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Entanglement entropy of quantum spin systems

Hilbert space of spin states on Λ ⊂ Zν : HΛ =
⊗
x∈Λ

Cd

Bipartite decomposition B ⊂ Λ: HΛ = HB ⊗HBc

Reduced state on HB of pure state ψ ∈ HΛ: %B = TrHBc |ψ〉〈ψ|

Rényi entropy α ∈ [0,∞)

S(α)
B ≡ S(α)

B (ψ) =
1

1− α ln Tr [(%B)α] .

S(0)
B = ln Rank %B Hartley or min-entropy

S(1)
B = −Tr (%B ln %B) von Neumann entropy

Monotonicity: For any 0 ≤ α ≤ β: 0 ≤ S(β) ≤ S(α)

Trivial volume bound: S(0)
B ≤ ln dimHB = |B| ln d



Simple examples

1 Product states: ψ =
⊗
x∈Λ

ψx , e.g. canonical ONB ψx = ejx ,

jx ∈ {1, ·, d}. Then: S(0)
B (ψ) = 0 .

2 MPS / PEPS:

Entangled pair for each bond: ωD =
1√
D

D∑
j=1

ej ⊗ ej ∈ CD ⊗ CD

’Projection’ onto physical space: P : CD ⊗ CD → Cd

〈ej , P eξ ⊗ eη〉 = A(j)
ξ.η

ψ =
∑

j1,...,j|Λ|

Tr
(

A(1) · · ·A(|Λ|)
)

ej1 ⊗ · · · ⊗ ej|Λ|

Then: S(0)
B (ψ) ≤ |∂B| ln D . area law



Known results

1 The average entropy of random pure states on HΛ (i.e. Haar measure
on the unit sphere) exhibits a volume law.

Lubkin ’78, Page ’93

2 The entanglement entropy of the ground-state of any gapped,
one-dimensional spin systems obeys an area law.

Hastings ’07
Aharonov/Arad/Vazirani/Landau ’11

3 For one-dimensional spin systems exponential decay of correlatons
implies an area law. Brandao/Horodecki ’12

4 The ground-state of free (lattice) fermions obeys an area law with a
logarithmic correction:

S(α)
B = cα |∂B| ln |B|+ o(|∂B| ln |B|)

and the same applies to the ground state of the XY spin chain.

Vidal/Latorre/Rico/Kitaev ’03
Jin/Korepin ’04, Wolf ’05

. . .
Gioev/Klich ’06, Helling/Leschke/Spitzer/Sobolev ≥ ’11



The XXZ spin chain and its Ising phase

XXZ spin- 1
2 chain on a finite interval Λ = [−L, L] ∩ Z

H = −1
2

L−1∑
x=−L

(
σ1

xσ
1
x+1 + σ2

xσ
2
x+1

)
− ∆

2

L−1∑
x=−L

(
σ3

xσ
3
x+1 − 1

)
+

∆

2

(
2− σ3

−L − σ3
−L

)

∆ = 0 XX spin chain

∆ = 1 Heisenberg ferromagnet

∆ > 1 Ising phase

In case ∆ > 0 the boundary term discourages down spins at the
boundary.



Equivalence of XXZ to interacting particle system

Particle interpretation of eigenbasis of σ3
x , x ∈ ΛL:

L = 6 n = 7

Configuration space of n hard-core particles on Λ := [−L, L] ∩ Z:

X n
Λ :=

{
x = {x1, x2, . . . , xn} ∈ Λn

L
∣∣ x1 < x2 < . . . < xn

}
Unitary equivalence: V : HΛ →

2L+1⊕
n=0

`2 (X n
Λ

)
, VHV∗ = −A + 2∆ W

Adjacency operator on X n
Λ : (Aψ) (x) =

∑
y∈X n

Λ
d(x,y)=1

ψ(y)

d(x, y) =
n∑

j=1

|xj − yj |

Interaction potential W (x) = 1
2 #

{
cluster bounderies in x

}
Conservation law:

[
HXXZ,

∑
x
σ3

x
]

= 0 implies block structure of H!



The spectrum of the XXZ chain in its Ising phase ∆ > 1

Ground state at n = 0: ψ0 =
⊗
x∈Λ

| ↑〉, Hψ0 = 0.

In case n ≥ 1 a cluster decomposition X n
Λ =

n⋃
k=1
Cn

k

energetically distinguishes states:

Interaction for k -cluster configurations x ∈ Cn
k : W δx := kδx.

