Bounds on the entanglement entropy of droplet states in the XXZ chain

Simone Warzel (joint work with V. Beaud)

Zentrum Mathematik, TUM

Venice August 24, 2017

Entanglement entropy of quantum spin systems

Hilbert space of spin states on $\Lambda \subset \mathbb{Z}^{\nu}$:

$$\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathbb{C}^d$$

Bipartite decomposition $B \subset \Lambda$:

$$\mathcal{H}_{\Lambda} = \mathcal{H}_{B} \otimes \mathcal{H}_{B^{c}}$$

Reduced state on $\mathcal{H}_{\mathcal{B}}$ of pure state $\psi \in \mathcal{H}_{\Lambda}$:

$$\varrho_{\mathcal{B}} = \mathsf{Tr}_{\mathcal{H}_{\mathcal{B}^{\mathcal{C}}}} |\psi\rangle\langle\psi|$$

Rényi entropy

$$\alpha \in [0, \infty)$$

$$S_B^{(\alpha)} \equiv S_B^{(\alpha)}(\psi) = \frac{1}{1-\alpha} \ln \text{Tr}\left[(\varrho_B)^{\alpha}\right].$$

- $S_B^{(0)} = \ln \operatorname{Rank} \varrho_B$ Hartley or min-entropy
- $S_B^{(1)} = -\operatorname{Tr}(\varrho_B \ln \varrho_B)$ von Neumann entropy
- Monotonicity: For any $0 \le \alpha \le \beta$: $0 \le S^{(\beta)} \le S^{(\alpha)}$
- Trivial volume bound: $S_B^{(0)} \leq \ln \dim \mathcal{H}_B = |B| \ln d$

Simple examples

Product states: $\psi = \bigotimes_{x \in \Lambda} \psi_x$, e.g. canonical ONB $\psi_x = e_{j_x}$, $j_x \in \{1, \cdot, d\}$. Then: $S_R^{(0)}(\psi) = 0$.

2 MPS / PEPS:

Entangled pair for each bond: $\omega_D = \frac{1}{\sqrt{D}} \sum_{j=1}^D e_j \otimes e_j \in \mathbb{C}^D \otimes \mathbb{C}^D$

'Projection' onto physical space:

$$\mathcal{P}:\mathbb{C}^{\textit{D}}\otimes\mathbb{C}^{\textit{D}}\rightarrow\mathbb{C}^{\textit{d}}$$

$$\langle \mathbf{\textit{e}}_{\!\mathit{j}}\,,\,\mathcal{P}\,\,\mathbf{\textit{e}}_{\!\mathit{\xi}}\otimes\mathbf{\textit{e}}_{\!\eta}
angle = \mathbf{\textit{A}}_{\!\xi.\eta}^{(\!\mathit{j})}$$

$$\psi = \sum_{j_1,\dots,j_{|\Lambda|}} \operatorname{Tr}\left(A^{(1)} \cdots A^{(|\Lambda|)}\right) e_{j_1} \otimes \cdots \otimes e_{j_{|\Lambda|}}$$

Then: $S_B^{(0)}(\psi) \leq |\partial B| \ln D$.

area law

Known results

1 The average entropy of **random pure states** on \mathcal{H}_{Λ} (i.e. Haar measure on the unit sphere) exhibits a **volume law**.

Lubkin '78, Page '93

The entanglement entropy of the ground-state of any gapped, one-dimensional spin systems obeys an area law.

Hastings '07

Aharonov/Arad/Vazirani/Landau '11

- For one-dimensional spin systems **exponential decay of correlatons** implies an **area law**.

 Brandao/Horodecki '12
- The ground-state of **free** (lattice) **fermions** obeys an area law with a **logarithmic correction**:

$$S_B^{(\alpha)} = c_\alpha |\partial B| \ln |B| + o(|\partial B| \ln |B|)$$

and the same applies to the ground state of the XY spin chain.

Vidal/Latorre/Rico/Kitaev '03 Jin/Korepin '04, Wolf '05

. . .

Gioev/Klich '06, Helling/Leschke/Spitzer/Sobolev \geq '11

XXZ spin- $\frac{1}{2}$ chain on a finite interval $\Lambda = [-L, L] \cap \mathbb{Z}$

$$H = -\frac{1}{2} \sum_{x=-L}^{L-1} \left(\sigma_x^1 \sigma_{x+1}^1 + \sigma_x^2 \sigma_{x+1}^2 \right) - \frac{\Delta}{2} \sum_{x=-L}^{L-1} \left(\sigma_x^3 \sigma_{x+1}^3 - 1 \right) + \frac{\Delta}{2} \left(2 - \sigma_{-L}^3 - \sigma_{-L}^3 \right)$$

- $\Delta = 0$ XX spin chain
- $\Delta = 1$ Heisenberg ferromagnet
- lacksquare $\Delta > 1$ Ising phase
- In case $\Delta > 0$ the **boundary term** discourages down spins at the boundary.

