Non-equilibrium almost-stationary states for interacting electrons on a lattice

Stefan Teufel, Universität Tübingen

Based on joint work with Domenico Monaco.
1. Example and setup

As a microscopic model for a quantum Hall system consider a system of interacting fermions on the domain Λ, where $\Lambda \subset \mathbb{Z}^2$ is the centred square of side-length L with the vertical edges identified.
1. Example and setup

As a microscopic model for a quantum Hall system consider a system of interacting fermions on the domain Λ, where $\Lambda \subset \mathbb{Z}^2$ is the centred square of side-length L with the vertical edges identified.
1. Example and setup

As a microscopic model for a quantum Hall system consider a system of interacting fermions on the domain Λ, where $\Lambda \subset \mathbb{Z}^2$ is the centred square of side-length L with the vertical edges identified.

A typical Hamiltonian could be of the form

$$H^\Lambda_0 = \sum_{(x,y) \in \Lambda^2} a^*_x T(x^\Lambda - y) a_y + \sum_{x \in \Lambda} a^*_x \phi(x) a_x$$

$$+ \sum_{\{x,y\} \subset \Lambda} a^*_x a_y \mathcal{W}(d^\Lambda (x, y)) a^*_y a_y - \mu \mathcal{N}_\Lambda ,$$

where $a^*_{x,i}$ and $a_{x,i}$ are standard fermionic creation and annihilation operators at the sites $x \in \Lambda$.
1. Example and setup

As a microscopic model for a quantum Hall system consider a system of interacting fermions on the domain Λ, where $\Lambda \subset \mathbb{Z}^2$ is the centred square of side-length L with the vertical edges identified.

A typical Hamiltonian could be of the form

$$H_0^\Lambda = \sum_{(x,y) \in \Lambda^2} a_x^* T(\Lambda^x - y) a_y + \sum_{x \in \Lambda} a_x^* \phi(x) a_x$$

$$+ \sum_{\{x,y\} \subset \Lambda} a_x^* a_x \mathcal{W}(d^\Lambda(x,y)) a_y^* a_y - \mu \mathcal{N}_\Lambda,$$

where $a_{x,i}^*$ and $a_{x,i}$ are standard fermionic creation and annihilation operators at the sites $x \in \Lambda$.

In the following by a “local Hamiltonian” we mean a family $A = \{A^\Lambda\}_\Lambda$ of self-adjoint operators A^Λ indexed by the system size Λ and possibly other parameters that is a “sum of local terms”. Typically

$$\|A^\Lambda\| \sim |\Lambda| = L^d.$$
1. Example and setup

Assume that $H_0 = \{H_0^\Lambda\}$ has a ground state that is gapped uniformly in the system size $|\Lambda|$, i.e.

$$\inf_{\Lambda} \text{dist} \left(E_0^\Lambda, \sigma(H_0^\Lambda) \setminus \{E_0^\Lambda\} \right) = g > 0.$$
1. Example and setup

Assume that \(H_0 = \{ H_0^\Lambda \} \) has a ground state that is gapped uniformly in the system size \(|\Lambda|\), i.e.

\[
\inf_{\Lambda} \text{dist} \left(E_0^\Lambda, \sigma(H_0^\Lambda) \setminus \{ E_0^\Lambda \} \right) = g > 0.
\]

Now add the potential of an electric field of magnitude \(\varepsilon \) pointing in the 2-direction,

\[
V^{\varepsilon,\Lambda} := \sum_{x \in \Lambda} \varepsilon x_2 a_x^* a_x.
\]
1. Example and setup

Assume that $H_0 = \{H_0^\Lambda\}$ has a ground state that is gapped uniformly in the system size $|\Lambda|$, i.e.

$$\inf_{\Lambda} \text{dist} \left(E_0^\Lambda, \sigma(H_0^\Lambda) \setminus \{E_0^\Lambda\} \right) = g > 0.$$

Now add the potential of an electric field of magnitude ε pointing in the 2-direction,

$$V^{\varepsilon,\Lambda} := \sum_{x \in \Lambda} \varepsilon x_2 a_x^* a_x.$$

Note that the potential difference of εL at the two edges is, for sufficiently large system size L, larger than the spectral gap g. Thus, the perturbed Hamiltonian

$$H^{\varepsilon,\Lambda} := H_0^\Lambda + V^{\varepsilon,\Lambda}$$

no longer has a meaningful gap above the ground state.
1. Example and setup

Assume that initially the perturbation $V^{\varepsilon,\Lambda}$ is switched-off and the system is in its ground state P_0^Λ.
1. Example and setup

Assume that initially the perturbation $V^{\varepsilon,\Lambda}$ is switched-off and the system is in its ground state P^Λ_0.

Then slowly turn on the electric field.
1. Example and setup

Assume that initially the perturbation $V^{\epsilon, \Lambda}$ is switched-off and the system is in its ground state P_0^Λ.

Then slowly turn on the electric field.

