THermodynamic Formalism and Uncertainty Quantification

Luc Rey-Bellet
University of Massachusetts Amherst

Quantissima III, Venice, August 2019

Work supported by NSF and AFOSR
Collaborators on related projects

- **Paul Dupuis** (Brown University),
- **Markos Katsoulakis** (UMass Amherst)
- **Sung-Ha Hwang** (KAIST)
- **Peter Plechac** (U. of Delaware)
- **Yannis Pantazis** (FORTH Crete)
- **Jeremiah Birrell** (UMass Amherst)
- **Panagiota Birmpa** (UMass Amherst)
- **Konstantinos Gourgoulias** (UMass Amherst)
- **Jinchao Feng** (UMass Amherst)
- **Jie Wang** (UMass Amherst)
- **Sosung Baek** (KAIST)
Some references:

• and several more to come.
UQ framework: Baseline model

Baseline model $P \ (\equiv \text{probability measure on } \mathcal{X}).$

Think of it as a (tractable) model you use to compute or do analysis.

Maybe obtained after inference and/or model reduction, and so on....

Mots interesting you should think of P is high-dimensional, e.g,

\[P_\nu \text{ is the distribution of a process } \{X_t\}_{0 \leq t \leq \infty} \text{ with } X_0 \sim \nu. \]

P is a Gibbs measure on $\Omega^{\mathbb{Z}^d}$

In any case, we think there are possibly lots of and large uncertainties in the model (model-form uncertainties)

P IS NOT TO BE TRUSTED!!
Specific observables/statistics/quantities of interest = QoI

- $E_P[f]$ (Expectation)
- $\text{Var}_P(f)$ (Variance) or $\frac{\text{Cov}_P(f,g)}{\sqrt{\text{Var}_P(f)\text{Var}_P(g)}}$ (correlation), or
- $\Lambda_{P,f}(c) = \log E_P[e^{cf}]$ (risk sensitive functional)
- $\log P(A) \sim \log e^{-I(A)/\epsilon}$ (probability of some rare event)

or maybe path-space QoI

- $E_{P_{\nu}} \left[\int_0^T f(x_t) \, dt \right]$ where τ is a stopping time.
- $E_{P_{\nu}} \left[\frac{1}{T} \int_0^T f(x_s) \, dt \right]$ that is ergodic averages.
- $E_{P_{\nu}} \left[\int_0^\infty e^{-\lambda s} f(x_s) \, dt \right]$ that is discounted observables.
- and so on....
UQ framework: Non Parametric Stress tests

→ Family of **alternative models** Q. Think of it as describing the true but "unknowable" or partially known models. Set

$$Q_\eta = \{Q \text{ is } \eta "\text{close}" \text{ to } P\}$$

Given a QoI f can one find **uncertainty bounds** or performance guarantees

$$\inf_{Q \in Q_\eta} E_Q[f] \leq E_P[f] \leq \sup_{Q \in Q_\eta} E_Q[f]?$$

and similarly for other quantities. The bounds should be **tight** and **computable** (numerically or analytically).

→ **Robustness**, cf book by Hansen (Nobel 2011) and Sargent (Nobel 2013)
→ **Stress tests** in Operation research, Finance, etc....
UQ framework: distances and divergences

Which measure of distance or pseudo-distance divergence should one use?

→ Use Information Theory concepts to measure information loss between Q and P.