Particle interpretation of eigenbasis of σ_x^3 , $x \in \Lambda_L$:

$$L = 6 \quad n = 7$$

Configuration space of *n* hard-core particles on $\Lambda := [-L, L] \cap \mathbb{Z}$:

$$\mathcal{X}_{\Lambda}^{n} := \left\{ \left. \boldsymbol{x} = \left\{ x_{1}, x_{2}, \ldots, x_{n} \right\} \in \Lambda_{L}^{n} \, \middle| \, x_{1} < x_{2} < \ldots < x_{n} \right. \right\}$$

Unitary equivalence:
$$\mathcal{V}: \mathcal{H}_{\Lambda} \to \bigoplus_{n=0}^{2L+1} \ell^2 \left(\mathcal{X}_{\Lambda}^n\right), \quad \mathcal{V}H\mathcal{V}^* = -A + 2\Delta W$$

- Adjacency operator on $\mathcal{X}_{\Lambda}^{n}$: $(A\psi)(\mathbf{x}) = \sum_{\mathbf{y}} \psi(\mathbf{y})$ $d(\mathbf{x},\mathbf{y})=\sum_{i=1}^n|x_i-y_j|$
- Interaction potential $W(\mathbf{x}) = \frac{1}{2} \# \{ \text{cluster bounderies in } \mathbf{x} \}$

Conservation law: $[H_{XXZ}, \sum_{x} \sigma_{x}^{3}] = 0$ implies block structure of H!

Ground state at
$$n = 0$$
: $\psi_0 = \bigotimes_{\gamma \in \Lambda} |\uparrow\rangle$, $H\psi_0 = 0$.

In case $n \ge 1$ a **cluster decomposition** $\mathcal{X}_{\Lambda}^{n} = \bigcup_{k=1}^{n} \mathcal{C}_{k}^{n}$ energetically distinguishes states:

- Interaction for *k*-cluster configurations $\mathbf{x} \in \mathcal{C}_k^n$: $W\delta_{\mathbf{x}} := k\delta_{\mathbf{x}}$.
- Orthogonal projection Q_k^n onto the subspace $\bigoplus_{j=k}^{\infty} \ell^2(\mathcal{C}_j^n)$ of at least k clusters:

$$Q_k^n H Q_k^n \geqslant 2k(\Delta-1)$$

The spectrum in the infinite volume limit is explicit through **Bethe Ansatz**. In finite-volume with BC:

Droplet band for fixed *n* corresponding to one cluster $C^n \equiv C_1^n$:

$$\Delta^n := 2\sqrt{\Delta^2 - 1} \left[\frac{\cosh(\rho_\Delta n) - 1}{\sinh(\rho_\Delta n)}, \frac{\cosh(\rho_\Delta n) - 1}{\sinh(\rho_\Delta n)} \right] \subset \left[2(\Delta - 1), 2(\Delta + 1) \right]$$

where
$$\rho_{\Delta} := \ln(\Delta + \sqrt{\Delta^2 - 1})$$

Theorem

For $\Delta > 1$, $\mu_T > 0$ and

$$0 \le E < 4\Delta - 12 e^{\mu_{\mathsf{T}}}$$
,

the Green function $G_{\Lambda}^{(2)}(\mathbf{x}, \mathbf{y}; E) := \langle \delta_{\mathbf{x}}, (Q_2 H_{\Lambda} Q_2 - E)^{-1} \delta_{\mathbf{y}} \rangle$ of the projection Q_2 on all non-clustered configurations satisfies:

$$|G_{\Lambda}^{(2)}(\mathbf{x},\mathbf{y};E)| \leqslant C_{\mathsf{T}}e^{-\mu_{\mathsf{T}}d(\mathbf{x},\mathbf{y})}$$

for all $n \ge 2$ all $\mathbf{x}, \mathbf{y} \notin \mathcal{C}^n$ with $d(\mathbf{x}, \mathbf{y}) = \sum_{i} |x_i - y_i|$ at some $C_T < \infty$.

 A proof combines the low entropy of available neighbors for droplet states with the energetic penalty of cluster break-up

Beaud/W. '17, Elgart/Klein/Stolz '17

Consequence for the spectral projection onto droplet states:

For any $I \subset \mathbb{R}$ with sup $I < 4\Delta - 12$ there is $C, \mu \in (0, \infty)$ such that for all $n \geq 1$, all Λ and all $\mathbf{x} \in \mathcal{X}_{\Lambda}^{n}$:

$$N_I^n(\mathbf{x}) := \langle \delta_{\mathbf{x}}, P_I(H) \delta_{\mathbf{x}} \rangle \leq C e^{-\mu d(\mathbf{x}, \mathcal{C}^n)}$$
.

Theorem (Beaud/W. '17)

Let ψ be a state with $n \ge 1$ particles in the droplet spectrum, i.e. $\psi = P_l(H)\psi$ with

$$\sup I < 4\Delta - 12$$
.

