Braiding of Excitations in FQHE

Martin Fraas, Sven Bachmann, Alex Bols, Wojciech de Roeck,
CMP ’19 and in preparation

Quantissima III, Aug 2019
Setting — Hamiltonian

We consider a local Hamiltonian H on a torus Γ of L^2 sites, and let P be its ground state projection.

Assumptions:

1. H has a gap $\gamma > 0$ above the ground state,
2. p-fold ground state degeneracy, i.e. $\text{rank}(P) = p$,
3. (LTQO) for any A with $l = L - \text{diam}(\text{supp}(A))$,

$$PAP = \frac{1}{p} \text{Tr}(PA)P + O(l^{-\infty}).$$

For concreteness,

$$H = \sum_{x \sim y, s, s'} g_{s,s'}(x, y) a_{x,s}^* a_{y,s'} + h.c. + \sum_{x, s} v (a_{x,s}^* a_{x,s})^2.$$

Remark: 1.-3. not known (but expected to happen) for H.
Setting – Charge

For a region Ω we define $Q_{\Omega} = \sum_{x \in \Omega} Q_x$, the charge in region Ω.

Assumptions:

1. Q_x is supported on $\{x\}$,
2. Q_x has integer spectrum,
3. Charge conservation, $[H, Q_\Gamma] = 0$.

For concreteness,

$$Q_x = \sum_s a^*_{x,s} a_{x,s}.$$

Observation:

$[Q_\Gamma, P] = 0$,

but for $\Omega \subset \Gamma$

$[Q_\Omega, P] \neq 0$.

Quantifying Fluctuations of Charge

For an observable \(A \) we define

\[
\bar{A} = \int_{-\infty}^{\infty} W(t) e^{iHt} A e^{-iHt} dt.
\]

Lemma (Hastings, Bachmann-Michalakis-Nachtergaele-Sims)

There exists \(W(t) \) decaying as \(te^{-ct/(\log t)^2} \) such that

\[
[\bar{A}, P] = 0.
\]

For a region \(\Omega \) we write \(\Omega^l = \{ x : \text{dist}(x, \Omega) < l \} \).

Corollary

Let \(\Omega \) be a region then there exists \(K \) supported on \((\partial \Omega)^l \) such that

\[
\bar{Q} = Q - K + O(l^{-\infty}) \text{ and } K \text{ is a sum of local terms.}
\]
Contractible loops

Let Ω be a region such that $\partial \Omega$ is contractible, and let $U_{\partial \Omega} = \exp(2\pi i \bar{Q})$.

Observation: $U_{\partial \Omega}$ is supported on the boundary and preserves P. For any observable X we have

$$[U_{\partial \Omega}, X] = O(\text{dist}(X, \partial \Omega)^{-\infty}), \quad [U_{\partial \Omega}, P] = 0.$$

Moreover by $LTQO$

$$U_{\partial \Omega} P = P U_{\partial \Omega} P = e^{i \phi} P.$$

We fix $\phi = 0$ by shifting \bar{Q} by identity.
Non-contractible loops

For Ω with two boundaries ∂_- and ∂_+ we have

$$\bar{Q}_\Omega = Q - K_- - K_+.$$

Let $U_\pm = \exp(2\pi i (Q - K_\pm))$.

Lemma

Suppose that $\text{dist}(\partial_-, \partial_+) = O(L)$ *then*

$$[U_\pm, P] = O(L^{-\infty}).$$
Commutator on the ground state manifold

Let $U_{1,2}$ be unitaries corresponding to two complementary loops around the torus.

$$[U_1, P] = [U_2, P] = O(L^{-\infty}).$$

Theorem (Bachmann-Bols-de Roeck-F CMP 19 + in prep.)

There exists an integer q such that

$$U_1 U_2 U_1^* U_2^* P = e^{2\pi i \frac{p}{q}} P + O(L^{-\infty}).$$

Moreover the Hall conductance σ is equal to p/q.
Open curves

1. Curve γ connecting x to y
2. Close it arbitrary to form Ω
3. $\bar{Q}_\Omega = Q_\Omega - K$
4. Define
 $$U_{xy} = \exp(2\pi i (Q - K|_\gamma))$$

For a ground state ψ put
$$\phi = U_{xy} \psi.$$

Observation: For any observable X, let $l = \text{dist}(X, \{x, y\})$ then

$$ (\phi, X\phi) = (\psi, X\psi) + O(l^{-\infty}). $$

U_{xy} creates a pair of excitations at points x, y.
Braiding Excitations

Moving excitations: If $U_{x\tilde{y}}$ creates excitation at \tilde{y} then $U = U_{xy} U^*_{x\tilde{y}}$ moves this excitation from y to \tilde{y}.

Braiding excitations: We have three excitations x, y, z and we look at the effect of moving z around y. Implemented by V.

\[V\phi = VU_{xy}\psi = VU_{xy} V^* U^*_{xy} U_{xy} \psi = e^{2\pi i \frac{q}{p}} \phi + O(l^{-\infty}), \]
where l is distance of x, y to the loop of z.