Gibbs measures of nonlinear Schrödinger equations as limits of quantum many-body states in dimension $d \leq 3$.

Vedran Sohinger (University of Zürich)

joint work with
Jürg Fröhlich (ETH Zürich)
Antti Knowles (University of Geneva)
Benjamin Schlein (University of Zürich)

Quantissima in the Serenissima II August 23, 2017.

Hamiltonian systems

A general *Hamiltonian system* is comprised of the following.

- (1) Phase space Γ . We denote its elements by ϕ .
- (2) Hamilton (energy) function $H \in C^{\infty}(\Gamma)$.
- (3) Poisson bracket $\{\cdot,\cdot\}$ defined on $C^{\infty}(\Gamma) \times C^{\infty}(\Gamma)$.
 - Antisymmetric : $\{f,g\} = -\{g,f\}$.
 - Distributive : $\{f + g, h\} = \{f, h\} + \{g, h\}.$
 - Leibniz rule : $\{fg, h\} = \{f, h\}g + f\{g, h\}.$
 - Jacobi identity : $\{f, \{g, h\}\} + \{g, \{h, f\}\} + \{h, \{f, g\}\} = 0$.

The *Hamiltonian flow* $\phi \mapsto \phi_t$ of H on Γ is determined by the ODE

$$\frac{\mathrm{d}}{\mathrm{d}t}f(\phi_t) = \{H, f\}(\phi_t)$$

for $f \in C^{\infty}(\Gamma)$.

NLS as a Hamiltonian system

Fix $\Lambda = \mathbb{R}^d$ or $\Lambda = \mathbb{T}^d$.

- (1) Γ is the Sobolev space $H^s(\Lambda)$ with norm $\|f\|_{H^s(\Lambda)} := \|(1+|\xi|)^s \widehat{f}(\xi)\|_{L^2_{\varepsilon}}.$
- (2) Hamilton function is

$$H(\phi) \; = \; \int \mathrm{d}x \, |\nabla \phi(x)|^2 + \frac{1}{2} \int \mathrm{d}x \, \mathrm{d}y \, |\phi(x)|^2 \, w(x-y) \, |\phi(y)|^2 \, .$$

(3) Poisson bracket is

$$\{\phi(x), \bar{\phi}(y)\} \; = \; \mathrm{i} \delta(x-y) \, , \quad \{\phi(x), \phi(y)\} \; = \; \{\bar{\phi}(x), \bar{\phi}(y)\} \; = \; 0 \, .$$

Hamiltonian equations of motion are given by the nonlinear Hartree equation

$$\mathrm{i}\partial_t \phi_t(x) + \Delta \phi_t(x) = \int \mathrm{d}y \, w(x-y) \, |\phi_t(y)|^2 \, \phi_t(x) \, .$$

If $w = \delta$, this is the *cubic nonlinear Schrödinger equation (NLS)*.

$$i\partial_t \phi_t(x) + \Delta \phi_t(x) = |\phi_t(x)|^2 \phi_t(x).$$

Gibbs measures for the NLS

- Fix $\Lambda = \mathbb{T}^d$ for d = 1, 2, 3 and $w \ge 0$.
- The *Gibbs measure* $d\mu$ associated to H is the probability measure on the space of fields $\phi: \Lambda \to \mathbb{C}$

$$\mu(\mathrm{d}\phi) \; := \; \frac{1}{Z} \mathrm{e}^{-H(\phi)} \, \mathrm{d}\phi \,, \qquad Z \; := \; \int \mathrm{e}^{-H(\phi)} \, \mathrm{d}\phi \,.$$

 $d\phi$ = (formally-defined) Lebesgue measure.

- Formally, $d\mu$ is invariant under the flow of the NLS.
- Rigorous construction: CQFT literature in the 1970-s (Nelson, Glimm-Jaffe, Simon), also Lebowitz-Rose-Speer (1988).
- Proof of invariance: Bourgain and Zhidkov (1990s).
- Application to PDE: Obtain low-regularity solutions of NLS μ-almost surely.