Then for any $\alpha \in (0,1)$ there are constants $c_{\alpha}, C_{\alpha} \in (0,\infty)$ (which are independent of ψ and n) such that

$$\mathcal{S}_{\mathcal{B}}^{(lpha)}(\psi) \leq c_{lpha} \ln \min\{n, |\mathcal{B}|\} + C_{lpha}$$

for any non-vanishing interval $B \subset \Lambda$ and all Λ .

- **Extension** to ψ not necessarily of fixed particle number.
- Applies to **quantum quench**, i.e. $\psi_t = e^{-itH} \psi$ with ψ as above.

$$\begin{aligned} & \operatorname{Tr}\left[\left(\varrho_{\mathcal{B}}\right)^{\alpha}\right] \leq \sum_{m=0}^{\min\{n,|\mathcal{B}|\}} \sum_{\mathbf{x} \in \mathcal{X}_{\Lambda}^{m}} \langle \delta_{\mathbf{x}}, \left(\varrho_{\mathcal{B}}\right)^{\alpha} \delta_{\mathbf{x}} \rangle \\ & \leq 2 + \sum_{m=1}^{\min\{n,|\mathcal{B}|-1\}} \sum_{\mathbf{x} \in \mathcal{X}_{\Lambda}^{m}} \langle \delta_{\mathbf{x}}, \varrho_{\mathcal{B}} \delta_{\mathbf{x}} \rangle^{\alpha} \\ & \leq 2 + \sum_{m=1}^{\min\{n,|\mathcal{B}|-1\}} \sum_{\substack{\mathbf{x} \cap \mathcal{B} \neq \emptyset \\ \mathbf{x} \cap \mathcal{B}^{c} \neq \emptyset}} N_{I}^{m}(\mathbf{x})^{\alpha} \leq 2 + C_{\alpha} \sum_{m=1}^{\min\{n,|\mathcal{B}|-1\}} \sum_{\substack{\mathbf{x} \cap \mathcal{B} \neq \emptyset \\ \mathbf{x} \cap \mathcal{B}^{c} \neq \emptyset}} e^{-\mu_{\alpha} d(\mathbf{x}, \mathcal{C}^{m})} \\ & \leq c_{\alpha} + C_{\alpha} \min\{n, |\mathcal{B}|\} \end{aligned}$$

One relevant observation:

$$\sup_{\mathbf{v}\in\mathcal{C}^n}\sum_{\mathbf{x}\in\mathcal{X}^n_{\#}}e^{-\mu d(\mathbf{x},\mathbf{v})}\leqslant\frac{1}{1-e^{-\mu}}\left(\prod_{k=1}^{\infty}\frac{1}{1-e^{-k\mu}}\right)^2<\infty\,.$$

A note on the case with a non-negative (random) magnetic field

Adding a non-negative, random magnetic field in the 3 direction:

$$H_{\omega} = H + \sum_{x} \omega_{x} \left(1 - \sigma_{x}^{3} \right)$$

leaves the Combes-Thomas bound unchanged.

Random term on the *n* particle subspace is typically: $\mathcal{O}(n)$

Lemma (cf. Aizenman/W. '09)

Let $I=[0,\sup I]$ and $\lambda>0$. There are $C,c\in(0,\infty)$ s.t. for all n, L and $\mathbf{x}\in\mathcal{X}_{n}^{h}$:

$$\mathbb{E}\left[N_{l}^{n}(\mathbf{x})\right]\leqslant Ce^{-cn}.$$

Corollary:

$$\mathbb{E}\left[\sup_{\psi}\sup_{t\in\mathbb{R}}\ \exp\left\{\left(1-\alpha\right)\ S_{U}^{(\alpha)}\big[e^{-itH}\psi\big]\right\}\right]\leq C$$

where the supremum is taken over all normalized states in the droplet regime, i.e. $\psi = P_I(H)\psi$ with sup $I < 4\Delta - 12$.

A note on the case with a non-negative (random) magnetic field

Adding a **non-negative**, **random magnetic field** in the 3 direction:

$$H_{\omega} = H + \sum_{x} \omega_{x} \left(1 - \sigma_{x}^{3} \right)$$

leaves the Combes-Thomas bound unchanged.

Corollary:

$$\mathbb{E}\left[\sup_{\psi}\sup_{t\in\mathbb{R}}\ \exp\left\{\left(1-\alpha\right)\ S_{U}^{(\alpha)}\big[e^{-itH}\psi\big]\right\}\right]\leq C$$

where the supremum is taken over all normalized states in the droplet regime, i.e. $\psi = P_I(H)\psi$ with sup $I < 4\Delta - 12$.

Similar result for the XY spain chain: Abduhl-Rahman/Nachtergaele/Sims/Stolz '16 Thank you for organizing this nice event

in such a splendid location!