The phase transition for random loop models on trees

Volker Betz

TU Darmstadt

Venice, 21 August 2019

Joint work with Johannes Ehlert, Benjamin Lees, Lukas Roth
The random loop model: intuition
The random loop model: definition

- \(G = (V, E) \) a graph. Parameters \(\beta, u \).
- \((X_e^X)_{e \in E} \) iid PPP with intensity \(u \) on \([0, \beta)\) ('crosses').
- \((X_e^\|)_{e \in E} \) iid PPP with intensity \(1 - u \) on \([0, \beta)\) ('bars').
- \(\mathbb{T}_\beta \) torus, \(X = \{(v, t) : v \in V, t \in \mathbb{T}_\beta\} \).
- The set \(\bigcup_{e: v \in e} X_e^X \cup X_e^\| \) separates \(\{(v, t) : t \in \mathbb{T}_\beta\} \) into disjoint open intervals. \(U(v, t) \) is the interval containing \(t \).
- Connections: \((v, t) \sim (v', t') \) if
 - \(v = v' \) and \(t' \in U(v, t) \), or
 - \(e := \{v, v'\} \in E \), and there is precisely one element of \(X_e^X \) (and none of \(X_e^\| \)) between \(t \) and \(t' \) (considering periodicity) or
 - \(e := \{v, v'\} \in E \), \(U(v, t) \cap U(v', t') \neq \emptyset \) and has at least one boundary point in \(X_e^\| \).
 - Extend by transitivity.
- Percolation type model. **Question**: infinite cluster?
The lack of monotonicity

The main difficulty: adding connections can decrease the size of a connected component. Two mechanisms:

1. More than one connection per edge.
The lack of monotonicity

The main difficulty: adding connections can decrease the size of a connected component. Two mechanisms:

1. More than one connection per edge.
2. Loops in the underlying graph.
The lack of monotonicity

The main difficulty: adding connections can decrease the size of a connected component. Two mechanisms:

1. More than one connection per edge.
2. Loops in the underlying graph.

We are only able to address problem 1.
Random loop model and quantum theory

- Let \(P_{u,\beta} \) be the joint measure of the PPP \((X^X_e)_{e \in E}, (X^\parallel_e)_{e \in E} \).
- For \(\theta > 0 \), \(G \) finite let \(P_{\theta,u,\beta}(A) = \frac{1}{\mathbb{E}_{u,\beta}(\theta^L)} \mathbb{E}_{u,\beta}(\theta^L 1_A) \), where
- \(L(\omega) \) is the total number of loops in the configuration produced by the \(X^X_e,\parallel(\omega) \).
- Relevant quantum system has Hamiltonian

\[
H = -2 \sum_{\{x,y\} \in E} S_x^{(1)} S_y^{(1)} + S_x^{(2)} S_y^{(2)} + (2u - 1) S_x^{(3)} S_y^{(3)}.
\]

- Heisenberg ferromagnet \((u = 1) \), anti-ferromagnet \((u = 0) \) or \(XY \)-model \((u = 1/2) \).
- Example for connection to random loop models:

\[
\langle S_x^{(1)} S_y^{(1)} \rangle_\beta \equiv \frac{\text{tr}(S_x^{(1)} S_y^{(1)} e^{-\beta H})}{\text{tr} e^{-\beta H}} = P_{2,u,\beta}(x \leftrightarrow y).
\]
History of the random loop model

Case $\theta = 2$:

▶ Feynman 1953: basic idea to treat thermal states using functional integrals.
▶ Conlon and Solovej 1991: random walk representation for the ferromagnet.
▶ Toth 1993 improves this result using a random loop model.
▶ Aizenman and Nachtergaele 1994: extension to more general spin values and interactions.
▶ Ueltschi 2013: extension to general θ and all u.

Case $\theta = 1$:

▶ Harris 1972: random stirring model.
▶ Schramm 2005: emergence of infinite cycles for the complete graph.
▶ Kotecky, Milos, Ueltschi (2016), results on the hypercube.

