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Abstract

I will report the stabilities of the Nagaoka theorem and Lieb
theorem in the Hubbard model, even if the influence of phonons
and photons is taken into account.
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A brief history

I Magnets have a long history, e.g., chinese writing dating back
to 4000 B.C. mention magnetite, ancient greeks knew
magnetite, etc.

I The origin of ferromagnetism in material has been a mystery.
I Modern approach was initiated by Kanamori, Gutzwiller and

Hubbard.
They studied a simple tight-binding model, called the
Hubbard model.

I Nagaoka’s ferromagnetism (1965):
A first rigorous result about ferromagnetism in the Hubbard
model. (Cf. D. J. Thouless, 1965)

I Lieb’s ferrimagnetism (1989):
A rigorous example of ferrimagnetism in the Hubbard model.

I Mielke, Tasaki’s ferromagnetism (1991–):
Construction of flat-band ferromagnetism
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Motivation

I Electrons always interact with phonons (or photons) in actual
metals.

I On the other hand, ferromagnetism is experimentally observed
in various metals and has a wide range of uses in daily life.

Motivation¶ ³

If Nagaoka’s and Lieb’s theorems contain an essence of real
ferromagnetism, their theorems should be stable under the in-
fluence of the electron-phonon(or electron-photon) interaction.

µ ´
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The Hubbard model

The Hubbard model on Λ:¶ ³

HH =
∑

x,y∈Λ

∑

σ=↑,↓
txyc

∗
xσcyσ +

∑

x,y∈Λ

Uxy

2
(nx − 1)(ny − 1)

µ ´

I Λ: finite lattice

I cxσ: the electron annihilation operator at site x;

{cxσ, c∗yσ′} = δxyδσσ′ .

I nx: the electron number operator at site x ∈ Λ given by
nx =

∑
σ=↑,↓ nxσ, nxσ = c∗xσcxσ.

I txy: the hopping matrix.

I Uxy: the energy of the Coulomb interaction.
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I {txy} and {Uxy} are real symmetric |Λ| × |Λ| matrices.

I N -electron Hilbert space:

EN =
N∧

(`2(Λ)⊕ `2(Λ)).

∧n (
`2(Λ)⊕ `2(Λ)

)
indicates the n-fold antisymmetric tensor

product of `2(Λ)⊕ `2(Λ).
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The Holstein-Hubbard model

The Holstein-Hubbard model on Λ¶ ³

HHH = HH +
∑

x,y∈Λ

gxynx(b∗y + by) +
∑

x∈Λ

ωb∗xbx

µ ´

I HH is the Hubbard Hamiltonian.
I b∗x and bx are phonon creation- and annihilation operators at

site x ∈ Λ, respectively:

[bx, b∗y] = δxy, [bx, by] = 0.

I gxy is the strength of the electron-phonon interaction. We
assume that {gxy} is a real symmetric matrix.

I The phonons are assumed to be dispersionless with energy
ω > 0.
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I Hilbert space
EN ⊗P,

P =
⊕∞

n=0⊗s`
2(Λ), the bosonic Fock space over `2(Λ);

⊗n
s indicates the n-fold symmetric tensor product.

I HHH is self-adjoint on dom(Nb) and bounded from below,
where Nb =

∑
x∈Λ b∗xbx.
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A many-electron system coupled to the quantized radiation
field

I We suppose that Λ is embedded into the region
V = [−L/2, L/2]3 ⊂ R3 with L > 0.

Hamiltonian¶ ³

Hrad =
∑

x,y∈Λ

∑

σ=↑,↓
txy exp

{
i

∫

Cxy

dr ·A(r)

}
c∗xσcyσ

+
∑

x,y∈Λ

Uxy

2
(nx − 1)(ny − 1)

+
∑

k∈V ∗

∑

λ=1,2

ω(k)a(k, λ)∗a(k, λ).

µ ´
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I Hilbert space

EN ⊗R,

where R is the bosonic Fock space over `2(V ∗ × {1, 2}) with
V ∗ = (2π

L Z)3.
I a(k, λ)∗ and a(k, λ) are photon creation- and annihilation

operators, respectively:

[a(k, λ), a(k′, λ′)∗] = δλλ′δkk′ , [a(k, λ), a(k′, λ′)] = 0.