- Relative entropy (a.k.a Kullback-Leibler divergence)

\[
R(Q||P) = E_Q \left[\log \frac{dQ}{dP} \right]
\]

- Relative Renyi entropy (a.k.a Renyi divergence): For $\alpha \neq 0, 1$

\[
R_\alpha(Q||P) = \frac{1}{\alpha(\alpha - 1)} \log E_P \left[\frac{dQ^\alpha}{dP} \right] = \frac{1}{\alpha(\alpha - 1)} \log E_P \left[e^{\alpha \log \frac{dQ}{dP}} \right]
\]

Note that

\[
R_\alpha(Q||P) \rightarrow \begin{cases}
R(Q||P) & \text{as } \alpha \rightarrow 1 \\
R(P||Q) & \text{as } \alpha \rightarrow 0
\end{cases}
\]
UQ framework: distances and divergences

• **Scalability:** If $Q^{0:T}$ and $P^{0:T}$ are the distribution of the process restricted to the time window 0 to T then, typically,

$$R_\alpha(Q^{0:T} \| P^{0:T}). = O(T) \text{ as } T \to \infty$$

i.e. Information is additive. For the relative entropy we have the chain rule for relative entropy which is even better (not asymptotic in T).

• **Information processing inequality:** If \mathcal{F} is a sub σ-algebra then

$$R_\alpha(Q|\mathcal{F} \| P|\mathcal{F}) \leq R_\alpha(Q \| P)$$

• **What is the right divergence for the QoI?**

• **Not the whole story:**

→ Heavy tailed observable may require other entropies (f-divergences)
→ Wasserstein type distances— needed if $Q \ll P$...
What is wrong with CKP? Scalability

Cziszar-Kullback-Pinsker

\[|E_Q[f] - E_P[f]| \leq \sqrt{2R(Q||P)} \|f - E_P[f]\|_\infty \]

Take e.g. Markov measures \(P = P^{0:T} \) and \(Q = Q^{0:T} \) and

\[F_T = \frac{1}{T} \int_0^T f(X_s) \, ds. \]

Then \(\|F_T\|_\infty = \|f\|_\infty = O(1) \) and \(R(Q^{0:T}||P^{0:T}) = O(T) \) and so

\[|E_{Q^{0:T}}[F_T] - E_{P^{0:T}}[F_T]| \leq \sqrt{2R(Q^{0:T}||P^{0:T})} \|F_T - E_P[F_T]\|_\infty = O(1) \]

CKP does not scale correctly!

Note though that

\[\text{Var}_{P^{0:T}}[F_T] = O\left(\frac{1}{T}\right) \]

so one would need the variance instead of the sup norm.
Gibbs Variational principle a.k.a. \(F = U - TS \)

- **Relative entropy** (a.k.a Kullback-Leibler divergence).

\[
R(Q \ll P) = \begin{cases}
E_Q \left[\log \frac{dQ}{dP} \right] & \text{if } Q \ll P \\
+\infty & \text{otherwise}
\end{cases}
\]

\(R(Q \ll P) \) is a divergence, that is \(R(Q \ll P) \geq 0 \) and \(R(Q \ll P) = 0 \) if and only if \(Q = P \).

- **Gibbs variational principle** for the relative entropy: (convex duality).

\[
\log E_P \left[e^f \right] = \sup_Q \left\{ E_Q[f] - R(Q||P) \right\}
\]

with the supremum attained if and only if

\[
dQ = dQ^f = \frac{e^f dP}{E_P[e^f]}
\]

Play a **central role** in statistical mechanics, in large deviation theory and in dynamical systems.
Gibbs information inequality

From the Gibbs variational principle, for any Q and $c \geq 0$
\[
E_Q[\pm cf] \leq \log E_P[e^{\pm cf}] + R(Q||P).
\]

Theorem (Gibbs Information inequality)

\[
- \inf_{c>0} \left\{ \frac{\Lambda(-c) + R(Q||P)}{c} \right\} \leq E_Q[f] - E_P[f] \leq \inf_{c>0} \left\{ \frac{\Lambda(c) + R(Q||P)}{c} \right\}
\]

\[
= \Xi_{P,f}(R(Q||P))
\]

\[
\Xi_{P,f}(\eta) \equiv \inf_{c>0} \left\{ \frac{\Lambda(c) + \eta}{c} \right\}
\]

\[
\Lambda(c) = \log E_P[e^{c(f-E_P[f])}] = \log E_P[e^{cf}] - E_P[f]
\]

