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Hamiltonian systems

A general Hamiltonian system is comprised of the following.
(1) Phase space Γ. We denote its elements by φ.
(2) Hamilton (energy) function H ∈ C∞(Γ).
(3) Poisson bracket {·, ·} defined on C∞(Γ)× C∞(Γ).

Antisymmetric : {f, g} = −{g, f}.
Distributive : {f + g, h} = {f, h}+ {g, h}.
Leibniz rule : {fg, h} = {f, h}g + f{g, h}.
Jacobi identity : {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

The Hamiltonian flow φ 7→ φt of H on Γ is determined by the ODE

d

dt
f(φt) = {H, f}(φt)

for f ∈ C∞(Γ).
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NLS as a Hamiltonian system
Fix Λ = Rd or Λ = Td.
(1) Γ is the Sobolev space Hs(Λ) with norm
‖f‖Hs(Λ)

..= ‖(1 + |ξ|)s f̂(ξ)‖L2
ξ
.

(2) Hamilton function is

H(φ) =

∫
dx |∇φ(x)|2 +

1

2

∫
dx dy |φ(x)|2 w(x− y) |φ(y)|2 .

(3) Poisson bracket is

{φ(x), φ̄(y)} = iδ(x− y) , {φ(x), φ(y)} = {φ̄(x), φ̄(y)} = 0 .

Hamiltonian equations of motion are given by the nonlinear Hartree equation

i∂tφt(x) + ∆φt(x) =

∫
dy w(x− y) |φt(y)|2 φt(x) .

If w = δ, this is the cubic nonlinear Schrödinger equation (NLS).

i∂tφt(x) + ∆φt(x) = |φt(x)|2 φt(x) .
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Gibbs measures for the NLS

Fix Λ = Td for d = 1, 2, 3 and w > 0.
The Gibbs measure dµ associated to H is the probability measure on
the space of fields φ : Λ→ C

µ(dφ) ..=
1

Z
e−H(φ) dφ , Z ..=

∫
e−H(φ) dφ .

dφ = (formally-defined) Lebesgue measure.
Formally, dµ is invariant under the flow of the NLS.

Rigorous construction: CQFT literature in the 1970-s (Nelson,
Glimm-Jaffe, Simon), also Lebowitz-Rose-Speer (1988).
Proof of invariance: Bourgain and Zhidkov (1990s).
Application to PDE: Obtain low-regularity solutions of NLS µ-almost
surely.
Recent advances: Bourgain-Bulut, Burq-Thomann-Tzvetkov, Cacciafesta-
de Suzzoni, Deng, Genovese-Lucà-Valeri,
Nahmod-Oh-Rey-Bellet-Staffilani,
Nahmod-Rey-Bellet-Sheffield-Staffilani, Oh-Quastel, Thomann-Tzvetkov,
Tzvetkov, ...
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The Wiener measure

Define Wiener measure dµ0

µ0(dφ) ..=
1

Z0
e−

∫
dx |∇φ(x)|2 dφ , Z0

..=
∫

e−
∫

dx |∇φ(x)|2 dφ .

Write ak ..= φ̂(k) and d2ak
..= d Imak d Reak.

µ0(dφ) =
∏
k∈Zd

e−c|k|
2|ak|2d2ak∫

e−c|k|2|ak|2d2ak
.

For φ ∈ supp dµ0, |k|ak = |k|φ̂(k) has a Gaussian distribution.

φ ≡ φω =
∑
k ∈Zd

gk(ω)

|k|
e2πik·x , (gk) = i.i.d. complex Gaussians.

→ Gaussian free field .
Avoid problems with mode k = 0. For κ > 0 replace

∆ 7→ ∆− κ, |k| 7→
√
|k|2 + κ .
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The Wiener measure

Question: What is the Sobolev regularity of a typical element in the
support of dµ0?
Equivalent question: What is the Sobolev regularity of φω?
Compute

Eµ0‖φω‖2Hs =
∑
k∈Zd

(|k|2 + 1)s
Eµ0

(
|gk|2

)
|k|2 + κ

∼
∑
k∈Zd

(|k|2 + 1)s−1 .