Recent advances: Bourgain-Bulut, Burq-Thomann-Tzvetkov, Cacciafesta-de Suzzoni, Deng, Genovese-Lucà-Valeri,

Nahmod-Oh-Rey-Bellet-Staffilani,

Nahmod-Rey-Bellet-Sheffield-Staffilani, Oh-Quastel, Thomann-Tzvetkov, Tzvetkov, ...

The Wiener measure

• Define *Wiener measure* $\mathrm{d}\mu_0$

$$\mu_0(\mathrm{d}\phi) := \frac{1}{Z_0} \mathrm{e}^{-\int \mathrm{d}x \; |\nabla \phi(x)|^2} \, \mathrm{d}\phi \,, \qquad Z_0 := \int \mathrm{e}^{-\int \mathrm{d}x \; |\nabla \phi(x)|^2} \, \mathrm{d}\phi \,.$$

• Write $a_k := \widehat{\phi}(k)$ and $d^2 a_k := d \operatorname{Im} a_k d \operatorname{Re} a_k$.

$$\mu_0(\mathrm{d}\phi) = \prod_{k \in \mathbb{Z}^d} \frac{\mathrm{e}^{-c|k|^2 |a_k|^2} \mathrm{d}^2 a_k}{\int \mathrm{e}^{-c|k|^2 |a_k|^2} \mathrm{d}^2 a_k}.$$

• For $\phi \in \text{supp } d\mu_0$, $|k|a_k = |k|\widehat{\phi}(k)$ has a Gaussian distribution.

$$\phi \equiv \phi^{\omega} = \sum_{k \in \mathbb{Z}^d} \frac{g_k(\omega)}{|k|} e^{2\pi i k \cdot x}, \ (g_k) = \text{i.i.d. complex Gaussians.}$$

- → Gaussian free field
- Avoid problems with mode k = 0. For $\kappa > 0$ replace

$$\Delta \mapsto \Delta - \kappa, \quad |k| \mapsto \sqrt{|k|^2 + \kappa} \,.$$

The Wiener measure

- Question: What is the Sobolev regularity of a typical element in the support of $d\mu_0$?
- Equivalent question: What is the Sobolev regularity of ϕ^{ω} ?
- Compute

$$\mathbb{E}_{\mu_0} \|\phi^{\omega}\|_{H^s}^2 = \sum_{k \in \mathbb{Z}^d} (|k|^2 + 1)^s \frac{\mathbb{E}_{\mu_0} (|g_k|^2)}{|k|^2 + \kappa} \sim \sum_{k \in \mathbb{Z}^d} (|k|^2 + 1)^{s-1}.$$

Finite if and only if $s < 1 - \frac{d}{2}$.

One has

$$\mu_0(H^s) = \begin{cases} 1 & \text{if} \quad s < 1 - \frac{d}{2} \\ 0 & \text{otherwise} \end{cases}$$

• If $w \ge 0$ we expect Gibbs measure $d\mu$ to be absolutely continuous with respect to $d\mu_0$.

The classical system and Gibbs measures

- The classical interaction is $W := \frac{1}{2} \int dx dy |\phi^{\omega}(x)|^2 w(x-y) |\phi^{\omega}(y)|^2$.
- Finite almost surely if d=1 and $w \in L^{\infty}(\mathbb{T})$.
- For d=2,3,W is infinite almost surely even if $w\in L^\infty(\mathbb{T}^d)$: Perform a renormalization in the form of **Wick ordering**. Formally replace W by the Wick-ordered classical interaction

$$W^w := \frac{1}{2} \int dx \, dy \left(|\phi^{\omega}(x)|^2 - \infty \right) w(x - y) \left(|\phi^{\omega}(y)|^2 - \infty \right).$$

ullet Rigorously defined as limit in $igcap_{m\geqslant 1}L^m(\mathrm{d}\mu_0)$ of truncations