How good is it? (Long history... Dupuis; Bobkov; Boucheron, Lugosi. Massart; Breuer, Cziszhar, etc...)
Properties of the Gibbs information inequality

\[\Xi_{P,f}(R(Q\|P)) \] is a divergence, i.e.

\[\Xi_{P,f}(\eta) \geq 0 \text{ and } \Xi_{P,f}(\eta) = 0 \iff \begin{cases} \eta = 0 \text{ i.e. } Q = P \\ \text{or } f = \text{const} \end{cases} \]

Moreover the Gibbs information inequality is tight: Given the family of alternative models \(Q_\eta = \{ Q; R(Q\|P) \leq \eta \} \) we have

\[\Xi_{P,f}(\eta) = \max_{Q \in Q_\eta} \{ E_Q[f] - E_P[f] \} \]

and the maximum is attained at \(Q_\eta \in Q_\eta \) with

\[\frac{dQ_\eta}{dP} = \frac{e^{c(\eta)f}}{E_P[e^{c(\eta)f}]} \text{ with } c \text{ such that } R(Q_\eta\|Q) = \eta \]

and of course similarly for min.
Concentration / UQ duality

Recall: If \(X_1, X_2, \cdots\) are IID copies with (centered) MGF \(\Lambda(c)\) for \(f(X)\) then by Chernov bound

\[
P\left(\frac{1}{N} \sum_{k=1}^{N} f(X_i) - E_P[f] > x\right) \leq e^{-N\Lambda^*(x)}
\]

Concentration

and by Cramer and Sanov Theorem and the contraction principle

\[
\Lambda^*(x) = \sup_c \{xc - \Lambda(c)\} \quad \text{(Legendre transform)}
\]

\[
= \inf_Q \{R(Q||P) ; E_Q[f] - E_P[f] = x\} \quad "\text{(Entropy maximization)}"
\]

versus (duality of optimization problems)

\[
(\Lambda^*)^{-1}(\eta) = \inf_{c \geq 0} \left\{ \frac{\Lambda(\pm c) + \eta}{c} \right\} \quad \text{(Fenchel-Young)}
\]

\[
= \sup_Q \{\pm(E_Q[f] - E_P[f]) ; R(Q||P) = \eta\} \quad \text{(UQ bounds)}
\]
Linearization/Variance

Linearization: For small $\eta = R(Q||P)$ one has the asymptotic expansion

$$\Xi_{P,f}(\eta) = \sqrt{2\text{Var}_P[f]}\eta + \frac{1}{3}\sqrt{\text{Var}_P[f]}\gamma_P(f)\eta + O(\eta^{3/2})$$

where $\gamma_P(f) = \frac{E[(f-E_P[f])^3]}{\text{Var}_P[f]^{3/2}}$ is the skewness.

→ For small perturbation of P UQ is driven by CLT fluctuations, in the linear regime.

→ For large perturbations of P UQ is driven by rare events or rather concentration of measure.
Markov process: choosing the right path space entropy

Baselines: Markov process X_t with path-space measure $P^{0:T}$

Alternative: Stochastic process Y_t with path-space measure $Q^{0:T}$ (not necessarily Markovian!) and

$$Q^{0:T} \ll P^{0:T}$$

Idea is to restrict the relative entropy to a sub σ-algebra tailored to the observables at hand

- Ergodic averages. Apply the inequality to $F_T = \int_0^T f(X_t) \, dt$

$$E_Q \left(\frac{F_T}{T} \right) - E_P \left(\frac{F_T}{T} \right) \leq \inf_{c > 0} \left\{ \frac{1}{T} \log E_P \left[e^{c(F_T - E_P[F_T])} \right] + \frac{1}{T} R(Q^{0:T}_{\nu_0} || P^{0:T}_{\mu_0}) \right\}$$

Under suitable ergodicity assumptions for X_t the bounds scale as $T \to \infty$. The important quantity is the relative entropy rate (it scales nicely with T as we shall see later)...
• Ergodic averages: statistical mechanics.

