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Preface: Point Interactions

Point interactions are ubiquitously used in physics, as e↵ective models whenever the
range of the interparticle interactions is much shorter than other relevant length scales.

Examples: Nuclear physics, polaron models, cold atomic gases, . . .

Roughly speaking, one tries to make sense of a formal Hamiltonian of the form
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The problem is completely understood for N = 2, but there are many open questions for
N � 3:

• Does there exist a suitable self-adjoint Hamiltonian modeling point interactions
between pairs of particles?

• If yes, is it stable, i.e., bounded from below?
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The N = 2 Problem

Separating the center-of-mass motion, one can rigorously define �� + ��(x) via self-
adjoint extensions of �� on C1

0

(R3 \ {0}).
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hence ↵ = �2⇡2/a with a the scattering length of the pair interaction.
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The N = 2 Problem, Continued

One checks that
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Moreover, the quadratic form for the energy reads
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Stability for N > 2

It is known that stability fails, in general, for N � 3, unless the particles are fermions.
This is known as the Thomas e↵ect. It is closely related to the Efimov e↵ect.

For n-component fermions, only particles in di↵erent “spin” states interact. Instability
problem persists for n � 3.

For two-component fermions, stability fails if the mass ratio m
1

/m
2

for the two
components is too large (& 13.6) or too small (. 1/13.6).

For the 2 + 1 problem, stability is known in the opposite mass ratio regime. The general
N +M problem is open, however!

We consider here the simplest many-body problem, namely the N +1 problem, formally
defined by

H = � 1

2m
�

x0 �
1

2

N

X

i=1

�
xi + �

N

X

i=1

�(x
0

� x
i

)

acting on wave functions  (x
0

, x
1

, . . . , x
N

) antisymmetric in (x
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The Model, Part 1

Our model is defined via a quadratic form F
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The Model, Part 2

where
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The dangerous term is T
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(⇠), which is unbounded from below and multiplied by (N�1).
It has to be controlled by T

diag

(⇠).

Note that even though all terms above depend on the choice of µ, F
↵

( ) is actually
independent of µ!
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Main Result

THEOREM 1. There exists ⇤(m) > 0, independent of N , with lim
m!1 ⇤(m) = 0,

such that

T
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A numerical evaluation of the explicit expression for
⇤(m) shows that ⇤(m) < 1 for m � 0.36.

In particular, if m is such that ⇤(m) < 1, then
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This lower bound is sharp as m ! 1!

Recall that F
↵

is known to be unbounded from below for any N � 2 for m  0.0735. In
particular, the critical mass for stability satisfies 0.0735 < m⇤ < 0.36.
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The Hamiltonian

For ⇤(m) < 1, F
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is closed and bounded from below, and thus gives rise to a self-
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Boundary Condition

For  = �+ G⇠, the boundary condition
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Tan Relations

For  2 D(H
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), define the contact
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It shows up in a number of physically relevant quantities:
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Sketch of the Proof of the Main Theorem

• Separate center-of-mass motion to eliminate one degree of freedom; this leaves us
with a problem of N fermions only.

• Identify the negative part of the operator corresponding to T
o↵

(⇠); this part is
crucial, it is known that the inequality

T
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• Replace the factor N � 1 by a sum over particles, using the anti-symmetry.

• Use a suitable version of the Schur test to bound the corresponding operator:
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Conclusions

• We proved stability of the N+1 system of fermions with point interactions, for mass
ratio m � 0.36 independent of N .

• We constructed the corresponding self-adjoint Hamiltonian.

• We showed the validity of the Tan relations for all functions in the domain of this
Hamiltonian.

• Main open problem: Investigate the stability for the general N +M system. For
N = M = 2, numerical studies suggest stability in the whole parameter regime
where the 2 + 1 problem is stable.
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