Once the field has reached its final value, one expects that the system is in a (almost) stationary state that, in particular, could carry a stationary, non-vanishing Hall current along the closed direction of the cylinder.
1. Example and setup

Assume that initially the perturbation $V^{\varepsilon,\Lambda}$ is switched-off and the system is in its ground state P_0^Λ.

Then slowly turn on the electric field.

Once the field has reached its final value, one expects that the system is in a (almost) stationary state that, in particular, could carry a stationary, non-vanishing Hall current along the closed direction of the cylinder.

This state is not the ground state of $H^{\varepsilon,\Lambda}$, nor is it any other equilibrium state of $H^{\varepsilon,\Lambda}$, since, for example, the local Fermi-levels at the opposite edges are expected to be different.
1. Example and setup

x_2

Hall current

x_1

electric field ε
1. Example and setup

Heuristic picture suggesting the existence of a non-equilibrium almost-stationary state (NEASS):
2. Results

Let H_0 and H_1 be families of self-adjoint local Hamiltonians, let H_0 have a gapped ground state, let V_ν be a slowly varying potential, and put

$$H := H_0 + V_\nu + \epsilon H_1.$$
Let H_0 and H_1 be families of self-adjoint local Hamiltonians, let H_0 have a gapped ground state, let V_ν be a slowly varying potential, and put

$$H := H_0 + V_\nu + \epsilon H_1.$$

Theorem (Non-equilibrium almost-stationary states)

There is a sequence of self-adjoint local Hamiltonians S_n, such that for any $n \in \mathbb{N}$ the projector

$$\Pi_{\epsilon, \Lambda} := e^{i\epsilon S_{\epsilon, \Lambda}} P_0 e^{-i\epsilon S_{\epsilon, \Lambda}}$$

satisfies

$$[\Pi_{\epsilon, \Lambda}, H_{\epsilon, \Lambda}] = \epsilon^{n+1} [\Pi_{\epsilon, \Lambda}, R_{\epsilon, \Lambda}]$$

for some local R_n.

...
2. Results

Theorem (Non-equilibrium almost-stationary states)

There is a sequence of self-adjoint local Hamiltonians S_n, such that for any $n \in \mathbb{N}$ the projector

$$\Pi_{\varepsilon, \Lambda}^{\varepsilon, \Lambda} := e^{i\varepsilon S_{\varepsilon, \Lambda}^n} P_0 e^{-i\varepsilon S_{\varepsilon, \Lambda}^n}$$

satisfies

$$[\Pi_{\varepsilon, \Lambda}^{\varepsilon, \Lambda}, H_{\varepsilon, \Lambda}] = \varepsilon^{n+1} [\Pi_{\varepsilon, \Lambda}^{\varepsilon, \Lambda}, R_{\varepsilon, \Lambda}]$$

for some local R_n.

Let $\rho_{\varepsilon, \Lambda}(t)$ be the solution of the Schrödinger equation

$$i \frac{d}{dt} \rho_{\varepsilon, \Lambda}(t) = [H_{\varepsilon, \Lambda}, \rho_{\varepsilon, \Lambda}(t)] \quad \text{with} \quad \rho_{\varepsilon, \Lambda}(0) = \Pi_{\varepsilon, \Lambda}^{\varepsilon, \Lambda}.$$

Then there is a constant C independent of Λ such that for any local Hamiltonian B it holds that

$$\sup_{\Lambda} \frac{1}{|\Lambda|} \left| \text{tr} \left(\rho_{\varepsilon, \Lambda}(t) B^\Lambda \right) - \text{tr} \left(\Pi_{\varepsilon, \Lambda}^{\varepsilon, \Lambda} B^\Lambda \right) \right| \leq C \varepsilon^{n+1} |t|(1 + |t|^d) \|B\|.$$
2. Results

Let \(f : \mathbb{R} \rightarrow [0, 1] \) be a smooth “switching” function, i.e. \(f(t) = 0 \) for \(t \leq 0 \) and \(f(t) = 1 \) for \(t \geq T > 0 \), and define

\[
H(t) := H_0 + f(t)(V_v + \varepsilon H_1).
\]
2. Results

Let \(f : \mathbb{R} \to [0, 1] \) be a smooth “switching” function, i.e. \(f(t) = 0 \) for \(t \leq 0 \) and \(f(t) = 1 \) for \(t \geq T > 0 \), and define

\[
H(t) := H_0 + f(t)(V_v + \varepsilon H_1).
\]

Theorem (Adiabatic switching)

The solution of the adiabatic time-dependent Schrödinger equation

\[
i\varepsilon \frac{d}{dt} \rho^{\varepsilon, \Lambda}(t) = [H^{\varepsilon, \Lambda}(t), \rho^{\varepsilon, \Lambda}(t)] \quad \text{with} \quad \rho^{\varepsilon, \Lambda}(0) = P_0^\Lambda
\]

satisfies for all \(t \geq T \) that for any \(n \in \mathbb{N} \) there exists a constant \(C \) such that for any local Hamiltonian \(B \)

\[
\sup_{\Lambda} \frac{1}{|\Lambda|} \left| \mathrm{tr} \left(\rho^{\varepsilon, \Lambda}(t) B^\Lambda \right) - \mathrm{tr} \left(\Pi_n^{\varepsilon, \Lambda} B^\Lambda \right) \right| \leq C \varepsilon^{n-d} |t|(1 + |t|^d) \|B\|.
\]
3. Example continued