Finite if and only if s < 1− d
2 .

One has

µ0(Hs) =

{
1 if s < 1− d

2

0 otherwise .

If w > 0 we expect Gibbs measure dµ to be absolutely continuous with
respect to dµ0.
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The classical system and Gibbs measures

The classical interaction is W ..= 1
2

∫
dxdy |φω(x)|2 w(x− y) |φω(y)|2.

Finite almost surely if d = 1 and w ∈ L∞(T).
For d = 2, 3, W is infinite almost surely even if w ∈ L∞(Td):
Perform a renormalization in the form of Wick ordering . Formally
replace W by the Wick-ordered classical interaction

Ww ..=
1

2

∫
dx dy

(
|φω(x)|2 −∞

)
w(x− y)

(
|φω(y)|2 − ∞

)
.

Rigorously defined as limit in
⋂
m>1 L

m(dµ0) of truncations

W[K]
..=

1

2

∫
dx dy

(
|φω[K](x)|2 − %K

)
w(x− y)

(
|φω[K](y)|2 − %K

)
, for

φω[K](x) ..=
∑
|k| 6 K

gk(ω)√
|k|2 + κ

e2πik·x , %K(x) ..= Eµ0 |φω[K](x)|2 .
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The classical system and Gibbs measures

Given X ≡ X(ω) a random variable, let

ρ(X) ..=
∫
X e−W dµ0∫
e−W dµ0

=

∫
X dµ .

On the space
H(p) ..= L2

sym

(
(Td)p

)
,

define the classical p-particle correlation function γp by

γp(x1, . . . , xp; y1, . . . , yp)
..= ρ

(
φω(y1) · · ·φω(yp)φ

ω(x1) · · ·φω(xp)
)
.
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Derivation of Gibbs measures: informal statement
Formally, NLS is a classical limit of quantum many-body theory.

On H(n) we consider the n-particle Hamiltonian

H(n) ..=
n∑
i=1

(
−∆xi + κ

)
+

1

n

∑
16i<j6n

w(xi − xj) .

Solve many-body Schrödinger equation i∂tΨn,t = H(n)Ψn,t and obtain

Ψn,0 ∼ φ⊗n0 implies Ψn,t ∼ φ⊗nt .

Problem: Obtain Gibbs measure dµ as limit of quantum many-body
equilibrium states .

At temperature τ > 0 , equilibrium of H(n) is governed by the Gibbs state

1

Z
(n)
τ

e−H
(n)/τ , Z(n)

τ
..= Tr e−H

(n)/τ .

Goal: Obtain correlation functions γp in limit as τ = n→∞.
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The quantum problem: d = 1

Consider first d = 1.
Work on the Bosonic Fock space

F ..=
⊕
n∈N

H(n)

with quantum Hamiltonian

Hτ
..=

1

τ

⊕
n∈N

H(n) .

On F define the grand canonical ensemble by

Pτ
..= e−Hτ .

Consider the p-particle correlation function of Pτ

γτ,p
..=

1

Tr(Pτ )

∑
n>p

n(n− 1) · · · (n− p+ 1)

τp
Trp+1,...,n

(
e−H

(n)/τ
)
.

(∼ Quantum analogue of γp obtained from Pτ ).
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Second quantization

Rewrite γτ,p using second-quantized notation.
Introduce quantum fields (operator-valued distributions) φτ , φ∗τ on F
satisfying

[φτ (x), φ∗τ (y)] =
1

τ
δ(x− y) , [φτ (x), φτ (y)] = [φ∗τ (x), φ∗τ (y)] = 0 .

Given A ∈ L(F) we define its expectation

ρτ (A) ..=
Tr(APτ )

Tr(Pτ )
.

