties:

Concentration:
$$|\langle \Omega' | \Omega \rangle|^2 = \left[\cos(\Delta(\Omega', \Omega)/2) \right]^{4J}$$
 Overcompleteness: $\frac{2J+1}{4\pi} \int d\Omega |\Omega\rangle\langle\Omega| = 1$

Symbols of a linear operator
$$G$$
 on \mathbb{C}^{2J+1}

Lower:
$$g(\Omega) := \langle \Omega | G | \Omega \rangle$$

Upper:
$$G = \frac{2J+1}{4\pi} \int d\Omega \ G(\Omega) \ |\Omega\rangle\langle\Omega|$$

Bloch coherent states

Spin *J* operators:
$$[S_x, S_y] = iS_z$$
 (and cyclically) $S_{\pm} = S_x \pm iS_y$ on Hilbert space \mathbb{C}^{2J+1}

$$S_{\pm} = S_{x} \pm iS_{y}$$

Bloch coherent state:
$$\Omega = (\theta, \varphi), \quad 0 \le \theta \le \pi, \ 0 \le \varphi \le 2\pi$$

$$ig|\Omega
angle:=\exp\left(rac{ heta}{2}\left(m{e}^{iarphi}m{\mathcal{S}}_{\!-}-m{e}^{-iarphi}m{\mathcal{S}}_{\!+}
ight)
ight)\,\,ig|m{J}
angle$$

Symbols of a linear operator G on \mathbb{C}^{2J+1}

Lower:

$$g(\Omega) := \langle \Omega ig| G ig| \Omega
angle$$

Upper:
$$G = \frac{2J+1}{4\pi} \int d\Omega \ G(\Omega) \ |\Omega\rangle\langle\Omega|$$

Operator	$g(\Omega), (2.15)$	$G(\Omega)$, (2.13)
S_z	$J\cos heta$	$(J+1)\cos\theta$
$S_{\mathbf{x}}$	$J\sin\theta\cos\varphi$	$(J+1)\sin\theta\cos\varphi$
S_{v}	$J\sin\theta\sin\varphi$	$(J+1)\sin\theta\sin\varphi$
S_z^2	$J(J-\tfrac{1}{2})(\cos\theta)^2+J/2$	$(J+1)(J+3/2)(\cos\theta)^2 - \frac{1}{2}(J+1)$
S_{y} S_{z}^{2} S_{x}^{2}	$J(J-\frac{1}{2})(\sin\theta\cos\varphi)^2+J/2$	$(J+1)(J+3/2)(\sin\theta\cos\varphi)^2 - \frac{1}{2}(J+1)$
S_y^2	$J(J-\tfrac{1}{2})(\sin\theta\cos\varphi)^2+J/2$	$(J+1)(J+3/2)(\sin\theta\cos\varphi)^2 - \frac{1}{2}(J+1)$

Mean-field models

H is block diagonal with respect to the decomposition of the Hilbert space according to total spin:

$$\bigotimes_{n=1}^{N} \mathbb{C}^{2} \equiv \bigoplus_{J=\frac{N}{2}-\lceil\frac{N}{2}\rceil}^{N/2} \bigoplus_{\alpha=1}^{M_{J}} \mathbb{C}^{2J+1}$$

Basic observation / **assumption**: For some smooth $h: B_1(\mathbb{R}^3) \to \mathbb{R}$ and some $C \in [0, \infty)$:

$$\sup_{N}\sup_{J,\alpha}\left\|P_{J}^{(\alpha)}HP_{J}^{(\alpha)}-\frac{2J+1}{4\pi}\int d\Omega\;N\;h\big(\tfrac{2J}{N}\;\mathbf{e}(\Omega)\big)\left|\Omega,J\right>\langle\Omega,J|\right\|\leq C$$

For polynomial Hamiltonian $H = NP(\frac{2}{N}S)$: P = h

Example: p-Curie-Weiss: $h_p(r\mathbf{e}(\Omega)) = -r^p \cos^p \theta - \gamma r \sin \theta \cos \varphi$, $r \in [0, 1]$, $\mathbf{e}(\Omega) = \begin{pmatrix} \sin \theta \cos \varphi \\ \sin \theta \sin \varphi \\ \cos \theta \end{pmatrix}$