Orthogonal projection Qn
k onto the subspace

⊕∞
j=k `

2(Cn
j
)

of at least k clusters:

Qn
k H Qn

k > 2k(∆− 1)



Spectrum in Ising phase ∆ > 1 Nachtergaele/Starr ’01

The spectrum in the infinite volume limit is explicit through Bethe Ansatz.
In finite-volume with BC:

Droplet band for fixed n corresponding to one cluster Cn ≡ Cn
1 :

∆n := 2
√

∆2 − 1
[

cosh(ρ∆n)− 1
sinh(ρ∆n)

,
cosh(ρ∆n)− 1

sinh(ρ∆n)

]
⊂
[
2(∆− 1), 2(∆ + 1)

]
where ρ∆ := ln(∆ +

√
∆2 − 1)



Structure of droplet states: a Combes-Thomas estimate

Theorem

For ∆ > 1, µT > 0 and
0 ≤ E < 4∆− 12 eµT ,

the Green function G(2)
Λ (x, y; E) := 〈δx,

(
Q2HΛQ2 − E

)−1
δy〉 of the projection

Q2 on all non-clustered configurations satisfies:

|G(2)
Λ (x, y; E)| 6 CTe−µTd(x,y)

for all n ≥ 2 all x, y 6∈ Cn with d(x, y) =
∑

j |xj − yj | at some CT <∞.

A proof combines the low entropy of available neighbors for droplet
states with the energetic penalty of cluster break-up

Beaud/W. ’17, Elgart/Klein/Stolz ’17

Consequence for the spectral projection onto droplet states:

For any I ⊂ R with sup I < 4∆− 12 there is C, µ ∈ (0,∞) such that for
all n ≥ 1, all Λ and all x ∈ X n

Λ :

Nn
I (x) := 〈δx,PI(H)δx〉 ≤ C e−µd(x,Cn) .



Main result

Theorem (Beaud/W. ’17)

Let ψ be a state with n ≥ 1 particles in the droplet spectrum, i.e. ψ = PI(H)ψ
with

sup I < 4∆− 12 .

Then for any α ∈ (0, 1) there are constants cα,Cα ∈ (0,∞) (which are
independent of ψ and n) such that

S(α)
B (ψ) ≤ cα ln min{n, |B|}+ Cα

for any non-vanishing interval B ⊂ Λ and all Λ.

Extension to ψ not necessarily of fixed particle number.

Applies to quantum quench, i.e. ψt = e−itHψ with ψ as above.



The simple proof idea

Tr [(%B)α] ≤
min{n,|B|}∑

m=0

∑
x∈Xm

Λ

〈δx, (%B)α δx〉

≤ 2 +

min{n,|B|−1}∑
m=1

∑
x∈Xm

Λ

〈δx, %B δx〉α

≤ 2 +

min{n,|B|−1}∑
m=1

∑
x∩B 6=∅
x∩Bc 6=∅

Nm
I (x)α ≤ 2 + Cα

min{n,|B|−1}∑
m=1

∑
x∩B 6=∅
x∩Bc 6=∅

e−µαd(x,Cm)

≤ cα + Cα min{n, |B|}

One relevant observation:

sup
v∈Cn

∑
x∈X n

Z

e−µd(x,v) 6
1

1− e−µ

(
∞∏

k=1

1
1− e−kµ

)2

<∞ .



A note on the case with a non-negative (random) magnetic field

Adding a non-negative, random magnetic field in the 3 direction:

Hω = H +
∑

x

ωx

(
1− σ3

x

)
leaves the Combes-Thomas bound unchanged.

Random term on the n particle subspace is typically: O(n)

Lemma (cf. Aizenman/W. ’09)

Let I = [0, sup I] and λ > 0. There are C, c ∈ (0,∞) s.t. for all n, L and
x ∈ X n

Λ :
E
[
Nn

I (x)
]
6 Ce−cn .

Corollary:

E
[
sup
ψ

sup
t∈R

exp
{

(1− α) S(α)
U

[
e−itHψ

]}]
≤ C

where the supremum is taken over all normalized states in the droplet
regime, i.e. ψ = PI(H)ψ with sup I < 4∆− 12.



A note on the case with a non-negative (random) magnetic field

Adding a non-negative, random magnetic field in the 3 direction:

Hω = H +
∑

x

ωx

(
1− σ3

x

)
leaves the Combes-Thomas bound unchanged.

Corollary:

E
[
sup
ψ

sup
t∈R

exp
{

(1− α) S(α)
U

[
e−itHψ

]}]
≤ C

where the supremum is taken over all normalized states in the droplet
regime, i.e. ψ = PI(H)ψ with sup I < 4∆− 12.

Similar result for the XY spain chain:
Abduhl-Rahman/Nachtergaele/Sims/Stolz ’16
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