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PREFACE: POINT INTERACTIONS

Point interactions are ubiquitously used in physics, as effective models whenever the
range of the interparticle interactions is much shorter than other relevant length scales.

Examples: Nuclear physics, polaron models, cold atomic gases, ...

Roughly speaking, one tries to make sense of a formal Hamiltonian of the form

1
H:—ZQmACEZ + Z ’%’jé(ﬂ?i—ﬂﬁj) ; x; ERB
i=1 L 1<i<j<N

The problem is completely understood for N = 2, but there are many open questions for
N > 3:

e Does there exist a suitable self-adjoint Hamiltonian modeling point interactions
between pairs of particles?

e If yes, is it stable, i.e., bounded from below?
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THE N = 2 PROBLEM

Separating the center-of-mass motion, one can rigorously define —A + ~d(x) via self-
adjoint extensions of —A on C§°(R?\ {0}).

There exists a one-parameter family of such extensions, denoted by h, for a € R, with

§
p*+p

D(h,) = {w e L*(R%) |4 (p) = ¢(p) + ¢ € H*(R?), / 6= (a+21%/n) 5}

for p > 0 and
(ha + )¢ = (A + p)¢
Functions in D(h,,) satisfy

~ (2 ] 1 0
Y(z) ~ (m + a) PIEE + o(1) as |z| —

hence o = —27?/a with a the scattering length of the pair interaction.
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THE N = 2 PROBLEM, CONTINUED

One checks that
0 fora >0

—(O‘)2 fora <0

272

inf spec h, = {
Moreover, the quadratic form for the energy reads
(Wlhat)) = Ea(¥) = (8] (=A + ) ¢) — pl[9[|* + €% (a + 27° /1)

with

§
p* + p

D(E,) = {w e L(B%) | d(p) = d(p) + ———, ¢ ¢ H'(RY), ¢ € c}

The Hamiltonians h, can be obtained by a suitable limiting procedure, e.g., taking
R — 0 for —A + Vg (x) with

N R™2 for|z| <R
Va(e) = - (Z + 25) { 0 for x| > R
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STABILITY FOR IN > 2

It is known that stability fails, in general, for N > 3, unless the particles are fermions.
This is known as the Thomas effect. It is closely related to the Efimov effect.

For n-component fermions, only particles in different “spin” states interact. Instability
problem persists for n > 3.

For two-component fermions, stability fails if the mass ratio mj/msy for the two
components is too large (2 13.6) or too small (< 1/13.6).

For the 2 + 1 problem, stability is known in the opposite mass ratio regime. The general
N + M problem is open, however!

We consider here the simplest many-body problem, namely the V + 1 problem, formally
defined by

! | N
H = —%A:ﬁo — §;Ax —l—fyizzlé(ajo—xi)

acting on wave functions v (xg, 1,...,xN) antisymmetric in (z1,...,2nN).
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THE MODEL, PART 1

Our model is defined via a quadratic form F, with domain

D(Fa) ={¥ =06 +G¢|¢ € H'R) @ HLR™), ¢ € HY2(R) @ H2R* 1)}

—1
where G(ko, k1, ..., kn) = (kaQ + = Zz k7 ,u) and G¢ is short for the function
with Fourier transform

N
GE(ko, k1, kn) = Glho, ka, o k) > (=1 (ko + kis ks ki1, ki, - k)

1=1

For v € D(F,), we have

1 1 &
Fa(¥) = <¢|2mA:co - §ZA% T 9
1=1

2
+ N (m :_nloz ngiZ(R?’N) + Eiag(g) + 7:)&(5))
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THE MODEL, PART 2

where

%iag(f) — / |€(k'0,8,]2)’2£(k’0,8,]2) d]fo deE

R3(N—1)

Tort(§) = (N — 1)/ (ko + s, t,k)E (ko + t, 5, k)G (ko, s, t, k) dko ds dt dk
R3(N+1)

with & = (k1,...,ky_2) and

1/2
om \ 3/2 .2 N1
Llka ki oo knoq) =212 [ —/—— 0 —Ekz
(Ko, k.. bn—1) d (m—|—1) (2(m—|—1)+2 i TH

i=1
The dangerous term is Tog(£), which is unbounded from below and multiplied by (N —1).
It has to be controlled by Tgiag(£).