Mean-field models

H is block diagonal with respect to the decomposition of the Hilbert space according to total spin:

$$\bigotimes_{n=1}^{N} \mathbb{C}^{2} \equiv \bigoplus_{J=\frac{N}{2}-\lceil\frac{N}{2}\rceil}^{N/2} \bigoplus_{\alpha=1}^{M_{J}} \mathbb{C}^{2J+1}$$

Basic observation / **assumption**: For some smooth $h: B_1(\mathbb{R}^3) \to \mathbb{R}$ and some $C \in [0, \infty)$:

$$\sup_{N} \sup_{J,\alpha} \left\| P_{J}^{(\alpha)} H P_{J}^{(\alpha)} - \frac{2J+1}{4\pi} \int d\Omega \ N \ h \big(\tfrac{2J}{N} \ \mathbf{e}(\Omega) \big) \ \big| \Omega, J \big\rangle \langle \Omega, J \big| \right\| \leq C$$

Free energy becomes semiclassical in the limit $J \to \infty$

Semiclassical estimates on the quantum partition function of Hamiltonian *G*

Berezin, Lieb '73

$$rac{2J+1}{4\pi}\int d\Omega\,e^{-eta g(\Omega)} \leq {
m Tr}\,e^{-eta G} \leq rac{2J+1}{4\pi}\int d\Omega\,e^{-eta G(\Omega)}$$

Mean-field models

H is block diagonal with respect to the decomposition of the Hilbert space according to total spin:

$$\bigotimes_{n=1}^{N} \mathbb{C}^{2} \equiv \bigoplus_{J=\frac{N}{2}-\left\lceil \frac{N}{2}\right\rceil}^{N/2} \bigoplus_{\alpha=1}^{M_{J}} \mathbb{C}^{2J+1}$$

Basic observation / **assumption**: For some smooth $h: B_1(\mathbb{R}^3) \to \mathbb{R}$ and some $C \in [0, \infty)$:

$$\sup_{N} \sup_{J,\alpha} \left\| P_J^{(\alpha)} H P_J^{(\alpha)} - \frac{2J+1}{4\pi} \int d\Omega \ N \ h \left(\frac{2J}{N} \ \mathbf{e}(\Omega) \right) \left| \Omega, J \right\rangle \left\langle \Omega, J \right| \right\| \leq C$$

Consequence of Berezin-Lieb bounds for $N \to \infty$:

$$Z_N(eta) = \operatorname{Tr} e^{-eta H} = \sum_J M_J \operatorname{Tr} P_J^{(lpha)} e^{-eta P_J^{(lpha)} H P_J^{(lpha)}} \simeq \sum_J M_J (2J+1) \int rac{d\Omega}{4\pi} \, e^{-eta N h \left(rac{2J}{N} \mathbf{e}(\Omega)
ight)}$$

$$p(\beta) = \lim_{N \to \infty} N^{-1} \ln Z_N(\beta) = \max_{r \in [0,1]} \left[I(r) - \beta \min_{\Omega} h(r\mathbf{e}(\Omega)) \right]$$
 with binary entropy $I(r) = -\frac{1+r}{2} \ln \frac{1+r}{2} - \frac{1-r}{2} \ln \frac{1-r}{2}$.

II. Ground-state and spectral gap

Motivating questions: Finite-size corrections to pressure?

Ground-state & **spectral gap** from semiclassical info $h \in C^2$ for models of form:

Basic assumption: For some smooth $h: B_1(\mathbb{R}^3) \to \mathbb{R}$ and some $C \in [0, \infty)$:

$$\sup_{N}\sup_{J,\alpha}\left\|P_{J}^{(\alpha)}HP_{J}^{(\alpha)}-\frac{2J+1}{4\pi}\int d\Omega\;N\;h\big(\tfrac{2J}{N}\;\mathbf{e}(\Omega)\big)\left|\Omega,J\right>\langle\Omega,J|\right\|\leq C$$

Physicist's approach ???

$$gap H \approx \frac{1}{Density of states at ground-state}$$

Lipkin-Meshkov-Glick model p=2 with $\alpha=\frac{5}{2}, \beta=\frac{3}{2}, \gamma=-1$ semiclassical $h(\mathbf{m})$ at $|\mathbf{m}|=1$ in stereographic coordinates

Ribeiro-Vidal-Mosseri '08, ..., Bapst-Semerjian '12, ...

