Stability of magnetism in the Hubbard model

Quantissima II in Venice Aug. 21–25, 2017

Tadahiro Miyao Dept. Math. Hokkaido Univ.

Abstract

I will report the stabilities of the Nagaoka theorem and Lieb theorem in the Hubbard model, even if the influence of phonons and photons is taken into account.

Picture: Gakken kidsnet

Table of Contents

- ▶ 1. Background
- > 2. Stability of Lieb's ferrimagnetism
- ▶ 3. Stability of Nagaoka's ferromagnetism

Background

A brief history

- Magnets have a long history, e.g., chinese writing dating back to 4000 B.C. mention magnetite, ancient greeks knew magnetite, etc.
- > The origin of ferromagnetism in material has been a mystery.
- Modern approach was initiated by Kanamori, Gutzwiller and Hubbard.

They studied a simple tight-binding model, called the **Hubbard model**.

► Nagaoka's ferromagnetism (1965):

A first rigorous result about ferromagnetism in the Hubbard model. (Cf. D. J. Thouless, 1965)

- Lieb's ferrimagnetism (1989):
 A rigorous example of ferrimagnetism in the Hubbard model.
- Mielke, Tasaki's ferromagnetism (1991–): Construction of flat-band ferromagnetism

Motivation

- Electrons always interact with phonons (or photons) in actual metals.
- On the other hand, ferromagnetism is experimentally observed in various metals and has a wide range of uses in daily life.

Motivation

If Nagaoka's and Lieb's theorems contain an essence of real ferromagnetism, their theorems should be stable under the influence of the electron-phonon(or electron-photon) interaction.

Background

Stability of Lieb's ferrimagnetism Stability of Nagaoka's ferromagnetism

The Hubbard model

The Hubbard model on
$$\Lambda$$
:
$$H_{\rm H} = \sum_{x,y \in \Lambda} \sum_{\sigma=\uparrow,\downarrow} t_{xy} c_{x\sigma}^* c_{y\sigma} + \sum_{x,y \in \Lambda} \frac{U_{xy}}{2} (n_x - 1)(n_y - 1)$$

▶ Λ: finite lattice

• $c_{x\sigma}$: the electron annihilation operator at site x;

$$\{c_{x\sigma}, c_{y\sigma'}^*\} = \delta_{xy}\delta_{\sigma\sigma'}.$$

- n_x: the electron number operator at site x ∈ Λ given by n_x = Σ_{σ=↑,↓} n_{xσ}, n_{xσ} = c^{*}_{xσ}c_{xσ}.
 t_{xu}: the hopping matrix.
- ▶ U_{xy}: the energy of the Coulomb interaction.

- $\{t_{xy}\}$ and $\{U_{xy}\}$ are real symmetric $|\Lambda| \times |\Lambda|$ matrices.
- ► *N*-electron Hilbert space:

$$\mathfrak{E}_N = \bigwedge^N (\ell^2(\Lambda) \oplus \ell^2(\Lambda)).$$

 $\bigwedge^n \left(\ell^2(\Lambda) \oplus \ell^2(\Lambda) \right) \text{ indicates the } n \text{-fold antisymmetric tensor} \\ \text{product of } \ell^2(\Lambda) \oplus \ell^2(\Lambda). \end{aligned}$

The Holstein-Hubbard model

The Holstein-Hubbard model on Λ $H_{\rm HH} = H_{\rm H} + \sum_{x,y \in \Lambda} g_{xy} n_x (b_y^* + b_y) + \sum_{x \in \Lambda} \omega b_x^* b_x$

- $H_{\rm H}$ is the Hubbard Hamiltonian.
- b^{*}_x and b_x are phonon creation- and annihilation operators at site x ∈ Λ, respectively:

$$[b_x, b_y^*] = \delta_{xy}, \ [b_x, b_y] = 0.$$

- ▶ g_{xy} is the strength of the electron-phonon interaction. We assume that {g_{xy}} is a real symmetric matrix.
- The phonons are assumed to be dispersionless with energy ω > 0.

Hilbert space

 $\mathfrak{E}_N \otimes \mathfrak{P},$

 $\mathfrak{P} = \bigoplus_{n=0}^{\infty} \otimes_{\mathrm{s}} \ell^2(\Lambda), \text{ the bosonic Fock space over } \ell^2(\Lambda); \\ \otimes_{\mathrm{s}}^n \text{ indicates the } n\text{-fold symmetric tensor product.}$

► $H_{\rm HH}$ is self-adjoint on dom $(N_{\rm b})$ and bounded from below, where $N_{\rm b} = \sum_{x \in \Lambda} b_x^* b_x$.

