Implementing Bogoliubov Transformations beyond the Shale–Stinespring Condition

https://arxiv.org/abs/2208.03487

Sascha Lill sascha.lill@unimi.it

Università degli Studi di Milano

August 26, 2022

Outline

- ▶ Setting: family in Fock space $(\Psi_t)_{t \in \mathbb{R}} \subset \mathscr{F}$, generated by Hamiltonian H via $i\partial_t \Psi_t = H \Psi_t$
- Problem: formal expression H is ill-defined as operator
- (Standard) solution by cutoffs $\Lambda \in [0, \infty)$:

$$\widetilde{H}_{\text{cutoff}} := \lim_{\Lambda \to \infty} W_{\Lambda}^{-1} (H_{\Lambda} + c_{\Lambda}) W_{\Lambda}$$

 $(W_{\Lambda}:\mathscr{F}\to\mathscr{F}: \text{ dressing operator, } c_{\Lambda}: \text{ counterterm})$

- \blacktriangleright When removing cutoffs, W formally leads out of Fock space
- We use Fock space extensions $\overline{\mathcal{E}_{\mathscr{F}}}$ (or $\widehat{\mathscr{H}}, \overline{\mathscr{F}}$) to directly define

$$\widetilde{H} := W^{-1}(H+c)W$$

• [L. 2020]: Construction of \widetilde{H} using $\overline{\mathscr{F}}$ for W: Weyl trafo

Outline

- We consider quadratic Hamiltonian H
- Can be diagonalized by Bogoliubov transformation V (algebraic modification of H)
- Goal: find **implementer** $W = \mathbb{U}_{\mathcal{V}}$ (operator), such that $\widetilde{H} := \mathbb{U}_{\mathcal{V}}^{-1}(H + c)\mathbb{U}_{\mathcal{V}}$ is diagonal
- ▶ \exists impl. $\mathbb{U}_{\mathcal{V}} : \mathscr{F} \to \mathscr{F} \Leftrightarrow$ Shale–Stinespring condition holds
- ▶ New result [L. 2022]: \exists ext. impl. $\mathbb{U}_{\mathcal{V}} : \mathscr{F} \supset \mathcal{D}_{\mathscr{F}} \rightarrow \overline{\mathcal{E}_{\mathscr{F}}}$ for bosonic \mathcal{V} under very mild assumptions

Fock Space Descriptions

• First description: by configuration space Q:

• $\mathscr{F} := L^2(\mathcal{Q})$ is called **Fock space**

- Separable $L^2(X)$ allows for basis $(e_j)_{j \in \mathbb{N}}$, so w.l.o.g. $X = \mathbb{N}$
- Second description: consider occupation number configs
 Q_{oc} = {(N_j)_{j∈ℕ} | ∑_j N_j < ∞}

• Then, $\mathscr{F} = L^2(\mathcal{Q}_{\mathrm{oc}})$

Quadratic Hamiltonians

• Creation/annihilation operators for $f = (f_j)_{j \in \mathbb{N}} \in \ell^2$:

$$a^{\dagger}(oldsymbol{f}) = \sum_{j} f_{j} a^{\dagger}_{j} \qquad a(oldsymbol{f}) = \sum_{j} \overline{f_{j}} a_{j}$$

▶ Quadratic Hamiltonian (+: bosons, -: fermions) looks like:

$$H = \frac{1}{2} \sum_{j,k \in \mathbb{N}} (2h_{jk} a_j^{\dagger} a_k \mp k_{jk} a_j^{\dagger} a_k^{\dagger} + \overline{k_{jk}} a_j a_k)$$

- *H* is element of *-algebra \mathcal{A} (infinitely) generated by a_j^{\dagger}, a_j
- ► a_j^{\dagger}, a_j satisfy commutation relations (CR) $[a_j^{\dagger}, a_k^{\dagger}]_{\pm} = [a_j, a_k]_{\pm} = 0, \qquad [a_j, a_k^{\dagger}]_{\pm} = \delta_{jk}$ with $[A, B]_+ = AB - BA$ and $[A, B]_- = AB + BA$

