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Full statistics -confined systems

Full (counting) Statistics [Lesovik,Levitov ’93][Levitov, Lee,Lesovik ’96]

Confined systems: (H,H, ρ) dimH <∞
Given an observable A: A =

∑
j ajPaj where aj ∈ σ(A) Pej associated

spectral projections
At time 0 we measure A with outcome aj with probability tr(ρPaj ). Then
the reduced state is

1
tr(ρPaj )

Paj ρPaj .

Let evolve for time t, and measure again. The outcome will be ak with
probability

1
tr(ρPaj )

tr(e−itHPaj ρPaj e
itHPak )
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Full statistics -confined systems

Joint probability of measuring aj at time 0 and ak at time t is:

tr(e−itHPaj ρPaj e
itHPek )

Full (counting) statistic is the atomic probability measure on R defined by

Pt(φ) =
∑

ak−aj =φ

tr(e−itHPaj ρPaj e
itHPak )

(probability distribution of the change of A measured with the protocol
above)
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Full statistics and fluctuation relations

Quantum extention of classical fluctuation relations
Classical case:[Evans-Cohen-Morris’93] [Evans-Searls ’94]
[Gallavotti-Cohen’94]

Quantum case:
Definition: (H,H, ω) is TRI iff there exists an anti-linear
∗-automorphism, Θ2 = 1l, τt ◦Θ = Θ ◦ τ−t and ω(Θ(A)) = ω(A∗).
A = S entropy

Proposition (Kurchan ’00, Tasaki-Matsui ’03)

Assume (H,H, ρ) is TRI, (and ρ = e−β·H/tr(e−βH).) .
Set P̄t(φ) := Pt(−φ).

Then for any φ in R, dP̄t

dPt
(φ) = e−tφ.
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Heat fluctuations: classical VS quantum

Classical system
(M,H, ρ) H = H0 + V
Full statistics are equivalent to the law P4At associated to
4At := At − A. 1

Energy conservation: 4H0,t = H0,t − H0 = Vt − V as function onM
which yields

P4H0,t = P4Vt

In particular if V is bounded by C : supt |4H0,t | < 2C and

supp(P4H0,t ) bounded

1Given a classical observable C and an intial state ρ, we call C -statistics the
probability measure PC such that

∫
f (s)dPC (s) =

∫
f (C)dρ for all f ∈ B(R)
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Heat fluctuations: classical VS quantum

Quantum system
(H,H, ρ) H = H0 + V

Energy conservation:
H0,t − H0 = Vt − V as operators on H
implies equality of spectral measures but in general

PH0,t 6= PV ,t
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Mathematical setting and results: bounded perturbations

General defintion

(O, τ t , ω) C∗-dynamical system
τ t = τ t

0 + i[−,V ] and ω is a τ t
0 invariant state

πω : O → B(Hω) a GNS representation ω(A) = (Ωω,AΩω)Hω

Liouvillean: τ t
0(A) = e−itLπω(A)e−itL and LΩω = 0

Definition

We define the energy full statistics (FS) measure for time t, denoted Pt ,
to be the spectral measure for the operator

L + πω(V )− πω(τ t(V )),

with respect to the vector Ωω
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Mathematical setting and results: bounded perturbation

Notions of regularity

(γA) t → τ t
0(V ) admits a bounded analytic

extention to the strip {z ∈ C : |Im z | < 1
2γ}.

(nD) t → τ t
0(V ) is n times norm-differentiable,
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Theorem (Benoist, P., Raquépas 2017)

Let (O, τ, ω) be a C∗-dynamical system as above and Pt be the energy
full statistics measure associated to a self-adjoint perturbation V ∈ O.
Then

(nD)⇒ sup
t∈R

Et [∆E 2n+2] <∞.

(γA)⇒ sup
t∈R

Et [eγ|∆E |] ≤ 2e2γv0 .

Corollary

Under the conditions of the previous theorem,

(nD)⇒ Pt( 1
t |∆E | ≥ R) ≤ Cn(Rt)−2n+2

(γA)⇒ Pt( 1
t |∆E | ≥ R) ≤ Cγe−Rt .
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Regularity condition optimality: Fermi gas with impurity

H = Γa(h) with h = C⊕ L2(R+, de)
H0 = dΓ(h0) with h0 = ε0 ⊕ ê
H = dΓ(h0 + |ψ1〉〈ψf |+ |ψf 〉〈ψ1|) = dΓ(h0) +a∗(ψ1)a(ψf ) +a∗(ψf )a(ψ1)
with ψ1 = 1⊕ 0, ψf = 0⊕ f .