V. Betz (Darmstadt) Loops on trees
History of the random loop model

Case $\theta = 2$:

► Feynman 1953: basic idea to treat thermal states using functional integrals.
► Conlon and Solovej 1991: random walk representation for the ferromagnet.
► Toth 1993 improves this result using a random loop model.
► Aizenman and Nachtergaele 1994: extension to more general spin values and interactions.
► Ueltschi 2013: extension to general θ and all u.

Case $\theta = 1$:

► Harris 1972: random stirring model.
► Schramm 2005: emergence of infinite cycles for the complete graph.
► Kotecky, Milos, Uelschi (2016), results on the hypercube.
Random loop models on trees

- Angel 2003: proof of existence of long loops for $d \geq 4, \theta = 1$.
- Hammond 2013: sharp phase transition in β for $d \geq 55$, for $u = 1, \theta = 1$.
- Hammond 2015: strict bounds on β_c for very high d.
- Hammond and Hedge 2018: improved those bounds to $d \geq 56$ and general u.
- Björnberg, Ueltschi 2018, 2019: Asymptotics for large d, and for all θ, u:

$$\frac{\beta_c}{\theta} = \frac{1}{d} + \frac{1 - \theta u (1 - u) - \theta^2 (1 - u)^2 / 6}{d^2} + o(d^{-2}).$$

- Topic of this talk: proof of sharp phase transition for $\theta = 1$ and all $d \geq 3$, and (in principle) full asymptotic expansion of β_c.

V. Betz (Darmstadt) Loops on trees
Main Theorem

Theorem: T the infinite d-regular, r its root, γ_T the loop $(r, 0)$.

For all $d \geq 3$, $u \in [0, 1]$ there exists $\beta_c > 0$ and $\beta^+ > \beta_c$ such that

1. γ_T is finite almost surely for all $\beta \leq \beta_c$,

2. γ_T is infinite with positive probability for all $\beta \in (\beta_c, \beta^+)$.

Moreover, $\beta^+ \geq \frac{1}{\sqrt{d}}$ for all $d \geq 3$ and $\beta^+ = \infty$ for $d \geq 16$.
Main Theorem

Theorem: T the infinite d-regular, r its root, γ_T the loop $(r, 0)$.

For all $d \geq 3$, $u \in [0, 1]$ there exists $\beta_c > 0$ and $\beta^+ > \beta_c$ such that

1. γ_T is finite almost surely for all $\beta \leq \beta_c$,
2. γ_T is infinite with positive probability for all $\beta \in (\beta_c, \beta^+)$.

Moreover, $\beta^+ \geq \frac{1}{\sqrt{d}}$ for all $d \geq 3$ and $\beta^+ = \infty$ for $d \geq 16$.

We have the expansion

$$\beta_c = \sum_{k=0}^{n} \frac{\alpha_k(u)}{d^{k+1}} + O(d^{-n-2}),$$

(1)

where the α_k are polynomials of order $2k$ in u with recursively computable coefficients.
Main idea of the proof: Galton Watson trees

Let C_1 be the (random) maximal subtree of T containing the root and where each edge has at least two links.

Percolation on trees: C is finite almost surely if $\beta^2 \leq 1/d$.

γ_T in both directions or not at all.

So, e serves as a renewal edge, separating future and past.

Let M_i be the 'living' renewal edges in the i-th generation. $(|M_i|)$ for $i \in \mathbb{N}$ is a Galton-Watson process.

Therefore: γ_T is finite almost surely if and only if $E \mu, \beta(M_1) \leq 1$.

V. Betz (Darmstadt)
Loops on trees
Main idea of the proof: Galton Watson trees

- Let C_1 be the (random) maximal subtree of T containing the root and where each edge has at least two links.

Percolation on trees: C is finite almost surely if $\beta^2 \leq 1/d$.

- Consider $e = \{x, y\}$ with $x \in C_1$, $y \notin C_1$.
- Assume that γ_T leaves C_1 through e. Then
Main idea of the proof: Galton Watson trees

Let C_1 be the (random) maximal subtree of T containing the root and where each edge has at least two links.