$$W_{[K]} := \frac{1}{2} \int \mathrm{d}x \, \mathrm{d}y \left(|\phi_{[K]}^{\omega}(x)|^2 - \varrho_K \right) w(x - y) \left(|\phi_{[K]}^{\omega}(y)|^2 - \varrho_K \right), \text{for}$$

$$\phi_{[K]}^{\omega}(x) \; := \; \sum_{|k| \, \leq \, K} \frac{g_k(\omega)}{\sqrt{|k|^2 + \kappa}} \, \mathrm{e}^{2\pi i k \cdot x} \,, \qquad \varrho_K(x) \; := \; \mathbb{E}_{\mu_0} \; |\phi_{[K]}^{\omega}(x)|^2 \,.$$

The classical system and Gibbs measures

• Given $X \equiv X(\omega)$ a random variable, let

$$\rho(X) := \frac{\int X e^{-\mathbf{W}} d\mu_0}{\int e^{-\mathbf{W}} d\mu_0} = \int X d\mu.$$

On the space

$$\mathfrak{H}^{(p)} := L^2_{\mathrm{sym}} \left((\mathbb{T}^d)^p \right),$$

define the *classical* p-particle correlation function γ_p by

$$\gamma_p(x_1,\ldots,x_p;y_1,\ldots,y_p) := \rho(\overline{\phi^\omega}(y_1)\cdots\overline{\phi^\omega}(y_p)\phi^\omega(x_1)\cdots\phi^\omega(x_p)).$$

Derivation of Gibbs measures: informal statement

Formally, NLS is a classical limit of quantum many-body theory.

• On $\mathfrak{H}^{(n)}$ we consider the *n*-particle Hamiltonian

$$H^{(n)} := \sum_{i=1}^{n} \left(-\Delta_{x_i} + \kappa \right) + \frac{1}{n} \sum_{1 \leqslant i < j \leqslant n} w(x_i - x_j).$$

• Solve many-body Schrödinger equation $i\partial_t \Psi_{n,t} = H^{(n)} \Psi_{n,t}$ and obtain

$$\Psi_{n,0} \, \sim \, \phi_0^{\otimes n} \quad \text{implies} \quad \Psi_{n,t} \, \sim \, \phi_t^{\otimes n} \, .$$

Problem: Obtain Gibbs measure $\mathrm{d}\mu$ as limit of quantum many-body equilibrium states .

• At temperature $\tau>0$, equilibrium of $H^{(n)}$ is governed by the *Gibbs state*

$$\frac{1}{Z_{\tau}^{(n)}} e^{-H^{(n)}/\tau}, \qquad Z_{\tau}^{(n)} := \operatorname{Tr} e^{-H^{(n)}/\tau}.$$

• Goal: Obtain correlation functions γ_p in limit as $\tau = n \to \infty$.

The quantum problem: d = 1

- Consider first d = 1.
- Work on the Bosonic Fock space

$$\mathcal{F} := \bigoplus_{n \in \mathbb{N}} \mathfrak{H}^{(n)}$$

with quantum Hamiltonian

$$H_{\tau} := \frac{1}{\tau} \bigoplus_{n \in \mathbb{N}} H^{(n)}.$$

• On F define the grand canonical ensemble by

$$P_{\tau} := \mathrm{e}^{-H_{\tau}}$$
.

• Consider the p-particle correlation function of P_{τ}

$$\gamma_{\tau,p} := \frac{1}{\operatorname{Tr}(P_{\tau})} \sum_{n \geqslant p} \frac{n(n-1)\cdots(n-p+1)}{\tau^p} \operatorname{Tr}_{p+1,\dots,n} \left(e^{-H^{(n)}/\tau} \right).$$

(\sim Quantum analogue of γ_p obtained from $P_{ au}$).