Set-up

Minimizers: $\mathcal{M} = \{ \operatorname{argmin} h(\mathbf{m}) \in B_1(\mathbb{R}^3) \}$

Assumption: $\mathcal{M} = \{\mathbf{m}_0\}$

- $\nabla h(\mathbf{m}_0) \parallel \mathbf{m}_0$ if $|\mathbf{m}_0| = 1$ or $\nabla h(\mathbf{m}_0) = 0$ else.
- Subspace at minimizing direction:

$$\mathcal{H}_J^K(\mathbf{m}_0) = \operatorname{span} \left\{ \psi \in \mathbb{C}^{2J+1} \mid \mathbf{m}_0 \cdot \mathbf{S} \; \psi = |\mathbf{m}_0| \; (J-k)\psi \; \text{for some} \; k \in \{0, 1, \dots, K\} \right\}$$

Quadratic approximation of h at $\mathbf{m}_0 \in B_1(\mathbb{R}^3)$ leads to:

$$Q_J(\mathbf{m}_0) := c + N \ h(\mathbf{m}_0) + 2 \left(\mathbf{S} - rac{N}{2} \mathbf{m}_0
ight) \cdot
abla h(\mathbf{m}_0) + rac{2}{N} \mathbf{S} \cdot D_{\perp}(\mathbf{m}_0) \mathbf{S} \quad ext{on } \mathbb{C}^{2J+1}$$

with $D_{\perp}(\mathbf{m}_0)$ the Hessian of h projected on the directions perpendicular to \mathbf{m}_0 .

Assumption on quadratic approximability at minimum $|\mathbf{m}_0| = 1$:

Let $P_{J,N}^{(\alpha)}$ be the projection onto $\mathcal{H}_J^{N^{1/6}}(\mathbf{m}_0)\subset \mathbb{C}^{2J+1}$. Then for all $J\geq \frac{N}{2}-N^{1/6}$:

$$\left\| (H - Q_J(\mathbf{m}_0)) P_{J,N}^{(\alpha)} \right\| = o(1)$$

• Trivially satisfied for $H = N \operatorname{Pol}_2\left(\frac{2}{N} \mathbf{S}\right)$.

Spectral gap in case $|\mathbf{m}_0| = 1$

Theorem (M.-Warzel '22)

Let $\omega_{1/2}$ are the eigenvalues of $D_{\perp}(\mathbf{m}_0)$ at $|\mathbf{m}_0|=1$. Then

gap
$$H = 2 \min\{\|\nabla h(\mathbf{m}_0)\|, \sqrt{(\|\nabla h(\mathbf{m}_0)\| + \omega_1)(\|\nabla h(\mathbf{m}_0)\| + \omega_2)}\} + o(1).$$

is the spectral gap above the unique ground state in case the rhs is strictly positive.

• Explicit asymptotic value also for ground-state energy and eigenvector as apparent from following

Spectral gap in case $|\mathbf{m}_0| = 1$

Theorem (M.-Warzel '22)

Let $\omega_{1/2}$ are the eigenvalues of $D_{\perp}(\mathbf{m}_0)$ at $|\mathbf{m}_0| = 1$. Then

$$gap H = 2 \min\{\|\nabla h(\mathbf{m}_0)\|, \sqrt{(\|\nabla h(\mathbf{m}_0)\| + \omega_1)(\|\nabla h(\mathbf{m}_0)\| + \omega_2)}\} + o(1).$$

is the spectral gap above the unique ground state in case the rhs is strictly positive.

Proof idea: w.l.o.g. $\mathbf{m}_0 = \mathbf{e}_z$ and $\nabla h(\mathbf{e}_z) = -\|\nabla h\| \mathbf{e}_z \neq 0$.

The 'outermost' irreducible subspaces corresponding to $\mathbf{S}^2 = J(J+1)$ with $J \geq \frac{N}{2} - N^{1/6}$ are decomposed into 'close to' and 'far from min': $\mathbb{C}^{2J+1} \equiv \mathcal{H}_J^{N^{1/6}}(\mathbf{m}_0) \oplus \mathcal{H}_J^{N^{1/6}}(\mathbf{m}_0)^{\perp}$.