\(P = \) Gibbs measure on \(\Omega^{\mathbb{Z}^d} \) (\(\Omega \) finite set) with potential \(\Phi \).

\(Q = \) any translation invariant measure on \(\Omega^{\mathbb{Z}^d} \).

\[
\frac{1}{|V|} \lim_{V \nearrow \mathbb{Z}^d} R(Q\|P) = \lim_{V \nearrow \mathbb{Z}^d} \frac{1}{|V|} R(Q\|P) \] always exist and is finite

Theorem: For (quasilocal) observable \(f \)

\[
\inf_{c > 0} \left\{ \frac{\lambda(-c) + r(Q\|P)}{c} \right\} \leq E_Q[f] - E_P[f] \leq \inf_{c > 0} \left\{ \frac{\lambda(c) + r(Q\|P)}{c} \right\}
\]

\(\lambda(c) = P(\Phi + c\Psi_f) - P(\phi) \) translated pressure

(that is local Hamiltonian \(H_V + c \sum_{x \in V} \tau_x(f) \))
• Stopping time τ and QoI $F_\tau = \int_0^\tau f(X_t)\,dt$. It is natural to restrict the relative entropy to the σ-algebra \mathcal{F}_τ.

\[
E_Q[F_\tau] - E_P[F_\tau] \leq \inf_{c>0} \left\{ \frac{\log E_P[e^{cF_\tau} - E_P[F_\tau]] + R(Q^{0:\tau}||P^{0:\tau})}{c} \right\}
\]

Just stop the process....

• Discounted observable QoI $G_\lambda(f) = \int_0^\infty f(X_t)\lambda e^{-\lambda t}\,dt$.

Define a new measure P_λ: X_t runs up to a random time T with exponential distribution with mean $1/\lambda$. Then

\[
R(Q_\lambda||P_\lambda) = \int_0^\infty R(Q^{0:t}||P^{0:t})\lambda e^{-\lambda t}\,dt \quad \text{discounted entropy}
\]

\[
E_Q[G_\lambda(f)] - E_P[G_\lambda(f)] \leq \inf_{c>0} \left\{ \frac{G_\lambda(e^{cf}) + R_\lambda(Q||P)}{c} \right\}
\]
UQ for statistical estimators/ mean field formalism

How do we get UQ bounds for non-linear functionals of P, for example variance or skewness

$$\text{Var}_P[f(X)] \quad \text{or} \quad \gamma_P[f] = \frac{E_P[(f - E_P[f(X)])^3]}{\text{Var}_P[f(X)]^{3/2}}$$

or more general statistical estimators?

A fundamental result in large deviations

Laplace principle: (Varadhan, Bryc, Dupuis-Ellis)

The sequence S_N taking value in Y satisfy a LDP with rate function $I(Y)$ if and only if for all $\Phi : Y \rightarrow \mathbb{R}$ bounded and continuous

$$\lim_{N \rightarrow \infty} \frac{1}{N} \log E_P[e^{N\Phi(S_N)}] = \sup_y \{\Phi(y) - I(y)\}$$
Example: UQ for the variance

Build a statistical estimator for the variance

\[\frac{1}{N} \sum_{i=1}^{N} f(X_i)^2 - \left(\frac{1}{N} \sum_{i=1}^{N} f(X_i) \right)^2 \rightarrow \text{Var}_P[f] \]

where \(X_i \) are IID copies of \(X \).