Second quantization

- Rewrite $\gamma_{\tau,p}$ using second-quantized notation.
- Introduce *quantum fields* (operator-valued distributions) $\phi_{\tau}, \phi_{\tau}^*$ on \mathcal{F} satisfying

$$[\phi_{\tau}(x), \phi_{\tau}^{*}(y)] = \frac{1}{\tau} \delta(x - y), \quad [\phi_{\tau}(x), \phi_{\tau}(y)] = [\phi_{\tau}^{*}(x), \phi_{\tau}^{*}(y)] = 0.$$

• Given $A \in \mathcal{L}(\mathcal{F})$ we define its expectation

$$\rho_{\tau}(\mathcal{A}) := \frac{\operatorname{Tr}(\mathcal{A}P_{\tau})}{\operatorname{Tr}(P_{\tau})}.$$

We can write

$$\gamma_{\tau,p}(x_1,\ldots,x_p;y_1,\ldots,y_p) = \rho_{\tau}(\phi_{\tau}^*(y_1)\cdots\phi_{\tau}^*(y_p)\phi_{\tau}(x_1)\cdots\phi_{\tau}(x_p)).$$

Derivation of Gibbs measures: statement of result

Theorem 1: Fröhlich, Knowles, Schlein, S. (preprint 2016; to appear in CMP).

Fix $w \in L^{\infty}(\mathbb{T}^d)$ with $w \geqslant 0$.

(i) [After Lewin-Nam-Rougerie (2015)] Let d=1. Then for all $p\in\mathbb{N}$ we have

$$\gamma_{ au,p} o \gamma_p$$
 as $au o \infty$.

The convergence is in the trace class.

(ii) Let d=2,3. The convergence holds in the Hilbert-Schmidt class after an appropriate renormalization procedure and with a slight modification of the grand canonical ensemble P_{τ} (needed for technical reasons).

1*D* result: previously shown using different techniques by Lewin-Nam-Rougerie (J. Éc. Polytech. Math., 2015). In higher dimensions, they consider non local, non translation-invariant interactions. Lewin-Nam-Rougerie (2017): 1*D* problem with subharmonic trapping.

The high-temperature limit in the free case

Examine the limit $\tau \to \infty$ in the *free case* w = 0.

Define the rescaled particle number operator by

$$\mathcal{N}_{\tau} := \frac{1}{\tau} \bigoplus_{n \in \mathbb{N}} n \mathbf{I}_{\mathfrak{H}^{(n)}} = \int dx \, \phi_{\tau}^{*}(x) \, \phi_{\tau}(x) \,.$$

We have

$$\rho_{\tau}(\mathcal{N}_{\tau}) = \sum_{k \in \mathbb{Z}^d} \frac{1}{\tau(e^{\frac{|k|^2 + \kappa}{\tau}} - 1)} \sim \begin{cases} 1 & \text{if } d = 1\\ \log \tau & \text{if } d = 2\\ \tau^{1/2} & \text{if } d = 3 \end{cases}.$$

 \rightarrow Need to renormalize when d=2,3.

Renormalization in the quantum problem

Consider the quantum problem for d = 2, 3.

ullet On ${\mathcal F}$ define the *free quantum Hamiltonian*

$$H_{\tau,0} := \frac{1}{\tau} \bigoplus_{n \in \mathbb{N}} H_0^{(n)},$$

where $H_0^{(n)} := \sum_{i=1}^n (-\Delta_{x_i} + \kappa)$.

• Given $A \in \mathcal{L}(\mathcal{F})$ let

$$\rho_{\tau,0}(\mathcal{A}) := \frac{\operatorname{Tr}(\mathcal{A} e^{-H_{\tau,0}})}{\operatorname{Tr}(e^{-H_{\tau,0}})}.$$

• The Wick-ordered many-body Hamiltonian is

$$H_{\tau} := H_{\tau,0} + W_{\tau}$$
, for

$$W_{\tau} := \frac{1}{2} \int \mathrm{d}x \, \mathrm{d}y \left(\phi_{\tau}^*(x) \phi_{\tau}(x) - \varrho_{\tau}(x) \right) w(x-y) \left(\phi_{\tau}^*(y) \phi_{\tau}(y) - \varrho_{\tau}(y) \right).$$