Percolation on trees: C is finite almost surely if $\beta^2 \leq 1/d$.

Consider $e = \{x, y\}$ with $x \in C_1$, $y \notin C_1$.

Assume that γ_T leaves C_1 through e. Then

- either it also leaves the next (iid) subtree C_2 attached at y
- or it returns by the same way into C_1, i.e. using e in the opposite direction.

γ_T in both directions or not at all.

So, e serves as a renewal edge, separating future and past.

Let M_i be the ’living’ renewal edges in the i-th generation. $(|M_i|)_{i \in \mathbb{N}}$ is a Galton-Watson process.
Main idea of the proof: Galton Watson trees

- Let C_1 be the (random) maximal subtree of T containing the root and where each edge has at least two links.
- Percolation on trees: C is finite almost surely if $\beta^2 \leq 1/d$.

- Consider $e = \{x, y\}$ with $x \in C_1$, $y \notin C_1$.
- Assume that γ_T leaves C_1 through e. Then
 - either it also leaves the next (iid) subtree C_2 attached at y
 - or it returns by the same way into C_1, i.e. using e in the opposite direction.

γ_T in both directions or not at all.

- So, e serves as a renewal edge, separating future and past.

- Let M_i be the 'living' renewal edges in the i-th generation. $\left(|M_i|\right)_{i \in \mathbb{N}}$ is a Galton-Watson process.

- Therefore: γ_T is finite almost surely if and only if $\mathbb{E}_{u,\beta}(M_1) \leq 1.$
Computing $\mathbb{E}_{u,\beta}(M_1)$

Let C be the set of finite rooted subtrees of T, with edges e labelled by $n_e \geq 2$. In the case $\beta < 1/\sqrt{d}$ we find

$$
\mathbb{E}(|M_1|) = \sum_{C \in \mathcal{C}} \mathbb{E}(|M_1| | C_1 = C) \mathbb{P}(C_1 = C).
$$
Computing $\mathbb{E}_{u,\beta}(M_1)$

Let C be the set of finite rooted subtrees of T, with edges e labelled by $n_e \geq 2$. In the case $\beta < 1/\sqrt{d}$ we find

$$\mathbb{E}(|M_1|) = \sum_{C \in \mathcal{C}} \mathbb{E}(|M_1| | C_1 = C) \mathbb{P}(C_1 = C).$$

By independence, we have

$$\mathbb{P}(C_1 = C) = \prod_{e \in E(C)} \mathbb{P}(|X_e| = n_e) \prod_{e \in \partial^+ C} \mathbb{P}(|X_e| \leq 1)$$

$$= \frac{\beta^N(C)}{\prod_{e \in E(C)} n_e!} e^{-\beta d|V(C)|} (1 + \beta)^{(d-1)|V(C)|+1}.$$

and $\mathbb{E}(|M_1| | C_1 = C) = \frac{\beta}{1+\beta} \sum_{x \in V(C)} (d - d_x) p(u, d)$ where $p(u, d)$ is a polynomial in u.
Uniqueness and sharpness of the phase transitions

The end result is

$$\mathbb{E}_\beta(|M_1|) = \sum_{C \in \mathcal{C}} f_C(\beta d, d^{-1}) g_C(d^{-1}, u)$$

where (with $N(C)$ the number of links on C)

$$f_C(\alpha, h) = \left(e^{-\alpha} (1 + \alpha h)^{1/h-1} \right)^{|V(C)|} \frac{\alpha^{N(C)+1}}{(N(C) + 1)!} h^{N(C) - E(C)}.$$

and $g_C(h, u)$ a polynomial, non-negative for all u and all $h = 1/d, \ d \in \mathbb{N}$.
Uniqueness and sharpness of the phase transitions