Bogoliubov Transformations

▶ Consider the transformation $\mathcal{V}_{\mathcal{A}} : \mathcal{A} \to \mathcal{A}, a^{\sharp}(f) \mapsto b^{\sharp}(f)$ with

$$b^{\dagger}(\boldsymbol{f}) = a^{\dagger}(u\boldsymbol{f}) + a(v\overline{\boldsymbol{f}}), \qquad b(\boldsymbol{f}) = a(u\boldsymbol{f}) + a^{\dagger}(v\overline{\boldsymbol{f}})$$

where $u, v : \mathcal{D} \to \ell^2$ with $\mathcal{D} \subset \ell^2$: dense and $f \in \mathcal{D}$

• Translating $a^{\dagger}(f_1) + a(\overline{f_2})$ into $F = (f_1, f_2) \in \ell^2 \oplus \ell^2$ we identify $\mathcal{V}_{\mathcal{A}}$ with

$$\mathcal{V} = \begin{pmatrix} u & v \\ \overline{v} & \overline{u} \end{pmatrix}$$

▶ V (or V_A) is called **Bogoliubov transformation** if b[†], b still satisfy the (CR), and the same if V is replaced by V*

$$u^* u \mp v^T \overline{v} = 1 \qquad u^* v \mp v^T \overline{u} = 0$$
$$u u^* \mp v v^* = 1 \qquad u v^T \mp v u^T = 0$$

Bogoliubov Transformations Diagonalization Standard Implementation

Diagonalization

 \blacktriangleright Action of $\mathcal{V}_{\mathcal{A}}$ on quadratic Hamiltonians is simple:

$$H = \frac{1}{2} \sum_{j,k \in \mathbb{N}} \left(2h_{jk} a_j^{\dagger} a_k \mp k_{jk} a_j^{\dagger} a_k^{\dagger} + \overline{k_{jk}} a_j a_k \right)$$

• Consider $\widetilde{H} := \mathcal{V}_{\mathcal{A}}H$. If we identify H with the block matrix

$$A_H = \begin{pmatrix} h & \mp k \\ \overline{k} & \mp \overline{h} \end{pmatrix}$$
 then $A_{\widetilde{H}} = \mathcal{V}^* A_H \mathcal{V}$

• Certain A_H allow for **diagonalization** (Stone's theorem), so

$$\exists \mathcal{V}: \quad A_{\widetilde{H}} = \begin{pmatrix} E & 0\\ 0 & \mp \overline{E} \end{pmatrix} \quad \Rightarrow \quad \widetilde{H} = \sum_{j \in \mathbb{N}} E_j a_j^{\dagger} a_j$$

 \blacktriangleright In many cases, diagonalized \widetilde{H} is densely defined and self–adjoint

Standard Implementation

- If $\exists \mathbb{U}_{\mathcal{V}}$: unitary with $\mathbb{U}_{\mathcal{V}}^*H\mathbb{U}_{\mathcal{V}} = \widetilde{H}$, then dynamics of H and \widetilde{H} are equivalent $(\mathbb{U}_{\mathcal{V}}^*e^{-itH}\mathbb{U}_{\mathcal{V}} = e^{-it\widetilde{H}})$
- We say that $\mathbb{U}_{\mathcal{V}}$ implements \mathcal{V} and \mathcal{V} is implementable iff $\exists \mathbb{U}_{\mathcal{V}}$ unitary : $\mathbb{U}_{\mathcal{V}}a^{\dagger}(\boldsymbol{f})\mathbb{U}_{\mathcal{V}}^{*} = b^{\dagger}(\boldsymbol{f}), \qquad \mathbb{U}_{\mathcal{V}}a(\boldsymbol{f})\mathbb{U}_{\mathcal{V}}^{*} = b(\boldsymbol{f})$
- ▶ [Shale, Stinespring 1962]: $\mathcal{V} = \left(\frac{u}{v}\frac{v}{u}\right)$ implementable ⇔ tr $(v^*v) < \infty$
- ▶ [Lill 2022] (old): V implementable in extended sense for v*v having arbitrary discrete spectrum
- ▶ [Lill 2022] (new): bosonic V implementable in extended sense for generic v*v