In the quantum Hall example from the beginning take the current operator
\[J_1^\Lambda = \partial_{\alpha_1} H_0^\Lambda(\alpha)|_{\alpha=0} \]
as the observable.
3. Example continued

In the quantum Hall example from the beginning take the current operator

\[J_1^\Lambda = \partial_{\alpha_1} H_0^\Lambda (\alpha) |_{\alpha=0} \]

as the observable. Then the Hall current density satisfies

\[j_{\text{Hall},1}^\Lambda \equiv \frac{1}{|\Lambda|} \left(\text{tr} (\prod_n^{\xi,\Lambda} J_1^\Lambda) - \text{tr} (P_0^\Lambda J_1^\Lambda) \right) + O(\varepsilon^{n-2}) \]
3. Example continued

In the quantum Hall example from the beginning take the current operator

\[J_1^\Lambda = \partial_{\alpha_1} H_0^\Lambda (\alpha)|_{\alpha=0} \]

as the observable. Then the Hall current density satisfies

\[j_{\text{Hall}}^{\Lambda,1} = \frac{1}{|\Lambda|} \left(\text{tr}(\prod_n P_{n}^{\Lambda,1} J_1^{\Lambda}) - \text{tr}(P_0^{\Lambda} J_1^{\Lambda}) \right) + O(\varepsilon^{n-2}) \]

\[= \frac{\varepsilon}{|\Lambda|} \text{tr}(P_1^{\Lambda,1} J_1^{\Lambda}) + O(\varepsilon^2), \]

uniformly in the system size.
In the quantum Hall example from the beginning take the current operator

\[J_1^\Lambda = \partial_{\alpha_1} H_0^\Lambda (\alpha)|_{\alpha=0} \]

as the observable. Then the Hall current density satisfies

\[
 j_{\text{Hall},1}^\Lambda = \frac{1}{|\Lambda|} \left(\text{tr}(\Pi_n^\varepsilon,^\Lambda J_1^\Lambda) - \text{tr}(P_0^\Lambda J_1^\Lambda) \right) + O(\varepsilon^{n-2})
\]

\[
 = \frac{\varepsilon}{|\Lambda|} \text{tr}(P_1^{\varepsilon,^\Lambda} J_1^\Lambda) + O(\varepsilon^2),
\]

uniformly in the system size.

Inserting the explicit expression for \(P_1^{\varepsilon,^\Lambda} \), we obtain for the Hall conductivity Kubo’s “current-current-correlation” formula

\[
 \sigma_{\text{Hall}}^\Lambda := \frac{j_{\text{Hall},1}^\Lambda}{\varepsilon} = \frac{1}{|\Lambda|} \text{tr} \left(P_0^\Lambda \left[\partial_{\alpha_1} P_0^\Lambda (\alpha)|_{\alpha=0}, \left[X_2, P_0^\Lambda \right] \right] \right) + O(\varepsilon).
\]
4. Remarks

- If the perturbation and/or the observable are localized, the result holds with the corresponding normalisation of the trace.
4. Remarks

- If the perturbation and/or the observable are localized, the result holds with the corresponding normalisation of the trace.

- We actually prove a general **space-time adiabatic theorem**, similar to what we called **space-adiabatic perturbation theory** long ago ([Panati, Spohn, T. (2003)]).
4. Remarks

- If the perturbation and/or the observable are localized, the result holds with the corresponding normalisation of the trace.

- We actually prove a general **space-time adiabatic theorem**, similar to what we called **space-adiabatic perturbation theory** long ago (Panati, Spohn, T. (2003)).

- The new proof in the context of interacting systems and error bounds uniform in the system size is inspired by the recent adiabatic theorem of Bachmann, de Roeck, Fraas (2017).
4. Remarks

- If the perturbation and/or the observable are localized, the result holds with the corresponding normalisation of the trace.

- We actually prove a general space-time adiabatic theorem, similar to what we called space-adiabatic perturbation theory long ago (Panati, Spohn, T. (2003)).

- The new proof in the context of interacting systems and error bounds uniform in the system size is inspired by the recent adiabatic theorem of Bachmann, de Roeck, Fraas (2017).

- The most important technical ingredient is the local inverse of the Liouvillian that was constructed in the context of the quasi-adiabatic evolution (aka spectral flow) based on Lieb-Robinson bounds. (Hastings et al. (2005), Nachtergaele et al. (2012))
5. References

Thanks for your attention!
5. References

5. References

5. References

5. References

5. References

Thanks for your attention!