I A(r) (r ∈ V ) is the quantized vector potential given by

A(r)

=|V |−1/2
∑

k∈V ∗

∑

λ=1,2

χκ(k)√
2ω(k)

ε(k, λ)
(
eik·ra(k, λ) + e−ik·ra(k, λ)∗

)
.
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I χκ is the indicator function of the ball of radius 0 < κ < ∞,
where κ is the ultraviolet cutoff.

I The dispersion relation:

ω(k) = |k|
for k ∈ V ∗\{0}, ω(0) = m0 with 0 < m0 < ∞.

I Cxy is a piecewise smooth curve from x to y.

I For concreteness, the polarization vectors are chosen as

ε(k, 1) =
(k2,−k1, 0)√

k2
1 + k2

2

, ε(k, 2) =
k

|k| ∧ ε(k, 1).

(To avoid ambiguity, we set ε(k, λ) = 0 if k1 = k2 = 0. )

I Hrad is essentially self-adjoint and bounded from below. We
denote its closure by the same symbol.

I This model was introduced by Giuliani et al. in [GMP].
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Basic definitions

Definition 3.1

Let Λ be a finite lattice. Let {Mxy} be a real symmetric
|Λ| × |Λ| matrix.

(i) We say that Λ is connected by {Mxy}, if, for every x, y ∈ Λ,
there are x1, . . . , xn ∈ Λ such that

Mxx1Mx1x2 · · ·Mxny 6= 0.

(ii) We say that Λ is bipartite in terms of {Mxy}, if Λ can be
divided into two disjoint sets A and B such that Mxy = 0
whenver x, y ∈ A or x, y ∈ B. ♦
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Lieb’s ferrimagnetism

I Since we are interested in the half-filled system, we will study
the Hamiltonian

H̃H = HH ¹ EN=|Λ|.

I Let S
(+)
x = c∗x↑cx↓ and let S

(−)
x =

(
S

(+)
x

)∗
. The spin

operators are defined by

S(3) =
1
2

∑

x∈Λ

(nx↑ − nx↓), S(+) =
∑

x∈Λ

S(+)
x , S(−) =

∑

x∈Λ

S(−)
x .

I The total spin operator is defined by

S2
tot = (S(3))2 +

1
2
S(+)S(−) +

1
2
S(−)S(+)

with eigenvalues S(S + 1).
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Definition 3.2

If ϕ is an eigenvector of S2
tot with S2

totϕ = S(S + 1)ϕ, then we say
that ϕ has total spin S.

Assumptions:

(B. 1) Λ is connected by {txy};
(B. 2) Λ is bipartite in terms of {txy};
(B. 3) {Uxy} is positive definite.

Theorem 3.3 (Lieb’s ferrimagnetism)

Assume that |Λ| is even. Assume (B. 1), (B. 2) and (B. 3). The
ground state of H̃H has total spin S = 1

2

∣∣|A| − |B|∣∣ and is unique
apart from the trivial (2S + 1)-degeneracy.
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Corollary 3.4

If
∣∣|A| − |B|∣∣ = c|Λ|, then the ground state of H̃H exhibits

ferrimagnetism.

Example: copper oxide lattice

Picture: W.Tsai et.al., New Jour. Phys. 17, 2015.
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Stability of Lieb’s theorem I

I We will study the half-filled case:

H̃HH = HHH ¹ EN=|Λ| ⊗P.

I We continue to assume (B. 1) and (B. 2).
I As to the electron-phonon interaction, we assume the

following:

(B. 4)
∑

x∈Λ gxy is a constant independent of y ∈ Λ.
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I The effective Coulomb interaction is defined by

Ueff,xy = Uxy − 2
ω

∑

z∈Λ

gxzgyz.

(B. 5) {Ueff,xy} is positive definite.

Theorem 3.5 (T.M., 2017)

Assume that |Λ| is even. Assume (B. 1), (B. 2), (B. 4) and (B.
5). Then the ground state of H̃HH has total spin S = 1

2

∣∣|A| − |B|∣∣
and is unique apart from the trivial (2S + 1)-degeneracy.
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Stability of Lieb’s ferrimagnetism II

I Consider a many-electron system coupled to the quantized
radiation field.

I We will study the Hamiltonian at half-filling:

H̃rad = Hrad ¹ EN=|Λ| ⊗R.

Theorem 3.6 (T. M.)