A many-electron system coupled to the quantized radiation field

 \blacktriangleright We suppose that Λ is embedded into the region $V = [-L/2, L/2]^3 \subset \mathbb{R}^3$ with L > 0. Hamiltonian $H_{\rm rad} = \sum_{x,y \in \Lambda} \sum_{\sigma=\uparrow,\downarrow} t_{xy} \exp\left\{i \int_{C_{xy}} dr \cdot A(r)\right\} c_{x\sigma}^* c_{y\sigma}$ $+\sum \frac{U_{xy}}{2}(n_x-1)(n_y-1)$ $x. u \in \Lambda$ + $\sum \sum \omega(k)a(k,\lambda)^*a(k,\lambda).$ $k \in V^* \lambda = 1.2$

Hilbert space

$$\mathfrak{E}_N\otimes\mathfrak{R},$$

where \Re is the bosonic Fock space over $\ell^2(V^* \times \{1,2\})$ with $V^* = (\frac{2\pi}{L}\mathbb{Z})^3$.

► a(k, λ)* and a(k, λ) are photon creation- and annihilation operators, respectively:

$$[a(k,\lambda), a(k',\lambda')^*] = \delta_{\lambda\lambda'} \delta_{kk'}, \quad [a(k,\lambda), a(k',\lambda')] = 0.$$

• $A(r) (r \in V)$ is the quantized vector potential given by

$$A(r) = |V|^{-1/2} \sum_{k \in V^*} \sum_{\lambda=1,2} \frac{\chi_{\kappa}(k)}{\sqrt{2\omega(k)}} \varepsilon(k,\lambda) \Big(e^{ik \cdot r} a(k,\lambda) + e^{-ik \cdot r} a(k,\lambda)^* \Big).$$

- χ_κ is the indicator function of the ball of radius 0 < κ < ∞,
 where κ is the ultraviolet cutoff.
 </p>
- The dispersion relation:

$$\omega(k) = |k|$$

for $k \in V^* \setminus \{0\}$, $\omega(0) = m_0$ with $0 < m_0 < \infty$.

- C_{xy} is a piecewise smooth curve from x to y.
- For concreteness, the polarization vectors are chosen as

$$\varepsilon(k,1) = \frac{(k_2,-k_1,0)}{\sqrt{k_1^2 + k_2^2}}, \ \ \varepsilon(k,2) = \frac{k}{|k|} \wedge \varepsilon(k,1).$$

(To avoid ambiguity, we set $\varepsilon(k,\lambda)=0$ if $k_1=k_2=0.$)

- H_{rad} is essentially self-adjoint and bounded from below. We denote its closure by the same symbol.
- This model was introduced by Giuliani et al. in [GMP].

Stability of Lieb's ferrimagnetism

Basic definitions

Definition 3.1

Let Λ be a finite lattice. Let $\{M_{xy}\}$ be a real symmetric $|\Lambda| \times |\Lambda|$ matrix.

(i) We say that Λ is connected by $\{M_{xy}\}$, if, for every $x, y \in \Lambda$, there are $x_1, \ldots, x_n \in \Lambda$ such that

$$M_{xx_1}M_{x_1x_2}\cdots M_{x_ny}\neq 0.$$

(ii) We say that Λ is *bipartite in terms of* $\{M_{xy}\}$, if Λ can be divided into two disjoint sets A and B such that $M_{xy} = 0$ whenver $x, y \in A$ or $x, y \in B$. \Diamond

Lieb's ferrimagnetism

 Since we are interested in the *half-filled* system, we will study the Hamiltonian

$$\tilde{H}_{\mathrm{H}} = H_{\mathrm{H}} \upharpoonright \mathfrak{E}_{N = |\Lambda|}.$$

• Let $S_x^{(+)} = c_{x\uparrow}^* c_{x\downarrow}$ and let $S_x^{(-)} = (S_x^{(+)})^*$. The spin operators are defined by

$$S^{(3)} = \frac{1}{2} \sum_{x \in \Lambda} (n_{x\uparrow} - n_{x\downarrow}), \quad S^{(+)} = \sum_{x \in \Lambda} S_x^{(+)}, \quad S^{(-)} = \sum_{x \in \Lambda} S_x^{(-)},$$

▶ The total spin operator is defined by

$$S_{\text{tot}}^2 = (S^{(3)})^2 + \frac{1}{2}S^{(+)}S^{(-)} + \frac{1}{2}S^{(-)}S^{(+)}$$

with eigenvalues S(S+1).