Note that even though all terms above depend on the choice of u, F, (%) is actually
independent of p!
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MAIN RESULT

THEOREM 1. There exists A(m) > 0, independent of N, with lim,, ., A(m) = 0,
such that

Tot (&) = —A(m) Taiag(§)

A numerical evaluation of the explicit expression for
A(m) shows that A(m) < 1 for m > 0.36.

In particular, if m is such that A(m) < 1, then

fora >0

0 : ]
{ — ( 71'2(1 A(m))) H¢H2 for o < O 0.0 0.5 1.0 1.5 2.0

This lower bound is sharp as m — ool

Recall that F,, is known to be unbounded from below for any NV > 2 for m < 0.0735. In
particular, the critical mass for stability satisfies 0.0735 < m™* < 0.36.
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THE HAMILTONIAN

For A(m) < 1, F, is closed and bounded from below, and thus gives rise to a self-
adjoint Hamiltonian H,. To define it, we need the positive operator I" on L*(R?%) ®
L2 (R3*WW=1)) defined by the quadratic form

Taiag (&) + Tom (&) = (€|TE)
We have

D(H.) = {w 64 GEld e HA(RY) @ HAL(R™), € € D(T),

(=N 2ma
0 laven= i (s +1) €}

and
1 1 <
(Hoz + N)w — <_ QmAazo — 5 ;:1: Awi + N) )

The Hamiltonian H, commutes with translations and rotations, and transforms under
scaling as U\H U = M H -1,
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BOUNDARY CONDITION

For v = ¢ + G&, the boundary condition

—1)N+L 2
¢ ra:Nzxo: ((271_))3/2 ( e +F>f

m —+ 1

means that

1 1
— - —|—0(1)> as |rg —xn| — 0.
lzo —zN| @

¢($Oax17---7$1\7) ~ (

More precisely: For any 1 € D(H,),

T mr
R o aN_L R—
¢< +1_|_m7x17 IN—-1 1_|_m>

272 2m  (—1)N+!
B (W +a> m+1 (2m)3/2 S(R, 1,y N 1) F OB, T TN 1, T)

with lim, _.q H’U( . ,7“)HL2(]R3N) = 0.
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TAN RELATIONS

For ¢ € D(H,), define the contact

2m 2
=——) NJ|¢?

It shows up in a number of physically relevant quantities:

e [he two-particle density

- i m ([ 1 2
[ et s m = mans G (- po)e il

7]a

e The momentum distributions, nt(k) ~ ny (k) ~ C|k|™* as |k| —
¢ %Faw) = ”;—fnlc at fixed 1 (“adiabatic sweep theorem™)
e The energy
k2 C L2 C 4+ 1
WiHay) :/ o\ (B) = g ) o\ (k) = g ) | dR Ca
RS K| 2 k|

2m 2m
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SKETCH OF THE PROOF OF THE MAIN THEOREM
Separate center-of-mass motion to eliminate one degree of freedom; this leaves us
with a problem of N fermions only.

Identify the negative part of the operator corresponding to Tog(&); this part is
crucial, it is known that the inequality

%H(f) < %iag(f)
fails for all m > 0 (and suitable &)

Replace the factor N — 1 by a sum over particles, using the anti-symmetry.

Use a suitable version of the Schur test to bound the corresponding operator:

1K) < sup s [ 1K) ho) dy

for any positive function h.
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CONCLUSIONS

We proved stability of the NV +1 system of fermions with point interactions, for mass
ratio m > 0.36 independent of V.

We constructed the corresponding self-adjoint Hamiltonian.

We showed the validity of the Tan relations for all functions in the domain of this
Hamiltonian.

Main open problem: Investigate the stability for the general N + M system. For
N = M = 2, numerical studies suggest stability in the whole parameter regime
where the 2 + 1 problem is stable.
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