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Nodal intersection problems

Let (Mm, g) be a compact real analytic Riemannian manifold without boundary of
dimension m. We denote by {ϕj}∞j=0 an orthonormal basis of Laplace
eigenfunctions,

−∆ϕj = λ2
j ϕj , 〈ϕj , ϕk〉 = δjk ,

where λ0 = 0 < λ1 ≤ λ2 ≤ · · · and where 〈u, v〉 =
∫
M uvdVg (dVg being the

volume form).

We denote the nodal set of an eigenfunction ϕλ of eigenvalue −λ2 by

Nϕλ
= {x ∈ M : ϕλ(x) = 0}.

Sharp upper bounds for Hm−1(Nϕλ
) were proved by Donnelly-Fefferman in the

80’s in the real analytic case:

cλ ≤ Hm−1(Nϕλ
) ≤ Cλ.
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Restrictions of eigenfunctions to a submanifold

Let H ⊂ M be a real analytic submanifold. Much work has gone into the study of
the restrictions ϕj |H , its norms and its zeros.

Let S = {jk}∞k=1 be a subsequence (indices of) eigenvalues. (We also let S denote
{λjk} or the sequence {ϕjk} of eigenfunctions from the given orthonormal basis.)

Question: For curves or hypersurfaces, estimate the Hausdorff measure of Nϕλ
∩ H

= nodal set of ϕjk |H .
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Extreme cases

The answer depends on dim H at least and we mainly consider dim H = 1 (curve)
or dim H = m − 1 (hypersurface).

If H = Fix(σ) is the fixed point set of an isometric involution σ : M → M, then H
can be a hypersurface (e.g. xn → −xn on Sn−1 or on Rn) or of lower dimension
(e.g. the fixed point set of Z → Z̄ on Cm is totally real Rm).

Odd eigenfunctions vanish on Fix(σ). I.e. ‘half’ of all eigenfunctions vanish on this
set.

Bourgain-Rudnick: Characterize H ⊂ M such that there exists some infinite
sequence S such that ϕjk |H = 0. We call such submanifolds ‘nodal’.

We are able to answer the question for subsequences of positive number density.
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‘S-Good submanifolds’

A less restrictive condition than nodal is ‘S-bad’: It means that
supx∈H |ϕjk |H ≤ Ce−Mλjk for all M > 0. “Super-exponential decay’.

We say that H is S- ‘good’ if there exists M > 0 so that

sup
x∈H
|ϕjk |H ≥ Ce−Mλjk .
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A good curve

H

Figure 1: Nodal lines of a high energy state, λ ∼ 84, in the quarter stadium.
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Main results in a nutshell

We prove that the number n(ϕjk , C) of nodal points on a connected irreducible
S-good real analytic curve C of a sequence S of Laplace eigenfunctions ϕj of
eigenvalue −λ2

j of a real analytic Riemannian manifold (M, g) of any dimension m
is bounded above as follows:

n(ϕjk , C) ≤ Ag ,C λjk .

Moreover, we prove that the codimension-two Hausdorff measure Hm−2(Nϕλ
∩ H)

of nodal intersections with a connected, irreducible real analytic hypersurface
H ⊂ M satisfies

Hm−2(Nϕλ
∩ H) ≤ Ag ,H λjk .

We further give a geometric control condition on H which is sufficient that H be
S-good for a density one subsequence of eigenfunctions.
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Remembrance of things past

Theorem

(Toth-Z,’09) Let Ω ⊂ R2 be piecewise analytic and let n∂Ω(λj) be the number of
components of the nodal set of the jth Neumann or Dirichlet eigenfunction which
intersect ∂Ω. Then, n∂Ω(λj) ≤ CΩλj .