Standard Implementation

• Constructing $\mathbb{U}_{\mathcal{V}}: \mathscr{F} \to \mathscr{F}$ (unitary) works by finding **Bogoliubov vacuum** $\Omega_{\mathcal{V}} \in \mathscr{F}$ with

$$b(\boldsymbol{f})\Omega_{\mathcal{V}} = 0 \quad \forall \boldsymbol{f} \in \ell^2, \qquad (\mathbb{U}_{\mathcal{V}}\Omega := \Omega_{\mathcal{V}})$$

▶ Fact: If $\operatorname{tr}(v^*v) < \infty$, then \exists bases $(f_j)_{j \in \mathbb{N}}, (g_j)_{j \in \mathbb{N}}$, s.th. (writing $b_j := b(f_j), a_j := a(g_j)$ and with $\mu_j, \nu_j \in \mathbb{R}, \mu_j^2 - \nu_j^2 = 1$):

$$b_j^{\dagger} = (\mu_j a_j^{\dagger} + \nu_j a_j) \Omega_{\mathcal{V}} = 0$$

Standard Implementation

• $\Omega_{\mathcal{V}}$ is product of pairs $K^{(2)} \in \ell^2 \otimes \ell^2$, normalized by $c_0 \in \mathbb{R}$, with $K^{(2)} = -\sum_j \frac{\nu_j}{2\mu_j} g_j \otimes g_j$:

$$\Omega_{\mathcal{V}}^{(N)} = \begin{cases} c_0 \frac{\sqrt{(2m!)}}{m!} (K^{(2)})^{\otimes_S m} & \text{ if } N = 2m \\ 0 & \text{ if } N: \text{ odd} \end{cases}$$

- ▶ $K^{(2)}$ is int. kernel of $\mathcal{O}: \ell^2 \to \ell^2$ with $2\mathcal{O}Juf = -vJf$ (Here, $J: \ell^2 \to \ell^2, Jf = \overline{f}$ is the complex conjugation operator.)
- $\blacktriangleright \text{ Now, } b(\boldsymbol{f})\Omega_{\mathcal{V}} = \left(a(u\boldsymbol{f}) + a^{\dagger}(\boldsymbol{v}\overline{\boldsymbol{f}})\right)\Omega_{\mathcal{V}} \text{ with }$

$$a(u\boldsymbol{f})\Omega_{\mathcal{V}} \sim 2\sum_{j} (Ju\boldsymbol{f})_{j} K^{(2)}(j,j') \sim 2\mathcal{O}Ju\boldsymbol{f} \sim -vJ\boldsymbol{f}$$

• $a(uf)\Omega_{\mathcal{V}}$ cancels $a^{\dagger}(v\overline{f})\Omega_{\mathcal{V}}$, so $b(f)\Omega_{\mathcal{V}}=0$

