Examples of particle creation at point sources via boundary conditions

Jonas Lampart

CNRS & ICB, Université de Bourgogne Franche-Comté

August 22, 2017

joint work with J. Schmidt, S. Teufel and R. Tumulka (Tübingen)

Jonas Lampart

Examples of particle creation at point sources via boundary conditions

August 22, 2017

The minimal example

A simple model for a particle that can be emitted and absorbed by a source at $x_0 = 0 \in \mathbb{R}^3$ (Yafaev '92, Thomas '84). On $L^2(\mathbb{R}^3) \oplus \mathbb{C}$ consider the operator

$$H = \begin{pmatrix} -\Delta_0^* & 0\\ A & 0 \end{pmatrix}$$

where

- Δ_0^* is the adjoint of $\Delta_0 := (\Delta, H_0^2(\mathbb{R}^3 \setminus \{0\}))$
- $A: D(\Delta_0^*) \to \mathbb{C}$ extends the evaluation at x = 0:

$$A\psi = \lim_{r \to 0} \partial_r r\psi(r\omega)$$

on the domain $D(\Delta_0^*) \oplus \mathbb{C} \subset L^2(\mathbb{R}^3) \oplus \mathbb{C}$.

This operator is not symmetric.

The minimal example

It is well known that

$$D(\Delta_0^*) = H^2(\mathbb{R}^3) \oplus \operatorname{span}(f_{\gamma})$$
$$f_{\gamma}(x) = -\frac{e^{-\gamma|x|}}{4\pi|x|}, \operatorname{Re}(\gamma) > 0.$$

The minimal example

It is well known that

$$D(\Delta_0^*) = H^2(\mathbb{R}^3) \oplus \operatorname{span}(f_{\gamma})$$
$$f_{\gamma}(x) = -\frac{e^{-\gamma|x|}}{4\pi|x|}, \operatorname{Re}(\gamma) > 0.$$

Let

$$B: D(\Delta_0^*) \to \mathbb{C}, \qquad \psi \mapsto -4\pi \lim_{|x| \to 0} |x|\psi(x),$$

integration by parts shows that

$$\begin{split} \langle \varphi, -\Delta_0^* \psi \rangle &- \langle -\Delta_0^* \varphi, \psi \rangle \\ &= \int_0^\infty \int_{S^2} \left(\left(\partial_r^2 r \overline{\varphi}(r\omega) \right) r \psi(r\omega) - r \overline{\varphi}(r\omega) \partial_r^2 r \psi(r\omega) \right) \mathrm{d}r \mathrm{d}\omega \\ &= - \langle A\varphi, B\psi \rangle + \langle B\varphi, A\psi \rangle. \end{split}$$

By

H is symmetric on the domain

$$D_{\rm IBC} = \left\{ \Psi = (\psi^{(1)}, \psi^{(0)}) \in D(\Delta_0^*) \oplus \mathbb{C} : B\psi^{(1)} = \psi^{(0)} \right\}.$$

The condition $B\psi^{(1)} = \psi^{(0)}$ is a (co-dimension three) boundary condition at x = 0, we call this an *interior boundary condition* (IBC).

Proposition (Yafaev '92)

The operator H is self adjoint on the domain D_{IBC} and $H \ge 0$.

Proof.

Since H is symmetric on $D_{\rm IBC}$ it is enough to show that $(H + \lambda^2)\psi = g$ has a unique solution $\psi \in D_{\rm IBC}$ for $\lambda > 0$. On the one-particle sector $\psi^{(1)} = \varphi + af_{\lambda}$, with $\varphi \in H^2(\mathbb{R}^3)$ and $B\psi^{(1)} = a = \psi^{(0)}$. Then

$$(-\Delta_0^* + \lambda^2)\psi^{(1)} = (-\Delta_0 + \lambda^2)\varphi$$

After solving $(H+\lambda^2)\psi=g$ for $\varphi\text{,}$ we have the equation for $\psi^{(0)}$

$$\lambda^2 \psi^{(0)} + \underbrace{Af_{\lambda}}_{=\lambda} \psi^{(0)} = g^{(0)} - A(-\Delta_0 + \lambda^2)^{-1} g^{(1)}$$

which is solvable for $\lambda > 0$.