Idea of the proof: perturbative expansion

- Our proof is based on a perturbative expansion in the interaction.
- Example: Consider the classical partition function

$$A(z) := \int e^{-zW} d\mu_0$$

and the quantum partition function

$$A_{\tau}(z) := \frac{\operatorname{Tr}\left(e^{-\eta H_{\tau,0}} e^{-(1-2\eta)H_{\tau,0}-zW_{\tau}} e^{-\eta H_{\tau,0}}\right)}{\operatorname{Tr}(e^{-H_{\tau,0}})}, \quad \eta \in [0, 1/4].$$

Our goal is to prove that

$$\lim_{\tau \to \infty} A_{\tau}(z) = A(z) \text{ for } \operatorname{Re} z > 0.$$

Problem: The series expansions

$$A(z) \; = \; \sum_{m=0}^{M-1} a_m z^m + R_M(z) \,, \quad A_\tau(z) \; = \; \sum_{m=0}^{M-1} a_{\tau,m} z^m + R_{\tau,M}(z) \,$$

have radius of convergence zero.

Idea of proof: Borel summation

- Recover A(z), $A_{\tau}(z)$ from their coefficients by **Borel summation**.
- Given a formal power series

$$\mathcal{A}(z) = \sum_{m \geqslant 0} \alpha_m z^m$$

its Borel transform is

$$\mathcal{B}(z) := \sum_{m \geqslant 0} \frac{\alpha_m}{m!} z^m.$$

Formally we have

$$\mathcal{A}(z) = \int_0^\infty \mathrm{d}t \, \mathrm{e}^{-t} \, \mathcal{B}(tz) \,.$$

By a result of Sokal (1980) the method applies provided that

$$\begin{cases} |a_m| + |a_{\tau,m}| \; \leqslant \; C^m m! \\ |R_M(z)| + |R_{\tau,M}(z)| \; \leqslant \; C^M M! |z|^M \; \text{for } \operatorname{Re} z \; \geqslant \; 0 \, . \end{cases}$$

The quantum Wick theorem

- Compute $a_{\tau,m}$ by repeatedly applying Duhamel's formula.
- Rewrite $a_{\tau,m}$ using the *quantum Wick theorem*

$$\frac{1}{\operatorname{Tr}(e^{-H_{\tau,0}})} \operatorname{Tr}\left(\phi_{\tau}^{*}(x_{1}) \cdots \phi_{\tau}^{*}(x_{k}) \phi_{\tau}(y_{1}) \cdots \phi_{\tau}(y_{k}) e^{-H_{\tau,0}}\right)$$

$$= \sum_{\pi \in \mathcal{S}^{k}} \prod_{j=1}^{k} \frac{1}{\operatorname{Tr}(e^{-H_{\tau,0}})} \operatorname{Tr}\left(\phi_{\tau}^{*}(x_{j}) \phi_{\tau}(y_{\pi(j)}) e^{-H_{\tau,0}}\right).$$

Factors are

$$\frac{1}{\text{Tr}(e^{-H_{\tau,0}})} \, \text{Tr}\Big(\phi_{\tau}^*(x)\phi_{\tau}(y) \, e^{-H_{\tau,0}}\Big) \; = \; G_{\tau}(x;y) \,,$$

where

$$G_{ au} = \frac{1}{\tau \left(\mathrm{e}^{(-\Delta + \kappa)/\tau} - 1 \right)}$$

is the quantum Green function.

The graph structure: Setup

- Obtain a graph structure.
- Each occurrence of $\phi_{\tau}^*(v)$ and $\phi_{\tau}(v)$ gives rise to a vertex. Join vertices according to quantum Wick theorem.
- Total number of graphs is at most $(2m)! = \mathcal{O}(C^m m!^2)$.
- Obtain gain of $\frac{1}{m!}$ from the time integral

$$\int_0^1 dt_1 \int_0^{t_1} dt_2 \cdots \int_0^{t_{m-1}} dt_m = \frac{1}{m!}.$$

• Conclude that $|a_{\tau,m}| \leqslant C^m m!$.