Apply the Gibbs information inequality to statistical estimator, to find

Theorem Gibbs UQ Bounds for the variance

\[- \inf_{c > 0} \left\{ \frac{H(-c) + R(Q||P)}{c} \right\} \leq \text{Var}_Q[f] \leq \inf_{c > 0} \left\{ \frac{H(c) + R(Q||P)}{c} \right\} \]

where

\[H(c) = \lim_{N \to \infty} \frac{1}{N} \log E_{P_0^N} \left[e^{\sum_{i=1}^{N} f(X_i)^2 - \frac{1}{N} \left(\sum_{i=1}^{N} f(X_i) \right)^2} \right] \]
Using the Laplace principle for the joint \((f(X), f^2(X))\) one finds the convex function

\[H(c) = \sup_{(u,v) \in \mathbb{R}^2} \left\{ c(v - u^2) - I(u, v) \right\} \]

where

\[\Lambda(\alpha, \beta) = \log E_P \left[e^{\alpha f(X) + \beta f^2(X)} \right] \] (cumulant generating function)

\[I(u, v) = \sup_{\alpha, \beta} \{ \alpha u + \beta v - \Lambda(\alpha, \beta) \} \] (rate function in Cramer’s Theorem)

The inequality is tight with optimizer

\[dQ^{\alpha, \beta} = \frac{e^{\alpha f + \beta f^2}}{E_P \left[e^{\alpha f + \beta f^2} \right]} dP \]

for suitable \(\alpha\) and \(\beta\) such that

\[R(Q^{\alpha, \beta} \| P) = \eta \]

This generalizes to general statistical estimators.
Rare events and risk sensitive functionals

UQ for rare events:

\[P(A) \sim e^{-I(A)/\epsilon} \text{ (rare event probability)} \]

We really want to control \(I(A) = -\epsilon \log P(A) \).

More generally we consider risk sensitive functionals

\[\log E_P[e^{c f}] \text{ if } c \text{ large (free energy)} \]

Relative Renyi entropy (a.k.a Renyi divergence): For \(\alpha \neq 0, 1 \)

\[
R\alpha(Q||P) = \frac{1}{\alpha(\alpha - 1)} \log E_P \left[\frac{dQ^\alpha}{dP} \right] = \frac{1}{\alpha(\alpha - 1)} \log E_P \left[e^{\alpha \log \frac{dQ}{dP}} \right]
\]
Variational principle for the Relative Reny entropy:
(Dupuis et al.)

Extension of the Gibbs Variational Principle proved by Atar, Chowdhary, and Dupuis.

Relative Renyi entropy (a.k.a Renyi divergence): For $\alpha \neq 0, 1$

$$R_\alpha(Q \| P) = \frac{1}{\alpha(\alpha - 1)} \log E_P \left[\frac{dQ^\alpha}{dP} \right] = \frac{1}{\alpha(\alpha - 1)} \log E_P \left[e^{\alpha \log \frac{dQ}{dP}} \right]$$

Renyi Variational Principle proved by Atar, Chowdhary, and Dupuis.

$$\frac{1}{\beta} \log E_Q \left[e^{\beta g} \right] = \inf_Q \left\{ \frac{1}{\gamma} \log E_P \left[e^{\gamma g} \right] + \frac{1}{\gamma - \beta} R_{\gamma - \beta} (Q \| P) \right\} \quad \gamma > \beta$$

$$\frac{1}{\beta} \log E_Q \left[e^{\beta g} \right] = \sup_Q \left\{ \frac{1}{\gamma} \log E_P \left[e^{\gamma g} \right] - \frac{1}{\beta - \gamma} R_{\beta - \gamma} (Q \| P) \right\} \quad \gamma < \beta$$
UQ bounds for risk sensitive functionals
\[
\sup_{\beta < \gamma} \left\{ \frac{1}{\beta} \log \mathbb{E}_P[e^{\beta g}] + \frac{1}{\beta - \gamma} \mathcal{R}_{\gamma-\beta}(Q \| P) \right\} \leq \frac{1}{\gamma} \log \mathbb{E}_Q[e^{\gamma g}]
\]
\[
\frac{1}{\gamma} \log \mathbb{E}_Q[e^{\gamma g}] \leq \inf_{\beta > \gamma} \left\{ \frac{1}{\beta} \log \mathbb{E}_P[e^{\beta g}] + \frac{1}{\gamma - \beta} \mathcal{R}_{\gamma-\beta}(Q \| P) \right\}
\]

You can prove similar tightness properties as well.