We can write

γτ,p(x1, . . . , xp; y1, . . . , yp) = ρτ
(
φ∗τ (y1) · · ·φ∗τ (yp)φτ (x1) · · ·φτ (xp)

)
.
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Derivation of Gibbs measures: statement of result

Theorem 1: Fröhlich, Knowles, Schlein, S.
(preprint 2016; to appear in CMP).
Fix w ∈ L∞(Td) with w > 0.

(i) [After Lewin-Nam-Rougerie (2015) ]
Let d = 1. Then for all p ∈ N we have

γτ,p → γp as τ →∞ .

The convergence is in the trace class.
(ii) Let d = 2, 3. The convergence holds in the Hilbert-Schmidt class after an

appropriate renormalization procedure and with a slight modification of
the grand canonical ensemble Pτ (needed for technical reasons).

1D result: previously shown using different techniques by
Lewin-Nam-Rougerie (J. Éc. Polytech. Math., 2015). In higher dimensions,
they consider non local, non translation-invariant interactions.
Lewin-Nam-Rougerie (2017) : 1D problem with subharmonic trapping.
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The high-temperature limit in the free case

Examine the limit τ →∞ in the free case w = 0.
Define the rescaled particle number operator by

Nτ ..=
1

τ

⊕
n∈N

nIH(n) =

∫
dxφ∗τ (x)φτ (x) .

We have

ρτ (Nτ ) =
∑
k∈Zd

1

τ
(
e
|k|2+κ
τ − 1

) ∼


1 if d = 1

log τ if d = 2

τ1/2 if d = 3 .

→ Need to renormalize when d = 2, 3.

V. Sohinger (University of Zürich) Gibbs measures of NLS as quantum limits Venice meeting 13 / 23



Renormalization in the quantum problem
Consider the quantum problem for d = 2, 3.

On F define the free quantum Hamiltonian

Hτ,0
..=

1

τ

⊕
n∈N

H
(n)
0 ,

where H(n)
0

..=
∑n
i=1(−∆xi + κ).

Given A ∈ L(F) let

ρτ,0(A) ..=
Tr(A e−Hτ,0)

Tr(e−Hτ,0)
.

The Wick-ordered many-body Hamiltonian is

Hτ
..= Hτ,0 +Wτ , for

Wτ
..=

1

2

∫
dx dy

(
φ∗τ (x)φτ (x)− %τ (x)

)
w(x− y)

(
φ∗τ (y)φτ (y)− %τ (y)

)
.

%τ (x) ..= ρτ,0
(
φ∗τ (x)φτ (x)

)
= %τ (0)→∞ as τ →∞ .
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Idea of the proof: perturbative expansion

Our proof is based on a perturbative expansion in the interaction.
Example: Consider the classical partition function

A(z) ..=
∫

e−zW dµ0

and the quantum partition function

Aτ (z) ..=
Tr
(
e−ηHτ,0 e−(1−2η)Hτ,0−zWτ e−ηHτ,0

)
Tr(e−Hτ,0)

, η ∈ [0, 1/4] .

Our goal is to prove that

lim
τ→∞

Aτ (z) = A(z) for Re z > 0 .

Problem: The series expansions

A(z) =

M−1∑
m=0

amz
m +RM (z) , Aτ (z) =

M−1∑
m=0

aτ,mz
m +Rτ,M (z)

have radius of convergence zero.
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Idea of proof: Borel summation

Recover A(z), Aτ (z) from their coefficients by Borel summation.
Given a formal power series

A(z) =
∑
m>0

αmz
m

its Borel transform is
B(z) ..=

∑
m>0

αm
m!

zm .

Formally we have

A(z) =

∫ ∞
0

dt e−t B(tz) .