Standard Implementation

- Knowing $\Omega_{\mathcal{V}}$, we can define $\mathbb{U}_{\mathcal{V}} : \mathcal{D}_{\mathscr{F}} \to \mathscr{F}$ via $\mathbb{U}_{\mathcal{V}}(a_{j_{1}}^{\dagger} \dots a_{j_{N}}^{\dagger} \Omega) = (\mathbb{U}_{\mathcal{V}} a_{j_{1}}^{\dagger} \mathbb{U}_{\mathcal{V}}^{-1})(\mathbb{U}_{\mathcal{V}} \dots \mathbb{U}_{\mathcal{V}}^{-1})(\mathbb{U}_{\mathcal{V}} a_{j_{N}}^{\dagger} \mathbb{U}_{\mathcal{V}}^{-1})(\mathbb{U}_{\mathcal{V}} \Omega)$ $:= b_{j_{1}}^{\dagger} \dots b_{j_{N}}^{\dagger} \Omega_{\mathcal{V}}$
- ► $\mathcal{D}_{\mathscr{F}} := \operatorname{span} \{ \Psi \in \mathscr{F} \mid \Psi = a_{j_1}^{\dagger} \dots a_{j_N}^{\dagger} \Omega \} \subset \mathscr{F} \text{ is dense}$ $\Rightarrow \mathbb{U}_{\mathcal{V}} \text{ can be defined on all of } \mathscr{F}$

Extended State Space Main Result Proof Outline and Comments

Implementation beyond Shale-Stinespring

- $\blacktriangleright \ \mathsf{Fact:} \ \|K^{(2)}\|_{\ell^2 \otimes \ell^2} < \infty \Leftrightarrow \mathrm{tr}(v^*v) < \infty$
- \blacktriangleright If $\sigma(v^*v)$ is arbitrary, even $({\boldsymbol{g}}_j)_{j\in\mathbb{N}}$ may fail to exist
- However, \mathcal{O} with $2\mathcal{O}Juf = -uJf$ still exists
- Use **Schwartz kernel theorem**: Let \mathcal{D} be a nuclear space ("test functions") and \mathcal{D}' its dual space ("distributions"). Then, any $\mathcal{O}: \mathcal{D} \to \mathcal{D}'$ has an integral kernel $K_{\mathcal{O}} \in \mathcal{D}' \otimes \mathcal{D}'$

We choose:

$$\mathcal{D} := c_{00} = \{ \boldsymbol{f} : \mathbb{N} \to \mathbb{C} \mid f_j \neq 0 \text{ finitely often} \}$$
$$\mathcal{E} := \mathcal{D}' = \{ \mathbb{N} \to \mathbb{C} \}$$

so $\mathcal{D} \subset \ell^2 \subset \mathcal{E}$ is a nuclear rigging

• We have $\mathcal{O}: \mathcal{D} \to \mathcal{E}$, so $K_{\mathcal{O}} \in \mathcal{E} \otimes \mathcal{E}$ exists

 \sim

Extended State Space

• For accommodating $\Omega_{\mathcal{V}}$, we define:

$$\mathcal{E}^{(N)} := \{ \mathbb{N}^N \to \mathbb{C} \} = \mathcal{E}^{\otimes N} \qquad \mathcal{E}_{\mathscr{F}} := \bigoplus_{N=0}^{\infty} \mathcal{E}^{(N)}$$

► Thus,
$$K_{\mathcal{O}} \in \mathcal{E}^{(2)} = \mathcal{E} \otimes \mathcal{E}$$
 and $\Omega_{\mathcal{V}} \in \mathcal{E}_{\mathscr{F}}$ for

$$\Omega_{\mathcal{V}}^{(N)} = \begin{cases} c_0 \frac{\sqrt{(2m!)}}{m!} (K_{\mathcal{O}})^{\otimes_S m} & \text{if } N = 2m \\ 0 & \text{if } N : \text{ odd} \end{cases}$$