To treat rare events you take \(g = -M 1_{A^c} \) and take \(M \to \infty \) and relabeling the indices

UQ bounds for rare events
\[
- \inf_{\alpha > 0} \left\{ \frac{\log \mathbb{E}_P \left[e^{-\alpha \log \frac{dQ}{dP}} \right] - \log P(A)}{\alpha} \right\} \leq \log Q(A) - \log P(A)
\]

\[
\log Q(A) - \log P(A) \leq \inf_{\alpha > 1} \left\{ \frac{\log \mathbb{E}_P \left[e^{\alpha \log \frac{dQ}{dP}} \right] - \log P(A)}{\alpha} \right\}
\]

Similar optimization problem as before.
Making it computable with concentration inequalities

Some examples: (Much more in Gourgoulias, Katsoulakis, R.-B., Wang).

• If $a \leq f \leq b$ we have Hoeffding’s inequality

$$\Lambda(c) \leq \frac{c^2(b-a)^2}{8} \leq \frac{c^2\|f - \mathbf{E}_P[f]\|_\infty}{2}$$

and then

$$\Xi_{P,f}(\eta) \leq \sqrt{2\eta\|f - \mathbf{E}_P[f]\|_\infty} \quad \text{(Cziszar-Kullback Pinsker)}.$$

• If f is bounded and $\text{Var}_P[f] = \sigma^2$ then we have Bernstein inequality

$$\Lambda(c) \leq \frac{c^2\sigma^2}{2(1 - c\|f - \mathbf{E}_P[f]\|_\infty)}$$

and then

$$\Xi_{P,f}(\eta) \leq \sqrt{2\text{Var}_P[f]\eta + \|f - \mathbf{E}_P[f]\|_\infty\eta}$$

This beats Pinsker if η is not too big (especially if σ^2 is small) and captures the exact small η asymptotics.

• Many more: Sharper inequalities for bounded f and other for Poissonian, Gaussian, exponential tails....

25
Steady state UQ bounds for ergodic Markov processes

Consider ergodic averages $\frac{1}{T} \int_0^T f(X_s) \, ds$ then using the Gibbs UQ bound one obtains the steady state bias bound

\[\xi_{P,f}(r(Q\|P)) \leq \lim_{T \to \infty} \frac{1}{T} \int_0^T f(Y_s) \, ds - E_{\mu}[f] \leq \xi_{P,f}(r(Q\|P)) \]

where

\[\xi_{P,f}(\eta) = \inf_{c > 0} \left\{ \frac{\lambda(c) + \eta}{c} \right\} \]

\[\lambda(c) = \lim_{T \to \infty} \frac{1}{T} \log EP_{\mu^n} \left[e^{c \int_0^T (f(X_s) - E_{\mu}[f]) \, ds} \right] \] (CGF)

\[\eta = \lim_{T \to \infty} \frac{1}{T} R(Q^{0:T} \| P^{0:T}) \] (relative entropy rate)
Coercive Dynamics

Langevin equation:

\[dX = -\nabla V + J\nabla V + \sqrt{2}dW_t \]

for any any antisymmetric \(J \) has invariant measure \(d\mu = Z^{-1}e^{-V}dx \)
and we have

\[
\mathcal{L} = \underbrace{\Delta - \nabla V \nabla}_\text{symmetric} + \underbrace{J\nabla V \nabla}_\text{antisymmetric}
\]