Definition 3.2

If φ is an eigenvector of $S_{\rm tot}^2$ with $S_{\rm tot}^2 \varphi = S(S+1)\varphi$, then we say that φ has *total spin* S.

Assumptions:

- **(B. 1)** Λ is connected by $\{t_{xy}\}$;
- **(B. 2)** Λ is bipartite in terms of $\{t_{xy}\}$;
- **(B. 3)** $\{U_{xy}\}$ is positive definite.

Theorem 3.3 (Lieb's ferrimagnetism)

Assume that $|\Lambda|$ is even. Assume (B. 1), (B. 2) and (B. 3). The ground state of $\tilde{H}_{\rm H}$ has total spin $S = \frac{1}{2} ||A| - |B||$ and is unique apart from the trivial (2S + 1)-degeneracy.

Corollary 3.4 If $||A| - |B|| = c|\Lambda|$, then the ground state of $\tilde{H}_{\rm H}$ exhibits ferrimagnetism.

Example: copper oxide lattice

Picture: W.Tsai et.al., New Jour. Phys. 17, 2015.

Stability of Lieb's theorem I

We will study the half-filled case:

$$\tilde{H}_{\mathrm{HH}} = H_{\mathrm{HH}} \upharpoonright \mathfrak{E}_{N=|\Lambda|} \otimes \mathfrak{P}.$$

- We continue to assume (B. 1) and (B. 2).
- As to the electron-phonon interaction, we assume the following:
- **(B. 4)** $\sum_{x \in \Lambda} g_{xy}$ is a constant independent of $y \in \Lambda$.

The effective Coulomb interaction is defined by

$$U_{\text{eff},xy} = U_{xy} - \frac{2}{\omega} \sum_{z \in \Lambda} g_{xz} g_{yz}.$$

(B. 5) $\{U_{\text{eff},xy}\}$ is positive definite.

Theorem 3.5 (T.M., 2017)

Assume that $|\Lambda|$ is even. Assume (B. 1), (B. 2), (B. 4) and (B. 5). Then the ground state of $\tilde{H}_{\rm HH}$ has total spin $S = \frac{1}{2} ||A| - |B||$ and is unique apart from the trivial (2S + 1)-degeneracy.

Stability of Lieb's ferrimagnetism II

- Consider a many-electron system coupled to the quantized radiation field.
- We will study the Hamiltonian at half-filling:

$$\tilde{H}_{\mathrm{rad}} = H_{\mathrm{rad}} \upharpoonright \mathfrak{E}_{N=|\Lambda|} \otimes \mathfrak{R}.$$

Theorem 3.6 (T. M.)

Assume that $|\Lambda|$ is even. Assume (B. 1), (B. 2) and (B. 3). Then the ground state of \tilde{H}_{rad} has total spin $S = \frac{1}{2} ||A| - |B||$ and is unique apart from the trivial (2S + 1)-degeneracy.

Stability of Nagaoka's ferromagnetism

Nagaoka's ferromagnetism

Let us consider the Hubbard model $H_{\rm H}$. We assume the following: (C. 1) $t_{xy} \ge 0$ for all $x, y \in \Lambda$.

(C. 2) Λ has the *hole-connectivity* associated with $\{t_{xy}\}$.

Remark 4.1

The following (i) and (ii) satisfy the hole-connectivity condition:

(i) Λ is a triangular, square cubic, fcc, or bcc lattice;
(ii) t_{xy} is nonvanishing between nearest neighbor sites.

We are interested in the $N = |\Lambda| - 1$ electron system. Thus, we will study the restricted Hamiltonian:

$$H_{\mathrm{H},|\Lambda|-1} = H_{\mathrm{H}} \upharpoonright \mathfrak{E}_{N=|\Lambda|-1}.$$

The effective Hamiltonian describing the system with

 $U_{xx} = \infty$

The Gutzwiller projection by

$$P = \prod_{x \in \Lambda} (\mathbb{1} - n_{x\uparrow} n_{x\downarrow}).$$

 P is the orthogonal projection onto the subspace with no doubly occupied sites.

Proposition 4.2

We define the effective Hamiltonian by $H^{\infty}_{H} = P H^{U=0}_{H,|\Lambda|-1} P$, where $H^{U=0}_{H,|\Lambda|-1}$ is the Hubbard Hamiltonian $H_{H,|\Lambda|-1}$ with $U_{xx} = 0$. For all $z \in \mathbb{C} \setminus \mathbb{R}$, we have

$$\lim_{U_{xx\to\infty}} (H_{\mathrm{H},|\Lambda|-1} - z)^{-1} = (H_{\mathrm{H}}^{\infty} - z)^{-1} P$$

in the operator norm topology.