Theorem (Benoist, P., Raquépas 2017)

For the above model the following are equivalent:
1 supt∈R Et [∆E 2n+2] <∞;
2 for a non-trivial time interval [t1, t2]

∫ t2
t1

Et [∆E 2n+2]dt <∞;
3 (nD)

For this model (nD) is equivalent to R 3 s 7→ eisê f ∈ L2(R+, de) is n
times norm- differentiable i.e f ∈ Dom(ên)
Remark: decay of f controls how high energy frequencies contribute to
the interaction (ultraviolet regularization)
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H = dΓ(h0 + |ψ1〉〈ψf |+ |ψf 〉〈ψ1|) = dΓ(h0) +a∗(ψ1)a(ψf ) +a∗(ψf )a(ψ1)
with ψ1 = 1⊕ 0, ψf = 0⊕ f .

Theorem (Benoist, P., Raquépas 2017)

For the above model the following are equivalent:
1 supt∈R Et [∆E 2n+2] <∞;
2 for a non-trivial time interval [t1, t2]

∫ t2
t1

Et [∆E 2n+2]dt <∞;
3 (nD)

For this model (nD) is equivalent to R 3 s 7→ eisê f ∈ L2(R+, de) is n
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H = dΓ(h0 + |ψ1〉〈ψf |+ |ψf 〉〈ψ1|) = dΓ(h0) +a∗(ψ1)a(ψf ) +a∗(ψf )a(ψ1)
with ψ1 = 1⊕ 0, ψf = 0⊕ f .

Theorem (Benoist, P., Raquépas 2017)

For the above model the following are equivalent:
1 supt∈R Et [∆E 2n+2] <∞;
2 for a non-trivial time interval [t1, t2]

∫ t2
t1

Et [∆E 2n+2]dt <∞;
3 (nD)

For this model (nD) is equivalent to R 3 s 7→ eisê f ∈ L2(R+, de) is n
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Regularity condition optimality: bosonic systems

Bose gas with impurity

H = Γs(h) with h = C⊕ L2(R+,de)

H0 = dΓ(h0) with h0 = ε0 ⊕ ê
H = dΓ(h0 + |ψ1〉〈ψf |+ |ψf 〉〈ψ1|) = dΓ(h0) +a∗(ψ1)a(ψf ) +a∗(ψf )a(ψ1)
with ψ1 = 1⊕ 0, ψf = 0⊕ f .

Conditions: f ∈ Dom(ê) ∩ Dom(ê−1/2) and ‖h−1/2
0 ψf ‖ 6= ε

1/2
0

Theorem (Benoist, P., Raquépas 2017)

For the Bose gas with impurity model, assume (γA′) : t → τ t
0(V )Ω

admits a bounded analytic extention to the strip {z ∈ C : |Im z | < 1
2γ}.

Then
1 supt∈R Et [eγ∆E ] <∞;

For this model (γA′) is equivalent to R 3 s 7→ eisê f ∈ L2(R+, de)
extends to an analitic function on the strip i.e f ∈ Dom(e

1
2γê)
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Theorem (Benoist, P., Raquépas 2017)

For the Bose gas with impurity model the following are equivalent:
1 supt∈R Et [∆E 2n+2] <∞;
2 for a non-trivial time interval [t1, t2]

∫ t2
t1

Et [∆E 2n+2]dt <∞;
3 (nD ′) t → τ t

0(V )Ω is n-times norm differentable (here Ω is the
vacuum)

For this model, (nD ′) is equivalent to R 3 s 7→ eisê f ∈ L2(R+,de) is n
times differentiable in the norm sense i.e f ∈ Dom(ên)
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van Hove Hamiltonians
H = Γs(h) with h = L2(R+, de)
H0 = dΓ(e), H = dΓ(e) + a∗(f ) + a(f )
Conditions: f ∈ Dom(ê) ∩ Dom(ê−1/2).

Theorem (Benoist, P., Raquépas 2017)

For the van Hove bosonic models the following are equivalent:
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2 for a non-trivial time interval [t1, t2]
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0(V )Ω is n-times norm differentable (here Ω is the
vacuum)
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times differentiable in the norm sense i.e f ∈ Dom(ên)

Annalisa Panati, CPT, Université de Toulon [3mm] joint work with T.Benoist, R. RaquépasHeat full statistics: heavy tails and fluctuations control



Plan
Full statistics and quantum fluctuation relations

Heat fluctuations: classical VS quantum
Mathematical settings and results

Bounded perturbations
Unbounded perturbations

Theorem (Benoist, P., Raquépas 2017)
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Summary

Classical statistical mechanics models: heat fluctuations are
controlled by the interaction intensity. Particularly, no
fluctuations exist when the interaction is bounded.
Quantum statistical mechanics models: in the two time
measurement picture, heat fluctuations are controlled by a notion of
regularity. Particularly, large fluctuations may exists even if the
interaction is bounded.
In concrete models, regularity notion translate in contribtuon of
high energy frequencies to the interaction (UV regularization).

Annalisa Panati, CPT, Université de Toulon [3mm] joint work with T.Benoist, R. RaquépasHeat full statistics: heavy tails and fluctuations control



Plan
Full statistics and quantum fluctuation relations

Heat fluctuations: classical VS quantum
Mathematical settings and results

Bounded perturbations
Unbounded perturbations

Thank you for your attention!
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