The end result is

$$\mathbb{E}_\beta(|M_1|) = \sum_{C \in \mathcal{C}} f_C(\beta d, d^{-1}) g_C(d^{-1}, u)$$

where (with $N(C)$ the number of links on C)

$$f_C(\alpha, h) = \left(e^{-\alpha} (1 + \alpha h)^{1/h-1} \right)^{|V(C)|} \frac{\alpha^{N(C)+1}}{(N(C) + 1)!} h^{N(C) - E(C)}.$$

and $g_C(h, u)$ a polynomial, non-negative for all u and all $h = 1/d$, $d \in \mathbb{N}$. Now a direct computations shows that

$$\partial_\alpha f_C(\alpha, h) = \left(-|V(C)| + \frac{(1/h - 1)|V(C)| h}{1 + \alpha h} + \frac{N(C) + 1}{\alpha} \right) f_C(\alpha, h)$$

and since $N(C) + 1 \geq 2|E(C)| + 1 \geq |V(C)|$, we find that

$$\partial_\alpha f_C(\alpha, h) \geq f_C(\alpha, h)|V(C)| \frac{1 - \alpha^2 h}{(1 + \alpha h)\alpha} > 0.$$

for $\alpha^2 h = \beta^2 d < 1$, thus $\beta \mapsto \mathbb{E}_\beta(|M_1|)$ is strictly monotone.
Existence of the phase transition

\[E_{\beta}(|M_1|) = \sum_{C \in C} f_C(\beta d, d^{-1}) g_C(d^{-1}, u) \]

This is a sum of positive (explicit) terms, so by taking enough of them, we can achieve \(E_{\beta}(|M_1|) > 1 \) for large enough \(\beta \).
Existence of the phase transition

\[\mathbb{E}_\beta(|M_1|) = \sum_{C \in \mathcal{C}} f_C(\beta d, d^{-1}) g_C(d^{-1}, u) \]

This is a sum of positive (explicit) terms, so by taking enough of them, we can achieve \(\mathbb{E}_\beta(|M_1|) > 1 \) for large enough \(\beta \).
Existence of the phase transition

\[E_\beta(|M_1|) = \sum_{C \in \mathcal{C}} f_C(\beta d, d^{-1}) g_C(d^{-1}, u) \]

This is a sum of positive (explicit) terms, so by taking enough of them, we can achieve \(E_\beta(|M_1|) > 1 \) for large enough \(\beta \).

For \(d \geq 16 \), these region overlap with the non-reentry regions of Hammond 2015 \(\Rightarrow \) unique phase transition.
Expanding β_c in powers of $1/d$.

- Put $\beta = \alpha/d$ and sort the elements of C by their contribution in the limit $d \to \infty$ at fixed $\alpha \approx 1$.

- Approximate

$$f(\alpha) = \mathbb{E}(|M_1|) = \sum_{n=1}^{\infty} \sum_{C \in C_n} \mathbb{E}(|M_1|_{C_1=C})$$

from below: sum only up to order N.

- Approximate $\mathbb{E}(|M_1|)$ from above by making all loops in C_M, $M > N$ survive to the boundary.

- This gives two analytic functions

$$f_-(\alpha) < f(\alpha) < f_+(\alpha)$$. The Ansatz $f_-(\alpha^+_c(d)) = 1$, $f_+(\alpha^-_c(d)) = 1$ yields analytic upper and lower bounds for $\alpha_c(d)$.

- They agree up to order N in $1/d$.
An intriguing observation

We calculated β_c up to sixth order. The result is

$$\beta_c(u, d) = \sum_{k=0}^{5} \frac{\alpha_k(u)}{d^{k+1}} + O(d^{-7}), \quad (2)$$

with $\alpha_k(u) = \sum_{j=0}^{2k} \alpha_{k,j} \binom{2k}{j} u^j (1-u)^{2k-j}$, and