• $H_{\rm H}^{\infty}$ describes a situation with $U_{xx} = \infty$ and a single hole. In [Tasaki1], Tasaki extended Nagaoka's theorem as follows.

Theorem 4.3 (Generalized Nagaoka's theorem)

Assume (C. 1) and (C. 2). The ground state of $H_{\rm H}^{\infty}$ has total spin $S = (|\Lambda| - 1)/2$ and is unique apart from the trivial (2S + 1)-degeneracy.

Stability of Nagaoka's theorem I

- Let us consider the Holstein-Hubbard Hamiltonian $H_{\rm HH}$.
- We will study the $N = |\Lambda| 1$ electron system:

$$H_{\mathrm{HH},|\Lambda|-1} = H_{\mathrm{HH}} \upharpoonright \mathfrak{E}_{N=|\Lambda|-1} \otimes \mathfrak{P}.$$

► As before, we can derive an effective Hamiltonian describing the system with $U_{xx} = \infty$.

Proposition 4.4

We define the effective Hamiltonian by $H^{\infty}_{\mathrm{H}} = PH^{U=0}_{\mathrm{HH},|\Lambda|-1}P$, where $H^{U=0}_{\mathrm{HH},|\Lambda|-1}$ is $H_{\mathrm{HH},|\Lambda|-1}$ with $U_{xx} = 0$. For all $z \in \mathbb{C} \setminus \mathbb{R}$, we have

$$\lim_{U_{xx}\to\infty} \left(H_{\mathrm{HH},|\Lambda|-1}-z\right)^{-1} = \left(H_{\mathrm{HH}}^{\infty}-z\right)^{-1} P$$

in the operator norm topology.

Theorem 4.5 (T. M., 2017)

Assume (C. 1) and (C. 2). The ground state of $H_{\rm HH}^{\infty}$ has total spin $S = (|\Lambda| - 1)/2$ and is unique apart from the trivial (2S + 1)-degeneracy.

Stability of Nagaoka's theorem II

- Consider a many-electron system coupled to the quantized radiation field.
- ▶ We will study the Hamiltonian $H_{rad,|\Lambda|-1}$ which describes the $N = |\Lambda| 1$ electron system.

Proposition 4.6

We define the effective Hamiltonian by $H_{rad}^{\infty} = PH_{rad,|\Lambda|-1}^{U=0}P$, where $H_{rad,|\Lambda|-1}^{U=0}$ is $H_{rad,|\Lambda|-1}$ with $U_{xx} = 0$. For all $z \in \mathbb{C} \setminus \mathbb{R}$, we have

$$\lim_{U_{xx}\to\infty} \left(H_{\mathrm{rad},|\Lambda|-1}-z\right)^{-1} = \left(H_{\mathrm{rad}}^{\infty}-z\right)^{-1}P$$

in the operator norm topology.

Theorem 4.7 (T. M., 2017)

Assume (C. 1) and (C. 2). The ground state of H_{rad}^{∞} has total spin $S = (|\Lambda| - 1)/2$ and is unique apart from the trivial (2S + 1)-degeneracy.

Summary

- Lieb's ferrimagnetism is stable, even if the influence of phonons and photons is taken into account.
- Nagaoka's ferromagnetism is stable, even if the influence of phonons and photons is taken into account;
- Proofs of these stabilities rely on the operator theoretic correlation inequalities.

Open problems

- Stabilities of phase diagram in the Holstein-Hubbad model.
- Construction of the ferromagnetic ground states in the Hubbard model and Holstein-Hubbard model.
- Existence of long range orders in the square lattice.

References

- GMP A. Giuliani, V. Mastropietro, M. Porta, Ann. Physics 327 (2012), 461-511.
- Lieb E. H. Lieb, Phys. Rev. Lett. 62 (1989), 1201-1204.
- Mielke A. Mielke, J. Phys. A 24 (1991), L73.
- Miyao1 T. Miyao, Ann. Henri Poicare, 18 (2017), 193-232.
- Miyao2 T. Miyao, Ann. Henri Poicare, (2017), Onlinefirst.
- Miyao3 T. Miyao, arXiv:1610.09039
- Nagaoka Y. Nagaoka, Solid State Commun. 3 (1965), 409-412.
 - Tasaki1 H. Tasaki, Phys. Rev. B 40 (1989), 9192-9193.
 - Tasaki2 H. Tasaki, Comm. math. phys. 242 (2003), 445-472.
- Thouless D. J. Thouless, Proc. Phys. Soc. London 86 (1965), 893-904.