Theorem

(Toth-Z ‘09) Suppose that Ω ⊂ R2 is a C∞ plane domain, and let C ⊂ Ω be a
good interior real analytic curve. . Let n(λj ,C ) = #Nϕλj

∩ C be the number of

intersection points of the nodal set of the j-th Neumann (or Dirichlet)
eigenfunction with C. Then there exists AC ,Ω > 0 such that n(λj ,C ) ≤ AC ,Ωλj .
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New results

The first set of new results generalize the plane domain theorems to real anaytic
Riemannian manifolds of any dimension. One then must consider what dimension
the submanifold C should have. The new results work in all co-dimensions but we
only state the results for curves and for hypersurfaces.

The new results also assume ∂M = ∅. The counting techniques are based on
analytic continuation of the wave kernel, which so far have not been generalized to
the boundary case.
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Results assuming goodness

Theorem

Suppose that (Mm, g) is a real analytic Riemannian manifold of dimension m
without boundary and that C ⊂ M is connected, irreducible real analytic curve. If C
is S-good, then there exists a constant AS,g so that

n(ϕj , C) := #{C ∩ Nϕj} ≤ AS,g λj , j ∈ S.

Theorem

Let (Mm, g) be a real analytic Riemannian manifold of dimension m and let
H ⊂ M be a connected, irreducible, S-good real analytic hyperurface. Then, there
exists a constant C > 0 depending only on (M, g ,H) so that

Hm−2(Nϕjk
∩ H) ≤ Cλjk , (jk ∈ S).
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Goodness?

Why irreducible? Suppose C1 is a good curve and C2 is bad, e.g. the fixed point
set of an isometric involution. Then C1 ∪ C2 is good but the counting results do
not work.

We now give sufficient geometric control conditions for ‘goodness’. The definition
of S-good makes sense for any connected, irreducible analytic submanifold H ⊂ M,
not only curves.
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Notation and assumptions

Given a submanifold H ⊂ M, we denote the restriction operator to H by
γH f = f |H . To simplify notation, we also write γH f = f H . The criterion that a
pair (H,S) be good is stated in terms of the associated sequence

uj :=
1

λj
log |ϕj |2 (1)

of normalized logarithms, and in particular their restrictions

uH
j := γHuj :=

1

λj
log |ϕH

j |2 (2)

to H. We only consider the goodness of connected, irreducible, real analytic
submanifolds.
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Definition of Good

Definition: Given a subsequence S := {ϕjk}, we say that a connected, irreducible
real analytic submanifold H ⊂ M is S-good, or that (H,S) is a good pair, if the
sequence (2) with jk ∈ S does not tend to −∞ uniformly on compact subsets of
H, i.e. there exists a constant MS > 0 so that

sup
H

uH
j ≥ −MS , ∀j ∈ S.

If H is S-good when S is the entire orthonormal basis sequence, we say that H is
completely good. If S has density one we say that H is almost completely good.

The opposite of a good pair (H,S) is a bad pair.



Nodal sets
and geometric

control

Steve Zelditch
Northwestern

University
Joint work
with John

Toth
Quantissima

in the
Serenissima,

2017

Equivalent notions of good

The following are equivalent on a real analytic curve.

1 Goodness in the sense of Definition 13, or equivalently in the sense that
‖ϕj |H‖L∞(H) ≥ e−aλj .

2 Goodness in the sense ‖ϕH
j ‖L2(H) ≥ e−aλj .

3 Goodness in the sense that 1
λj

log |ϕj |H | → −∞ does not hold uniformly on

the real H.

4 Goodness in the sense that 1
λj

log |ϕC
j |H | → −∞ does not hold uniformly on

the complex H.
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Geometric control conditionsfor Goodness

The criteria consists of two conditions on H:

(i) asymmetry with respect to geodesic flow, and

(ii) a full measure flowout condition.
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Geodesic asymmetry

The asymmetry condition (i) pertains to the two ‘sides’ of H, i.e. to the two lifts of
(y , η) ∈ B∗H to unit covectors ξ±(y , η) ∈ S∗HM to M. We denote the symplectic
volume measure on B∗H by µH . We define the symmetric subset B∗SH to be the
set of (y , η) ∈ B∗H so that G t(ξ+(y , η)) = G t(ξ−(y , η)) for some t 6= 0.