• **Main idea (from Liming Wu):** Bound the Feynmann-Kac semi group

\[
e^T(\mathcal{L} + V)h(x) = E_{P_{\delta_x}^{0:T}} \left[e^{\int_0^T V(X_s)ds} h(X_t) \right]
\]

using **Lumer-Philips Theorem**

\[
\frac{1}{T} \log \|e^T(\mathcal{L}+V)\|_{L^2(\mu)} \leq \sup \left\{ \langle g, \mathcal{L}g \rangle_{L^2(\mu)} + \int V|g|^2d\mu, \|g\|^2 = 1 \right\}.
\]

See the works on concentration inequalities by **Lezeaud, Wu, Catiaux, Guillin** and collaborators on which we rely here.
Poincaré inequalities and bounded f

Theorem: If we have a Poincaré inequality (spectral gap)

$$\text{Var}_\mu[f] \leq -\alpha \langle f, \mathcal{L}f \rangle_{L^2(\mu)}, \quad f \in D(\mathcal{L})$$

then for bounded f and general \mathcal{L}

$$\lambda(c) \leq \frac{c^2 \alpha \text{Var}_\mu[f]}{1 - \alpha c \|f - E_\mu[f]\|_\infty} \quad \text{Bernstein type bound}$$

$$\xi_{P,f}(\eta) \leq 2\sqrt{\alpha \text{Var}_\mu[f]}\eta + \alpha \|f - E_\mu[f]\|_\infty \eta$$

Theorem: For symmetric \mathcal{L} we we have the sharper bound

$$\lambda(c) \leq \frac{c^2 \sigma^2(f)}{2(1 - \alpha c \|\tilde{f}\|_\infty)} \quad \text{Bernstein type bound}$$

$$\xi_{P,f}(\eta) \leq \sqrt{2\sigma^2(f)}\eta + \alpha \|f - E_\mu[f]\|_\infty \eta$$

(sharp for small η).
Log-Sobolev inequalities and unbounded f

Assume a stronger Log-Sobolev inequality

$$E_\mu[f^2 \log(f^2)] - E_\mu[f^2] \log E_\mu[f^2] \leq -\beta \langle f, \mathcal{L} f \rangle \quad f \in D(\mathcal{L})$$

Then using the Gibbs variational principle get the bound

$$\xi_{P,f}(\eta) = \inf_{c > 0} \left\{ \log E_\mu \left[e^{c(f - E_\mu[f])} \right] + \frac{\beta \eta}{c} \right\}$$

The only trace of the dynamics is left in the constant β.
The tail behavior of f in the stationary distribution determines the UQ. Use another concentration inequality

If $V(x) \sim |x|^\beta$ (usual bounds on ∇V and ΔV...)
- Poincaré for $\beta > 1$
- Log Sobolev for $\beta > 2$ so UQ bounds for $V(X)$ itself.
For $1 < b \leq 2$ we can use F- Sobolev inequalities to consider unbounded f.

29
Hypocoercive samplers

Goal: To sample from $\nu(dq) \propto e^{-\beta V(q)} dq$ extending the phase space and sample from the measure

$$\mu(dp, dq) = \nu(dq) \pi(dp) \propto e^{-\beta (V(q) + p^2/2m)} dp dq$$

You can use other distribution of p too.

Why?: Add extra dimensions to escape your bad karma.... Make the dynamics irreversible to get faster (maybe).

• Ex1: Langevin equation

$$dq_t = \frac{p_t}{m} dt, \quad dp_t = \left(-\nabla V(q_t) - \gamma \frac{p_t}{m} \right) dt + \sqrt{\frac{2 \gamma}{\beta}} dW_t$$

\[
\mathcal{L} = \left(\frac{p^T}{m} \right) \nabla q - \nabla V^T \nabla p + \frac{1}{\beta} \left(\Delta p - \gamma \left(\frac{p}{M} \right)^T \nabla p \right)
\]

\[T = -T^* \quad S = S^*\]
Ex2: Randomized Hamiltonian Monte-Carlo.