The graph structure: Example

Figure: Some examples of the possible graphs when m=2. For d=2,3, no two vertically adjacent vertices are joined due to Wick ordering.

Time-dependent correlations

- Let $(\Gamma, H, \{\cdot, \cdot\})$ be a Hamiltonian system.
- \bullet $\mu(\mathrm{d}\phi) := \frac{1}{Z}\mathrm{e}^{-H(\phi)}\,\mathrm{d}\phi$, the associated Gibbs measure.
- $S_t := \text{flow map of } H$.
- Given $m \in \mathbb{N}$, observables $X^1, \ldots, X^m \in C^\infty(\Gamma)$, and times $t_1, \ldots, t_m \in \mathbb{R}$, define the m-particle time-dependent correlation function

$$\mathcal{Q}_{\mu}(X^1,\ldots,X^m;t_1,\ldots,t_m) := \int X^1(S_{t_1}\phi)\cdots X^m(S_{t_m}\phi)\,\mathrm{d}\mu.$$

- Goal: Obtain a derivation of Q_{μ} from quantum many-body expectation values in the setting where S_t is the flow of the cubic NLS on \mathbb{T}^1 .
- S_t is globally defined on $\Gamma := L^2(\mathbb{T}^1)$ (Bourgain, 1993).

Time-dependent correlations

Given an observable $X \in C^{\infty}(\Gamma)$, define the *time-evolved observable* $\Psi^t X \in C^{\infty}(\Gamma)$ according to

$$\Psi^t X(\phi) := X(S_t \phi).$$

Theorem 2: Fröhlich, Knowles, Schlein, S. (preprint 2017).

Given $m \in \mathbb{N}$, observables $X^j \in C^{\infty}(\Gamma)$ and times t_j , we have

$$\rho_\tau \Big(\Psi_\tau^{t_1} X_\tau^1 \, \cdots \, \Psi_\tau^{t_m} X_\tau^m \Big) \to \rho \Big(\Psi^{t_1} X^1 \, \cdots \, \Psi^{t_m} X^m \Big) \quad \text{as} \quad \tau \to \infty \,,$$

with appropriately defined quantum objects.

Theorem 1 in 1D corresponds to Theorem 2 with m = 1.

Idea of proof

Use an approximation argument to reduce to showing that

$$\rho_{\tau}\Big(\Psi_{\tau}^{t_1}X_{\tau}^1\,\cdots\,\Psi_{\tau}^{t_m}X_{\tau}^mF(\mathcal{N}_{\tau})\Big)\to\rho\Big(\Psi^{t_1}X^1\,\cdots\,\Psi^{t_m}X^mF(\mathcal{N})\Big)\,,$$

where $\mathcal{N} := \int \mathrm{d}x \, |\phi^{\omega}(x)|^2$ and $F \in C_c^{\infty}(\mathbb{R})$.

- Presence of cut-off F does not allow direct application of Wick theorem.
- Use the Helffer-Sjöstrand formula to write

$$F(\mathcal{N}_{\sharp}) = \frac{1}{\pi} \int_{\mathbb{C}} d\zeta \, \frac{\partial_{\zeta} \big[(f(u) + ivf'(u))\chi(v) \big]}{\mathcal{N}_{\sharp} - \zeta} \,,$$

for $\zeta = u + \mathrm{i} v$ and appropriate $\chi \in C_c^\infty(\mathbb{R})$.

• Write for $\operatorname{Re} \zeta < 0$

$$\frac{1}{\mathcal{N}_{\sharp} - \zeta} = \int_0^{\infty} d\nu \, e^{\zeta \nu} \, e^{-\nu \mathcal{N}_{\sharp}} .$$

Reduce to analysis from Theorem 1 with κ replaced by $\kappa + \nu$.

Thank you for your attention!