- Problem: annihilation operators may produce divergent sums
- "Extended State Space" $\overline{\mathcal{E}_{\mathscr{F}}}$ is a technical construct, rigorously accommodating (possibly divergent) sums $\Psi^{(N)}(j_1, \dots, j_N) = \sum_{L \in \mathbb{N}_0} \sum_{j_N+1, \dots, j_N+L \in \mathbb{N}} \Psi^{(N+L)}_{(L)}(j_1, \dots, j_{N+L})$

with
$$\Psi_{(L)}^{(N+L)} \in \mathcal{E}^{(N+L)}$$

Extended State Space Main Result Proof Outline and Comments

Main Result

Definition (Extended Implementation)

$$\begin{split} \mathbb{U}_{\mathcal{V}} : \mathcal{D}_{\mathscr{F}} \to \overline{\mathcal{E}_{\mathscr{F}}} \text{ implements } \mathcal{V} \text{ in the extended sense on } \overline{\mathcal{E}_{\mathscr{F}}} \text{ iff} \\ \mathbb{U}_{\mathcal{V}} a_{j}^{\dagger} \mathbb{U}_{\mathcal{V}}^{-1} \widetilde{\Psi} = b_{j}^{\dagger} \widetilde{\Psi}, \quad \mathbb{U}_{\mathcal{V}} a_{j} \mathbb{U}_{\mathcal{V}}^{-1} \widetilde{\Psi} = b_{j} \widetilde{\Psi} \quad \forall \widetilde{\Psi} \in \mathbb{U}_{\mathcal{V}}[\mathcal{D}_{\mathscr{F}}], j \in \mathbb{N} \end{split}$$

Theorem ([L. 2022] Main Result)

Any **bosonic** $\mathcal{V} = \left(\frac{u}{v}\frac{v}{u}\right)$ with $u, v : \mathcal{D} \to \ell^2$ is implementable in the ext. sense on $\overline{\mathcal{E}_{\mathscr{F}}}$.

- [L. 2022]: For $\sigma(v^*v)$ being discrete, ext. impl. works for **bosons and fermions** on \mathscr{F} -extensions:
 - ▶ *H*: Infinite tensor product space following [v. Neumann 1939], also used by [Blanchard 1969], [Fröhlich 1973], [Könenberg, Matte 2014]
 - $\overline{\mathscr{F}}$: Vector space related to $\overline{\mathcal{E}_{\mathscr{F}}}$
- \blacktriangleright Problem for fermions: ${\cal O}$ is unbounded, $\Omega_{\cal V}$ is more technical

Proof Outline and Comments

Lemma $(a_j^{\dagger}, a_j \text{ are well-defined})$ For $j \in \mathbb{N}$, we have $a_j^{\dagger} : \overline{\mathcal{E}_{\mathscr{F}}} \to \overline{\mathcal{E}_{\mathscr{F}}}$ and $a_j : \overline{\mathcal{E}_{\mathscr{F}}} \to \overline{\mathcal{E}_{\mathscr{F}}}$

• Definition of
$$\mathbb{U}_{\mathcal{V}}: \mathcal{D}_{\mathscr{F}} \to \overline{\mathcal{E}_{\mathscr{F}}}$$
 via

$$\mathbb{U}_{\mathcal{V}}(a_{j_1}^{\dagger} \dots a_{j_N}^{\dagger} \Omega) := b_{j_1}^{\dagger} \dots b_{j_N}^{\dagger} \Omega_{\mathcal{V}}$$

Lemma (Condition for extended implementation)

If for $\mathbb{U}_{\mathcal{V}}$ as constructed above, we have $b_j\Omega_{\mathcal{V}} = 0$ ($\forall j \in \mathbb{N}$) and $\mathbb{U}_{\mathcal{V}}^{-1}$ exists, then $\mathbb{U}_{\mathcal{V}}$ implements \mathcal{V} in the ext. sense

- $b_j \Omega_{\mathcal{V}} = 0$ follows from $2\mathcal{O}Juf = -uJf$ (same proof as for $\operatorname{tr}(v^*v) < \infty$)
- Existence of $\mathbb{U}_{\mathcal{V}}^{-1} \Leftrightarrow$ injectivity of $\mathbb{U}_{\mathcal{V}}$. Relies on $\|\mathcal{O}\| \leq 1/2$ and establishes the main theorem

What about the Counterterm c?