By a result of Sokal (1980) the method applies provided that{
|am|+ |aτ,m| 6 Cmm!

|RM (z)|+ |Rτ,M (z)| 6 CMM !|z|M for Re z > 0 .
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The quantum Wick theorem

Compute aτ,m by repeatedly applying Duhamel’s formula.
Rewrite aτ,m using the quantum Wick theorem

1

Tr(e−Hτ,0)
Tr
(
φ∗τ (x1) · · ·φ∗τ (xk)φτ (y1) · · ·φτ (yk) e−Hτ,0

)
=

∑
π∈Sk

k∏
j=1

1

Tr(e−Hτ,0)
Tr
(
φ∗τ (xj)φτ (yπ(j)) e−Hτ,0

)
.

Factors are

1

Tr(e−Hτ,0)
Tr
(
φ∗τ (x)φτ (y) e−Hτ,0

)
= Gτ (x; y) ,

where
Gτ =

1

τ
(
e(−∆+κ)/τ − 1

)
is the quantum Green function.
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The graph structure: Setup

Obtain a graph structure .
Each occurrence of φ∗τ (v) and φτ (v) gives rise to a vertex.
Join vertices according to quantum Wick theorem.
Total number of graphs is at most (2m)! = O(Cmm!2).
Obtain gain of 1

m! from the time integral∫ 1

0

dt1

∫ t1

0

dt2 · · ·
∫ tm−1

0

dtm =
1

m!
.

Conclude that |aτ,m| 6 Cmm!.
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The graph structure: Example

Figure: Some examples of the possible graphs when m = 2.
For d = 2, 3, no two vertically adjacent vertices are joined due to Wick ordering.
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Time-dependent correlations

Let (Γ, H, {·, ·}) be a Hamiltonian system.
µ(dφ) ..= 1

Z e−H(φ) dφ, the associated Gibbs measure.
St

..= flow map of H.
Given m ∈ N , observables X1, . . . , Xm ∈ C∞(Γ), and times
t1, . . . , tm ∈ R, define the m-particle time-dependent correlation
function

Qµ(X1, . . . , Xm; t1, . . . , tm) ..=
∫
X1(St1φ) · · · Xm(Stmφ) dµ .

Goal: Obtain a derivation of Qµ from quantum many-body expectation
values in the setting where St is the flow of the cubic NLS on T1.
St is globally defined on Γ ..= L2(T1) (Bourgain, 1993).
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Time-dependent correlations

Given an observable X ∈ C∞(Γ), define the time-evolved observable
ΨtX ∈ C∞(Γ) according to

ΨtX(φ) ..= X(Stφ) .

Theorem 2: Fröhlich, Knowles, Schlein, S. (preprint 2017).
Given m ∈ N, observables Xj ∈ C∞(Γ) and times tj , we have

ρτ

(
Ψt1
τ X

1
τ · · · Ψtm

τ Xm
τ

)
→ ρ

(
Ψt1X1 · · · ΨtmXm

)
as τ →∞ ,

with appropriately defined quantum objects.

Theorem 1 in 1D corresponds to Theorem 2 with m = 1.
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Idea of proof

Use an approximation argument to reduce to showing that

ρτ

(
Ψt1
τ X

1
τ · · · Ψtm

τ Xm
τ F (Nτ )

)
→ ρ

(
Ψt1X1 · · · ΨtmXmF (N )

)
,

where N ..=
∫

dx |φω(x)|2 and F ∈ C∞c (R).
Presence of cut-off F does not allow direct application of Wick theorem.
Use the Helffer-Sjöstrand formula to write

F (N]) =
1

π

∫
C

dζ
∂ζ̄
[
(f(u) + ivf ′(u))χ(v)

]
N] − ζ

,

for ζ = u+ iv and appropriate χ ∈ C∞c (R).
Write for Re ζ < 0

1

N] − ζ
=

∫ ∞
0

dν eζν e−νN] .

Reduce to analysis from Theorem 1 with κ replaced by κ+ ν.
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Thank you for your attention!
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