A model on Fock space

An arbitrary number of particles can be created/annihilated by a source at the origin.

Let \mathfrak{F} be the bosonic Fock space over $L^2(\mathbb{R}^3)$ and \mathfrak{H}^n its *n*-particle sector. The singular set in the configuration space of *n*-particles is the set \mathscr{C}^n with at least one particle at the origin. An arbitrary number of particles can be created/annihilated by a source at the origin.

Let \mathfrak{F} be the bosonic Fock space over $L^2(\mathbb{R}^3)$ and \mathfrak{H}^n its *n*-particle sector. The singular set in the configuration space of *n*-particles is the set \mathscr{C}^n with at least one particle at the origin. For *n* particles let

$$\Delta_0 = \left(\Delta, H_0^2(\mathbb{R}^{3n} \setminus \mathscr{C}^n)\right)$$
$$(B\psi)(x_1, \dots, x_{n-1}) = -4\pi\sqrt{n} \lim_{|x_n| \to 0} |x_n|\psi(x_1, \dots, x_n)$$
$$(A\psi)(x_1, \dots, x_{n-1}) = \sqrt{n} \lim_{r \to 0} \partial_r r\psi(x_1, \dots, x_{n-1}, r\omega)$$

and

$$D^{(n)} := \left\{ \psi \in D(\Delta_0^*) \cap \mathfrak{H}^n : B\psi \in L^2(\mathbb{R}^{3(n-1)}), A\psi \in L^2(\mathbb{R}^{3(n-1)}) \right\}$$

A model on Fock space

The Hamiltonian is defined by

$$(H\psi)^{(n)} = (-\Delta_0^* + nE_0)\psi^{(n)} + A\psi^{(n+1)}, \qquad n \ge 1$$

on the domain

$$D_{\rm IBC} = \left\{ \Psi \in \mathfrak{F} : \psi^{(n)} \in D^{(n)}, A\Psi \in \mathfrak{F}, H\Psi \in \mathfrak{F}, B\psi^{(n)} = \psi^{(n-1)} \right\}.$$

A model on Fock space

The Hamiltonian is defined by

$$(H\psi)^{(n)} = (-\Delta_0^* + nE_0)\psi^{(n)} + A\psi^{(n+1)}, \qquad n \ge 1$$

on the domain

$$D_{\text{IBC}} = \left\{ \Psi \in \mathfrak{F} : \psi^{(n)} \in D^{(n)}, A\Psi \in \mathfrak{F}, H\Psi \in \mathfrak{F}, B\psi^{(n)} = \psi^{(n-1)} \right\}$$

Theorem

For all $E_0 \in \mathbb{R}$ the operator (H, D_{IBC}) is essentially self adjoint and if $E_0 \ge 0$ it is bounded below. For $E_0 \ge 0$ the operator is self adjoint on D_{IBC} and equals

For $E_0 > 0$ the operator is self adjoint on D_{IBC} and equals

$$H = \left[d\Gamma(-\Delta + E_0) + a(\delta_0) + a^*(\delta_0) \right]_{\text{ren}} + \sqrt{E_0}/4\pi.$$

The operator $[d\Gamma(-\Delta + E_0) + a(\delta_0) + a^*(\delta_0)]_{ren}$ is constructed using a renormalisation procedure, and unitarily equivalent to the free Hamiltonian $d\Gamma(-\Delta + E_0)$ (Derezinski '03).

For $E_0 > 0$ the operator $(H, D_{\rm IBC})$ is an explicit representation of $\left[\mathrm{d}\Gamma(-\Delta + E_0) + a(\delta_0) + a^*(\delta_0)\right]_{\rm ren}$.

