
Non-equilibrium
almost-stationary states

for interacting electrons on a lattice

Stefan Teufel, Universität Tübingen
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1. Example and setup

As a microscopic model for a quantum Hall system consider a system
of interacting fermions on the domain Λ, where Λ ⊂ Z2 is the
centred square of side-length L with the vertical edges identified.

A typical Hamiltonian could be of the form

HΛ
0 =

∑
(x ,y)∈Λ2

a∗x T (x
Λ

− y) ay +
∑
x∈Λ

a∗xφ(x)ax

+
∑
{x ,y}⊂Λ

a∗xax W (dΛ(x , y)) a∗yay − µNΛ ,

where a∗x ,i and ax ,i are standard fermionic creation and annihilation
operators at the sites x ∈ Λ.

In the following by a “local Hamiltonian” we mean a family
A = {AΛ}Λ of self-adjoint operators AΛ indexed by the system size Λ
and possibly other parameters that is a “sum of local terms”.
Typically

‖AΛ‖ ∼ |Λ| = Ld .
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1. Example and setup

Assume that H0 = {HΛ
0 } has a ground state that is gapped uniformly

in the system size |Λ|, i.e.

inf
Λ
dist

(
EΛ

0 , σ(HΛ
0 ) \ {EΛ

0 }
)

= g > 0 .

Now add the potential of an electric field of magnitude ε pointing in
the 2-direction,

V ε,Λ :=
∑
x∈Λ

ε x2 a
∗
xax .

Note that the potential difference of εL at the two edges is, for
sufficiently large system size L, larger than the spectral gap g . Thus,
the perturbed Hamiltonian

Hε,Λ := HΛ
0 + V ε,Λ

no longer has a meaningful gap above the ground state.
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1. Example and setup

Assume that initially the perturbation V ε,Λ is switched-off and the
system is in its ground state PΛ

0 .

Then slowly turn on the electric field.

Once the field has reached its final value, one expects that the
system is in a (almost) stationary state that, in particular, could
carry a stationary, non-vanishing Hall current along the closed
direction of the cylinder.

This state is not the ground state of Hε,Λ, nor is it any other
equilibrium state of Hε,Λ, since, for example, the local Fermi-levels at
the opposite edges are expected to be different.
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1. Example and setup

Heuristic picture suggesting the existence of a non-equilibrium
almost-stationary state (NEASS):



2. Results

Let H0 and H1 be families of self-adjoint local Hamiltonians, let H0

have a gapped ground state, let Vv be a slowly varying potential, and
put

H := H0 + Vv + εH1 .

Theorem (Non-equilibrium almost-stationary states)

There is a sequence of self-adjoint local Hamiltonians Sn, such that
for any n ∈ N the projector

Πε,Λ
n := eiεS

ε,Λ
n PΛ

0 e−iεS
ε,Λ
n

satisfies
[Πε,Λ

n ,Hε,Λ] = εn+1 [Πε,Λ
n ,Rε,Λn ]

for some local Rn.

...
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Theorem (Non-equilibrium almost-stationary states)

There is a sequence of self-adjoint local Hamiltonians Sn, such that
for any n ∈ N the projector

Πε,Λ
n := eiεS

ε,Λ
n PΛ

0 e−iεS
ε,Λ
n

satisfies
[Πε,Λ

n ,Hε,Λ] = εn+1 [Πε,Λ
n ,Rε,Λn ]

for some local Rn.

Let ρε,Λ(t) be the solution of the Schrödinger equation

i ddt ρ
ε,Λ(t) = [Hε,Λ, ρε,Λ(t)] with ρε,Λ(0) = Πε,Λ

n .

Then there is a constant C independent of Λ such that for any local
Hamiltonian B it holds that

sup
Λ

1
|Λ|

∣∣∣tr(ρε,Λ(t)BΛ
)
− tr

(
Πε,Λ
n BΛ

)∣∣∣ ≤ C εn+1 |t|(1 + |t|d) ‖|B‖| .



2. Results

Let f : R→ [0, 1] be a smooth “switching” function, i.e. f (t) = 0 for
t ≤ 0 and f (t) = 1 for t ≥ T > 0, and define

H(t) := H0 + f (t)(Vv + εH1) .

Theorem (Adiabatic switching)

The solution of the adiabatic time-dependent Schrödinger equation

iε
d

dt
ρε,Λ(t) = [Hε,Λ(t), ρε,Λ(t)] with ρε,Λ(0) = PΛ

0

satisfies for all t ≥ T that for any n ∈ N there exists a constant C
such that for any local Hamiltonian B
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3. Example continued

In the quantum Hall example from the beginning take the current
operator

JΛ
1 = ∂α1H

Λ
0 (α)|α=0

as the observable.

Then the Hall current density satisfies

jΛ
Hall,1 =

1

|Λ|

(
tr(Πε,Λ

n JΛ
1 )− tr(PΛ

0 J
Λ
1 )
)

+O(εn−2)

=
ε

|Λ|
tr(Pε,Λ1 JΛ

1 ) +O(ε2) ,

uniformly in the system size.

Inserting the explicit expression for Pε,Λ1 , we obtain for the Hall
conductivity Kubo’s “current-current-correlation” formula

σΛ
Hall :=

jΛ
Hall,1

ε
=

i

|Λ|
tr
(
PΛ

0

[
∂α1P

Λ
0 (α)|α=0,

[
X2,P

Λ
0

]])
+O(ε) .
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4. Remarks

I If the perturbation and/or the observable are localized, the
result holds with the corresponding normalisation of the trace.

I We actually prove a general space-time adiabatic theorem,
similar to what we called space-adiabatic perturbation theory
long ago (Panati, Spohn, T. (2003)).

I The new proof in the context of interacting systems and error
bounds uniform in the system size is inspired by the recent
adiabatic theorem of Bachmann, de Roeck, Fraas (2017).

I The most important technical ingredient is the local inverse of
the Liouvillian that was constructed in the context of the
quasi-adiabatic evolution (aka spectral flow) based on
Lieb-Robinson bounds. (Hastings et al. (2005), Nachtergaele
et al. (2012))
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