Assume that |Λ| is even. Assume (B. 1), (B. 2) and (B. 3).
Then the ground state of H̃rad has total spin S = 1

2

∣∣|A| − |B|∣∣ and
is unique apart from the trivial (2S + 1)-degeneracy.
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Nagaoka’s ferromagnetism

Let us consider the Hubbard model HH. We assume the following:

(C. 1) txy ≥ 0 for all x, y ∈ Λ.

(C. 2) Λ has the hole-connectivity associated with {txy}.

Remark 4.1

The following (i) and (ii) satisfy the hole-connectivity condition:

(i) Λ is a triangular, square cubic, fcc, or bcc lattice;
(ii) txy is nonvanishing between nearest neighbor sites.

We are interested in the N = |Λ| − 1 electron system. Thus, we
will study the restricted Hamiltonian:

HH,|Λ|−1 = HH ¹ EN=|Λ|−1.
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The effective Hamiltonian describing the system with
Uxx = ∞
I The Gutzwiller projection by

P =
∏

x∈Λ

(1l− nx↑nx↓).

I P is the orthogonal projection onto the subspace with no
doubly occupied sites.

Proposition 4.2

We define the effective Hamiltonian by H∞
H = PHU=0

H,|Λ|−1P , where

HU=0
H,|Λ|−1 is the Hubbard Hamiltonian HH,|Λ|−1 with Uxx = 0. For

all z ∈ C\R, we have

lim
Uxx→∞

(
HH,|Λ|−1 − z

)−1 =
(
H∞

H − z
)−1

P

in the operator norm topology.
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I H∞
H describes a situation with Uxx = ∞ and a single hole.

In [Tasaki1], Tasaki extended Nagaoka’s theorem as follows.

Theorem 4.3 (Generalized Nagaoka’s theorem)

Assume (C. 1) and (C. 2). The ground state of H∞
H has total

spin S = (|Λ| − 1)/2 and is unique apart from the trivial
(2S + 1)-degeneracy.
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Stability of Nagaoka’s theorem I

I Let us consider the Holstein-Hubbard Hamiltonian HHH.

I We will study the N = |Λ| − 1 electron system:

HHH,|Λ|−1 = HHH ¹ EN=|Λ|−1 ⊗P.

I As before, we can derive an effective Hamiltonian describing
the system with Uxx = ∞.
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Proposition 4.4

We define the effective Hamiltonian by H∞
H = PHU=0

HH,|Λ|−1P ,

where HU=0
HH,|Λ|−1 is HHH,|Λ|−1 with Uxx = 0. For all z ∈ C\R, we

have

lim
Uxx→∞

(
HHH,|Λ|−1 − z

)−1 =
(
H∞

HH − z
)−1

P

in the operator norm topology.

Theorem 4.5 (T. M., 2017)

Assume (C. 1) and (C. 2). The ground state of H∞
HH has total

spin S = (|Λ| − 1)/2 and is unique apart from the trivial
(2S + 1)-degeneracy.
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Stability of Nagaoka’s theorem II

I Consider a many-electron system coupled to the quantized
radiation field.

I We will study the Hamiltonian Hrad,|Λ|−1 which describes the
N = |Λ| − 1 electron system.

Proposition 4.6

We define the effective Hamiltonian by H∞
rad = PHU=0

rad,|Λ|−1P ,

where HU=0
rad,|Λ|−1 is Hrad,|Λ|−1 with Uxx = 0. For all z ∈ C\R, we

have

lim
Uxx→∞

(
Hrad,|Λ|−1 − z

)−1 =
(
H∞

rad − z
)−1

P

in the operator norm topology.
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Theorem 4.7 (T. M., 2017)

Assume (C. 1) and (C. 2). The ground state of H∞
rad has total

spin S = (|Λ| − 1)/2 and is unique apart from the trivial
(2S + 1)-degeneracy.
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Summary

I Lieb’s ferrimagnetism is stable, even if the influence of
phonons and photons is taken into account.

I Nagaoka’s ferromagnetism is stable, even if the influence of
phonons and photons is taken into account;

I Proofs of these stabilities rely on the operator theoretic
correlation inequalities.
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Open problems

I Stabilities of phase diagram in the Holstein-Hubbad model.

I Construction of the ferromagnetic ground states in the
Hubbard model and Holstein-Hubbard model.

I Existence of long range orders in the square lattice.
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