<table>
<thead>
<tr>
<th>$\alpha_{k,j}$</th>
<th>$k = 1$</th>
<th>$k = 2$</th>
<th>$k = 3$</th>
<th>$k = 4$</th>
<th>$k = 5$</th>
<th>$k = 6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$j = 0$</td>
<td>1</td>
<td>5/6</td>
<td>2/3</td>
<td>1559/2520</td>
<td>7973/12960</td>
<td>375181/604800</td>
</tr>
<tr>
<td>$j = 1$</td>
<td>1/2</td>
<td>47/120</td>
<td>1451/3780</td>
<td>71693/181440</td>
<td>120203/297000</td>
<td></td>
</tr>
<tr>
<td>$j = 2$</td>
<td>1</td>
<td>28/45</td>
<td>6737/12600</td>
<td>621463/1270080</td>
<td>418041641/898128000</td>
<td></td>
</tr>
<tr>
<td>$j = 3$</td>
<td>1/3</td>
<td>353/1260</td>
<td>46727/169344</td>
<td>70171259/239500800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$j = 4$</td>
<td>11/12</td>
<td>1721/2700</td>
<td>4531/7938</td>
<td>122779529/232848000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$j = 5$</td>
<td>9/40</td>
<td>210167/1270080</td>
<td>122840869/838252800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$j = 6$</td>
<td>307/360</td>
<td>226769/317520</td>
<td>238710041/349272000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$j = 7$</td>
<td></td>
<td>57/320</td>
<td>8806229/399168000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$j = 8$</td>
<td></td>
<td>939/1120</td>
<td>28680241/35925120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$j = 9$</td>
<td></td>
<td></td>
<td>4541/28800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$j = 10$</td>
<td></td>
<td></td>
<td>62417/72576</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
An intriguing observation

We calculated β_c up to sixth order. The result is

$$\beta_c(u, d) = \sum_{k=0}^{5} \frac{\alpha_k(u)}{d^{k+1}} + O(d^{-7}),$$

(2)

with $\alpha_k(u) = \sum_{j=0}^{2k} \alpha_{k,j} \binom{2k}{j} u^j (1-u)^{2k-j}$, and

```
<table>
<thead>
<tr>
<th>\alpha_{k,j}</th>
<th>k = 1</th>
<th>k = 2</th>
<th>k = 3</th>
<th>k = 4</th>
<th>k = 5</th>
<th>k = 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>j = 0</td>
<td>1</td>
<td>5/6</td>
<td>2/3</td>
<td>1559/2520</td>
<td>7973/12960</td>
<td>375181/604800</td>
</tr>
<tr>
<td>j = 1</td>
<td>1/2</td>
<td>47/120</td>
<td>1451/3780</td>
<td>71693/181440</td>
<td>120203/297000</td>
<td></td>
</tr>
<tr>
<td>j = 2</td>
<td>1</td>
<td>28/45</td>
<td>6737/12600</td>
<td>621463/1270080</td>
<td>418041641/89812800</td>
<td></td>
</tr>
<tr>
<td>j = 3</td>
<td>1/3</td>
<td>353/1260</td>
<td>46727/169344</td>
<td>70171259/23950080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>j = 4</td>
<td>11/12</td>
<td>1721/2700</td>
<td>4531/7938</td>
<td>122779529/232848000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>j = 5</td>
<td>9/40</td>
<td>210167/1270080</td>
<td>122840869/838252800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j = 6</td>
<td>307/360</td>
<td>226769/317520</td>
<td>238710041/349272000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j = 7</td>
<td>57/320</td>
<td>8806229/399168000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j = 8</td>
<td>939/1120</td>
<td>28680241/35925120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j = 9</td>
<td></td>
<td>4541/28800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j = 10</td>
<td></td>
<td>62417/72576</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

So, in the Bernstein basis, all coefficients seem to be in $[0, 1]$. We have no idea why this is so and whether it persists.
Conclusion

- For the d-regular tree, the loop model with $\theta = 1$ is now very well understood.
- The case $\theta > 1$ can’t use renewal theory directly, but is not hopeless → work in progress.
- The real challenge is to understand any model with finite degree, and where loops in the graph play an essential role.
- A mystery remains in the peculiar properties of the coefficients of $\beta_c(u, d)$.

Thank you for your attention!