Quadratic Hamiltonians come in different shapes: we used

$$H = \frac{1}{2} \sum_{j,k \in \mathbb{N}} (2h_{jk} a_j^{\dagger} a_k \mp k_{jk} a_j^{\dagger} a_k^{\dagger} + \overline{k_{jk}} a_j a_k)$$

• With
$$[a_j, a_k^{\dagger}]_{\pm} = \delta_{jk}$$
, we may also write

$$H = \frac{1}{2} \sum_{j,k \in \mathbb{N}} (\mathbf{h}_{jk} a_j^{\dagger} a_k \mp k_{jk} a_j^{\dagger} a_k^{\dagger} + \overline{k_{jk}} a_j a_k \mp \overline{\mathbf{h}_{jk}} a_j a_k^{\dagger}) + c$$

with $c = \sum_j \textit{h}_{jj} = \mathrm{tr}(\textit{h})$

- $c \notin \mathbb{C}$ may appear ("infinite constant")
- But c is an infinite sum, so $c \in \overline{\mathcal{E}_{\mathscr{F}}}$

Extended State Space Main Result Proof Outline and Comments

Examples for Ext.–Diagonalizable ${\cal H}$

• Quadratic Bosonic interactions for $\varepsilon_p \in \mathbb{R}, \kappa \in \mathbb{R}$

$$H = \frac{1}{2} \sum_{\boldsymbol{p} \in \mathbb{Z}^3} \left(2(\varepsilon_{\boldsymbol{p}} + \kappa) a_{\boldsymbol{p}}^{\dagger} a_{\boldsymbol{p}} + \kappa a_{\boldsymbol{p}}^{\dagger} a_{-\boldsymbol{p}}^{\dagger} + \kappa a_{\boldsymbol{p}} a_{-\boldsymbol{p}} \right)$$

▶ **BCS model** [Haag, 1962] (spin-1/2 fermions), $\varepsilon_p \in \mathbb{R}, \tilde{\Delta}_p \in \mathbb{C}$

$$H = \sum_{\boldsymbol{p} \in \mathbb{Z}^3} \left(\boldsymbol{\varepsilon}_{\boldsymbol{p}} a^{\dagger}_{\boldsymbol{p},\uparrow} a_{\boldsymbol{p},\uparrow} + \boldsymbol{\varepsilon}_{\boldsymbol{p}} a^{\dagger}_{\boldsymbol{p},\downarrow} a_{\boldsymbol{p},\downarrow} - \tilde{\Delta}_{\boldsymbol{p}} a^{\dagger}_{\boldsymbol{p},\uparrow} a^{\dagger}_{\boldsymbol{p},\downarrow} + \overline{\tilde{\Delta}_{\boldsymbol{p}}} a_{\boldsymbol{p},\uparrow} a_{\boldsymbol{p},\downarrow} \right)$$

• Extended field QED model (fermionic), $\varepsilon_{p,\pm}(t) \in \mathbb{R}, f_p(t) \in \mathbb{R}$

$$H(t) = \sum_{\boldsymbol{p} \in \mathbb{Z}^3} \left(\boldsymbol{\varepsilon}_{\boldsymbol{p},+}(\boldsymbol{t}) a_{\boldsymbol{p}}^{\dagger} a_{\boldsymbol{p}} + \boldsymbol{\varepsilon}_{\boldsymbol{p},-}(\boldsymbol{t}) b_{\boldsymbol{p}}^{\dagger} b_{\boldsymbol{p}} - f_{\boldsymbol{p}}(t) a_{\boldsymbol{p}}^{\dagger} b_{\boldsymbol{p}}^{\dagger} + f_{\boldsymbol{p}}(t) a_{\boldsymbol{p}} b_{\boldsymbol{p}} \right)$$

Setting Extended State Space Bogoliubov Transformations Main Result Implementation beyond Shale-Stinespring Proof Outline and Comments

Thank you for your attention!