Definition: H is microlocally asymmetric if µH(B∗SH) = 0. I.e. if we lift an initial

tangent vector to H to each side of H, then almost surely the geodesics do not
return to the same point at the same time.
This rules out fixed point sets of isometric involutions.
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Geometric control

Next we turn to the flow-out condition (ii). It is that

µL(FL(H)) = 1. (3)

where
FL(H) :=

⋃
t∈R

G t(S∗HM \ S∗H) (4)

is the geodesic flowout of of the non-tangential unit cotangent vectors S∗HM \ S∗H
along H. Since H is a hypersurface, S∗HM ⊂ S∗M is also a hypersurface which is
almost everywhere transverse to the geodesic flow, i.e. it is a symplectic transversal.
It follows that the flowout is an invariant set of positive measure in S∗M.
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Theorem

The next result is a sufficient condition that H be almost completely good.

Theorem

Suppose that H is a microlocally asymmetric hypersurface satisfying
µL(FL(H)) = 1.
Then: if S = {ϕjk} is a sequence of eigenfunctions satisfying ||ϕjk |H ||L2(H) = o(1),
then the upper density D∗(S) equals zero.

The following theorem gives a more quantitative version:

Theorem

Let H ⊂ M be a microlocally asymmetric hypersurface satisfying. µL(FL(H)) = 1.
Then, for any δ > 0, there exists a subset S(δ) ⊂ {1, ..., λ} of density
D(S(δ)) ≥ 1− δ such that

‖ϕλj‖L2(H) ≥ C (δ) > 0, j ∈ S(δ).



Nodal sets
and geometric

control

Steve Zelditch
Northwestern

University
Joint work
with John

Toth
Quantissima

in the
Serenissima,

2017

Measures of goodness

There are two natural parameters of S-goodness of H: the density of S and the
rate of decay of eigenfunctions restricted to H.

The geomtric control condition pertains to the decay rate ||ϕjk |H ||L2(H) = o(1).
Goodness pertains to super-exponential decay. We do not know any general criteria
for goodness in the second sense which do not imply goodness in the first.

J. Jung proved that geodesic distance circles and horocycles in the hyperbolic plane
are good relative to eigenfunctions on compact or finite area hyperbolic surfaces.
L. El-Hajj and J. A. Toth proved that curves of strictly positive geodesic curvature
in a convex Euclidean domain are good.
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The main result on counting nodal points on curves

Theorem

Let C be an asymmetric Cω curve on a compact, closed, Cω Riemannian surface
(M2, g) satisfying (3). Then, for any δ > 0 there exists a subsequence S(δ) with
D(S(δ)) ≥ 1− δ for which C is S ′-good and a constant AS,g (δ) > 0 such that

n(ϕj , C) := #{C ∩ Nϕj} ≤ AS,g (δ) λj , j ∈ S(δ).

Theorem

Let H be an asymmetric Cω hypersurface of a compact, closed, Cω Riemannian
manifold (Mm, g) satisfying (3). Then, for any δ > 0 there exists a subsequence
S(δ) with D(S(δ)) ≥ 1− δ for which C is S ′-good and a constant AS,g (δ) > 0
such that

Hm−2(Nϕλ
∩ H) ≤ AS,g (δ) λj , j ∈ S(δ).
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Ideas of proofs

The upper bound for curves is based on analytic continuation U(iτ,Z , y) of
the wave kernel U(t, x , y) = exp it

√
−∆ to the complexification MC of Mm

(Grauert tube). The analytic continuation of eigenfunctions is given by,
U(iτ)ϕC

j = e−τλjϕC
j . U(iτ,Z , y) is an FIO with complex phase of order m−1

4 ,

and that gives a growth estimate on ϕC
j . A Jensen type argument gives upper

bounds on zeros on complexified curves.

For H of higher dimension, one uses Crofton’s formula to define
Hm−2(Nϕλ

∩ H, then analytically continues and then uses a Jensen type
argument.

The geometric control criterion for goodness comes from studying the relation
of microlocal defect measures of eigenfunctions on M and of their restrictions
to H.