The particle follows Hamiltonian equation of motions

\[dq_t = \frac{p_t}{m} dt, \quad dp_t = -\nabla V(q_t) \]

without noise or dissipation for a random amount of time at which we resample the momentum according to the stationary measure.

With the projection \(\Pi f = \int f(p, q) d\pi(p) \) the generator is

\[
\mathcal{L} = \left(\frac{p^T}{m} \right) \nabla_q - \nabla V^T \nabla_p + \lambda (\Pi - I) \]

\(T = -T^* \) \(S = S^* \)

\(31 \)
• **EX 3: Bouncy particle sampler.**

The particle follow **straight lines** for a random time. At updating time one either **resample the momentum** according to the stationary measure or the particle "**bounces**", i.e., it undergoes a Newtonian elastic collision on the hyperplane tangential to the gradient of the energy and the momentum is updated according to the rule

\[
 r(q)p = p - \frac{p^T \nabla V(q)}{\| \nabla V \|^2} \nabla V \quad Rf(p, q) = f(q, r(q)p)
\]

\[
 \mathcal{L} = \left(\frac{p}{m} \right)^T \nabla q + \left[\left(\frac{p}{m} \right)^T \nabla V(q) \right]^+ (R - I) + \lambda (\Pi - I)
\]

- free motion
- bouncing
- noise

• Zig-zag sampler..... etc...
• Temperature accelerated molecular dynamics
• Ask **Gabriel Stoltz.**
Hypocoercivity

Dolbeaut-Mouhot-Schmeiser
Andrieu-Durmus-Nüsken-Roussel
Rouset-Stoltz-Trstanova, Olla, ...
after many other works (Villani, Hereau-Nier, Hairer-Eckmann).

Idea: The dynamics is not coercive (no Poincaré inequality in \(L^2(\mu) \) for \(\mathcal{L} \)), but there exists a scalar product equivalent to \(L^2(\mu) \) where a Poincaré inequality holds.

\[
\langle f, g \rangle_\epsilon = \langle f, g \rangle + \epsilon \langle f, (B + B^*)g \rangle.
\]

\[
B = (1 + (T\Pi)^*(T\Pi))^{-1}(-T\Pi)^*
\]
and \(T \) is the antisymmetric part of the generator

Modified Poincaré inequality:

\[
\langle -\mathcal{L}g, g \rangle_\epsilon \geq \Lambda(\epsilon) \text{Var}_\mu(f)
\]

and \(\Lambda(\epsilon) \) is explicitly expressed in terms of the Poincaré constant for \(\nu(dq) \) the spectral gap of the noise operator and the potential \(V \).
Performance guarantees for hypocoercive samplers

New results (Jeremiah Birell and L. R.-B.)

Theorem (Bernstein type inequalities for hypocoercive samplers)

For bounded \(f \) we have

\[
P_{\mu_0} \left(\left\| \frac{1}{T} \int_0^T f(X_t) dt - \int f d\mu \right\| \geq r \right) \\
\leq a(\epsilon) \left\| \frac{d\mu_0}{d\mu} \right\|_{L^2(\mu)} \exp \left(-T \frac{b(\epsilon)\Lambda(\epsilon)r^2}{4\text{Var}_\mu[f] + 2c(\epsilon)\|f - E_\mu[f]\|_r} \right)
\]

where \(a(\epsilon), b(\epsilon), c(\epsilon) \) only depends on \(\epsilon \).

\rightarrow \text{Explicit non asymptotic confidence intervals for } \int f d\mu, \text{ i.e.}

\rightarrow \text{UQ bounds for alternative processes}

\[
\xi_{P,f}(\eta) \leq \sqrt{2d(\epsilon)\Lambda(\epsilon)\text{Var}_\mu[f]\eta + e(\epsilon)\Lambda(\epsilon)\|f - E_\mu[f]\|_\infty\eta}
\]