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Hartree-Fock (HF) theory is most often applied to study the electronic ground states of molecu-
lar systems. However, with the advent of numerical techniques for locating higher solutions of the
self-consistent field equations, it is now possible to examine the extent to which such mean-field
solutions are useful approximations to electronic excited states. In this Communication, we use the
maximum overlap method to locate 11 low-energy solutions of the HF equation for the H, molecule
and we find that, with only one exception, these yield surprisingly accurate models for the low-
lying excited states of this molecule. This finding suggests that the HF solutions could be useful
first-order approximations for correlated excited state wavefunctions. © 2014 AIP Publishing LLC.
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N-particle Schrodinger operator

N-particle fermionic Hamiltonian

V, w infinitesimally relatively —A—form bounded in R?

Ground state energy

EV(N) = min Specpn j2ray (H” (N)) = weAianf/l(Rd) (W, HY (N)W)
W)=t

Bottom of essential spectrum

£Y(N) = min Ess Specpn 12(ae) (H" (N)) = winnio lim inf (W, HY (N)W,,)
[Wall=1
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HVZ Theorem

Excited state energies

A(N) = inf max (W, HY (N)V
x (N) P AT Wev< ,HY (N)w)
dim(v)=k ~IVII=1

is the kth eigenvalue of HY(N), counted with multiplicity, or = Y (N).

YV(N) = min {EY(N — k) + E°(k), k=1,...,N}

(Hunziker '66, Van Winter '64, Zhislin '60)

ground state  excited states
b

> 0

Agy d=1 essential spectrum
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Atoms & Molecules

» Atoms & Molecules (Born-Oppenheimer): \

Z|x—R| )= 1 | ﬂJ

Since w > 0, E°(k) = 0, hence =V(N) = EY(N — 1)

Theorem (Spectrum of atoms & molecules)

> IFN <M 2, 4+ 1 then AY(N) < £V(N) for all k > 1.

(Zhislin '60, Zhislin-Sigalov '65)

> IfN > S0 2, + 1 then AY(N) = £V(N) for some ko > 1.

(Yafaev '76, Vugalter-Zhislin '77, Sigal '82)

> IFN > 1 (eg N>2SM 7, +1), then ko = 1.

(Lieb '84, Nam '12, Ruskai '82, Sigal '82-84, Lieb-Sigal-Simon-Thirring '88, Seco-Sigal-Solovej '90,
Fefferman-Seco '90, Lenzmann-Lewin '13)
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Curse of dimensionality

0
i—t\ll(t,xl,...,x/v)

N
{ § 7A>9+V(txj)+ E W(XJ'Xk)}w(taxla"'aXN)_ 9
j=1 1<j<k<N AV(xg, .y Xp)
_ . N ~ 10% in small macromolecules 57 .
N = 10 electrons in water molecule (short segments of DNA) N ~ 10" in neutron star

“the mathematical theory of a large part of physics and the whole of chemistry is thus
completely known, and the difficulty is only that the exact application of these laws leads
to equations much too complicated to be soluble. It therefore becomes desirable that
approximate practical methods of applying quantum mechanics should be developed”
Dirac (1929)
6/13
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Hartree-Fock theory

Hartree-Fock state

V=p1 A" Apy = det(¢;(xx))

1
VNI
where ¢; € L2(R?,R) and (p;, i) = djx

» Restrict N—partlcle energy to manifold M = {WV =@ A+ App}

(v, HY(N)v) :Z/Rg Vil + Vigil
5 [ wx=» (imwim )~ ) dh dy
*Z/ IVoil + VigiP+ Y // (x = y) i A pr(x, y)I? dxdy

x)@i(y)

1<j<k<N
hvp; = njwj, =1, N
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Hartree-Fock ground states

Hartree-Fock ground state energy

EWe(N) = inf (W, HY(N)¥) > EY(N)
[[w]=1

5\

Theorem (Existence of HF ground states)

Let V, w be infinitesimally —/A—form bounded in RY. The following are
equivalent:

(i) All the minimizing sequences {V¥,} C M for EV-(N) have a convergent
subsequence in H(RN)

(i) EY-(N) < EVo(N — k) + ESe(k) forall k = 1,...N

(Friesecke '03, Lewin '11)

A\

Rmk. Sort of nonlinear HVZ. Very important that HF = restriction of HY(N)
M
Atoms and molecules: existence for N < Z Zm + 1 (Lieb-Simon '77, Lions '87)

m=1
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Weyl = Palais-Smale condition

Linear problem with EV(N) < ZV(N).
@ Any minimizing sequence {W,} for EV(N) is precompact
@ I non-compact sequences {W,} such that (V,, HY(N)¥,) — c < ZV(N)
Q If (HY(N) — c)¥, — 0 (Weyl) with ¢ < ¥V(N), then {¥,} is precompact

Proof of 3)
@ Extract subsequence such that ¥, — ¥
@ Passing to weak limits gives (H"(N) — c)¥ =0
¢+ (Vo HY (N)W,,) = (W, HY(N)W) + (W, — W), HY (N) (W, — ¥)) +0(1)

cllv|? 2TV (N)(A—[[W[?)+0o(1)
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Weyl = Palais-Smale condition Il

Theorem: HF Palais-Smale condition (Lewin '17)
Assume w > 0 and EVe(N) < EVe(N —1). Let W, = @1, A -+ Apn,n € M with
o (W, HY(N)W,) = c € [EY-(N), EVe(N — 1)),
® hy,@jn— ljnpjn — 0in H_I(Rd), Vi=1,...,N, [(‘)MSV(\IJH) — 0]

then {V,} is precompact in H'(R?V) and converges strongly, after extraction of a
subsequence, to W = 3 A--- A oy € M which is a Hartree-Fock critical point.

o’
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HF Excited states

Theorem: HF Excited States (Lewin '17)

For atoms and molecules with N < EZZI Zm + 1, the HF energy has infinitely
many critical points {W()},5; on M with energies

M (N) < M (V) = (WO, Y (NWW)) < BN -1), k=1
such that

lim A ((N) = Efe(N — 1)
k— o0 ’

Rmk. Lions '87 also constructed infinitely many HF critical point, but with
energies (W, HY(N)W() — 0 (~ “embedded eigenvalues”)

» Lions worked in one-particle space, his method applies to other HF-like theories

» | work in N-particle space, the method uses that HF = restriction linear
problem on M
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Critical Point Theory

Nonlinear minimax method

Mec(N) = inf sup (W, HY(N)V) < Ef:(N —1)
' fiS5Io M wef(sk-1)
continuous and odd

generalizes usual Courant-Fischer / Rayleigh-Ritz linear minimax
MY (N) =same formula on whole sphere instead of M

one can use instead Krasnoselskii index, homology classes, etc
Palais-Smale at minimax level = 3 critical point

Palais-Smale does not hold for energies< 0, Lions uses Morse index bounds
to get compactness

(Ambrosetti-Rabinowitz '73, Berestycki-Lions '83, Rabinowitz '86,...)
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Proof of Palais-Smale property

Lemma (Geometric limits of HF states)
If M >V, —V, then

iminf £Y(V,) > (L= [WIP) ,_min {Ef(N — k) + Efe(k)} +£Y(V).

(Friesecke '03, Lewin '11)

Main fact: the (geometric) localization of a pure HF state is a convex
combination of HF pure states

Lemma (Energy of weak limit of Palais-Smale sequence)

Assume w > 0. If M 3V, =V with £Y(V,) — ¢ and ImEY(V,) — 0, then
EV(W) > c|v|?

Mathieu LEWIN (CNRS / Paris-Dauphine) HF Excited States 13 /13