On $\mathcal{H}_{J}^{N^{1/6}}(\mathbf{m}_{0})$ the Hamiltonian is to o(1) approximated by $Q_{N/2}(\mathbf{e}_{z})$ which is of the form

$$Q_{N/2}(\mathbf{e}_{z}) - c_{J} + N h(\mathbf{m}_{0}) = \|\nabla h\| (N - 2S_{z}) + \frac{2}{N} (\omega_{1}S_{x}^{2} + \omega_{2}S_{y}^{2})$$

$$= \|\nabla h\| \frac{N^{2} - 4S_{z}^{2}}{2N} + \frac{2}{N} (\omega_{1}S_{x}^{2} + \omega_{2}S_{y}^{2}) + o(1)$$

$$= \|\nabla h\| \left[\frac{N}{2} - \frac{2J(J+1)}{N} \right] + \frac{2}{N} \left[(\omega_{1} + \|\nabla h\|)S_{x}^{2} + (\omega_{2} + \|\nabla h\|)S_{y}^{2} \right] + o(1)$$

Note: $\left[\sqrt{\frac{2}{N}}S_x, \sqrt{\frac{2}{N}}S_y\right] = i \ 2S_z/N = i \ (1 + o(1)).$

Spectral gap in case $|\mathbf{m}_0| = 1$

Theorem (M.-Warzel '22)

Let $\omega_{1/2}$ are the eigenvalues of $D_{\perp}(\mathbf{m}_0)$ at $|\mathbf{m}_0| = 1$. Then

$$gap H = 2 \min\{\|\nabla h(\mathbf{m}_0)\|, \sqrt{(\|\nabla h(\mathbf{m}_0)\| + \omega_1)(\|\nabla h(\mathbf{m}_0)\| + \omega_2)}\} + o(1).$$

is the spectral gap above the unique ground state in case the rhs is strictly positive.

Proof idea: w.l.o.g. $\mathbf{m}_0 = \mathbf{e}_z$ and $\nabla h(\mathbf{e}_z) = -\|\nabla h\| \mathbf{e}_z \neq 0$.

The 'outermost' irreducible subspaces corresponding to $\mathbf{S}^2 = J(J+1)$ with $J \geq \frac{N}{2} - N^{1/6}$ are decomposed into 'close to' and 'far from min': $\mathbb{C}^{2J+1} \equiv \mathcal{H}_J^{N^{1/6}}(\mathbf{m}_0) \oplus \mathcal{H}_J^{N^{1/6}}(\mathbf{m}_0)^{\perp}$.

Since $h(\mathbf{m}) \geq h(\mathbf{e}_z) + c |\mathbf{m}_z - \mathbf{e}_z|$ for some c > 0, we have

$$H \geq c_J + Nh(\mathbf{e}_3) + c|2S_z - N|.$$

On $\mathcal{H}_J^{N^{1/6}}(\mathbf{m}_0)^{\perp}$, the last term causes a shift of $\mathcal{O}(N^{1/6})$.

No gap in case $|\mathbf{m}_0| < 1$

Similar arguments as in the previous proof:

The quadratic approximation $Q_J(\mathbf{m}_0)$) near $J = N|\mathbf{m}_0|/2$ still yields the low-energy spectrum in those subspaces in the orthogonal decomposition:

$$\bigoplus_{J=\frac{N}{2}-\left\lceil\frac{N}{2}\right\rceil}^{N/2}\bigoplus_{\alpha=1}^{M_J}\mathbb{C}^{2J+1}$$

There are however $M_{N|\mathbf{m}_0|/2}$ copies corresponding to a fixed J.

Theorem (M.-Warzel '22)

If $|\mathbf{m}_0|$ < 1 the ground state is exponentially degenerate above which the gap to the next eigenvalue vanishes with N.

Summary

Semiclassical criteria & expressions for spectral gaps in mean-field systems of N spin- $\frac{1}{2}$:

If
$$|\mathbf{m}_0| = 1$$
: gap $H = 2 \min\{\|\nabla h(\mathbf{m}_0)\|, \sqrt{(\|\nabla h(\mathbf{m}_0)\| + \omega_1)(\|\nabla h(\mathbf{m}_0)\| + \omega_2)}\} + o(1)$.

Related results & questions:

- Limiting laws for spectral density, large deviation principles for observables . . .
- Spectral gap in the Lebowitz-Penrose limit
- Generalization spin $-\frac{1}{2}$ to spin-s
- · Semiclassical time evolutions
- . . .

Hepp-Lieb '73, ..., Petz-Raggio-Verbeure '88, Raggio-Werner '88, ..., Fröhlich-Knowles-Lenzmann '07, ..., Cayes-Crawford-Ioffe-Levit '08, ...