• In the sense of distributions we have for $\psi \in D_{\text{IBC}}$:

$$(H\psi)^{(n)} = (-\Delta + nE_0)\psi^{(n)} + (a^*(\delta_0)\psi)^{(n)} + A\psi^{(n+1)}.$$

We see that

$$D_{\text{IBC}} \cap \text{Dom} \left(\mathrm{d}\Gamma(-\Delta + E_0) \right) = \{0\}$$

This is also known for the Fröhlich Polaron (Griesemer, Wünsch '16).

Construct a model in d = 2 two space dimensions on $L^2(\mathbb{R}^2) \otimes \mathfrak{F}$ with a dynamical "source" particle at position y and (singular) boundary conditions on the set $\mathscr{C}^k = \{\prod_{j=1}^k |y - x_j| = 0\}$. For a number k of x-particles and one source let

$$\Delta_0 = \left(\Delta, H_0^2(\mathbb{R}^{2k+2} \setminus \mathscr{C}^k)\right)$$
$$(B\psi)(y, x_1, \dots, x_{k-1}) = 4\pi\sqrt{k} \lim_{|y-x_k| \to 0} \log|y - x_k|\psi(y, x_1, \dots, x_k)$$
$$(A\psi)(y, x_1, \dots, x_{k-1}) = \sqrt{k} \lim_{|y-x_k| \to 0} (\psi - \log|y - x_k|B\psi/(4\pi))$$

and

$$D^{(k)} = \{ \psi \in D(\Delta_0^*) \cap L^2(\mathbb{R}^2) \otimes \mathfrak{H}^k : B\psi \in L^2(\mathbb{R}^{2k}), A\psi \in L^2(\mathbb{R}^{2k}) \}$$

The operator with at most N particles:

$$(H_N \psi)^{(k)} = \begin{cases} 0 & k > N \\ -\Delta_0^* \psi^{(N)} & k = N \\ -\Delta_0^* \psi^{(k)} + A \psi^{(k+1)} & k < N \end{cases}$$

with domain

$$D_N = \{ \psi \in L^2(\mathbb{R}^2) \otimes \mathfrak{F} : \psi^{(k)} \in D^{(k)} \text{ and } B\psi^{(k)} = \psi^{(k-1)} \text{ for } k \leq N \}.$$

Proposition

The operator H_N is self adjoint on D_N and bounded below.

Jonas Lampart

Examples of particle creation at point sources via boundary conditions

August 22, 2017

A moving source in d = 2 dimensions

The main ingredient of the proof is the parametrisation of $D^{(N)}$:

$$\psi^{(N)} = \varphi^{(N)} + \Gamma_N(\lambda)(B\psi^{(N)})$$

with $\varphi^{(N)} \in H^2(\mathbb{R}^{2N+2})$, $\operatorname{ran}(\Gamma_N(\lambda)) \subset \ker(-\Delta_0^* + \lambda^2)$.

The main ingredient of the proof is the parametrisation of $D^{(N)}$:

$$\psi^{(N)} = \varphi^{(N)} + \Gamma_N(\lambda)(B\psi^{(N)})$$

with $\varphi^{(N)} \in H^2(\mathbb{R}^{2N+2})$, $\operatorname{ran}(\Gamma_N(\lambda)) \subset \ker(-\Delta_0^* + \lambda^2)$.

With this we construct the resolvent by solving the triangular system $(H_N + \lambda^2)\psi = g$. This is possible because $T_n := A\Gamma_{n+1}$ is bounded $D^{(n)} \to L^2 \otimes \mathfrak{H}^n$ and small compared to $H_{N-1} + \lambda^2$.

In d = 3 dimensions the analogue of T, the Skornyakov–Ter-Matirosyan operator, is bounded on H^1 but not on $D^{(n)}$. The proof only works for N = 1 (Thomas '84).

Proposition

The limit $\lim_{N\to\infty} H_N$ exists in the strong resolvent sense and defines a self-adjoint operator H.

This is proved using that $H_M - H_N$ vanishes on all sectors with less than $\min\{M, N\}$ particles.

- D. R. Yafaev: On a zero-range interaction of a quantum particle with the vacuum. *J. Phys. A: Math. Gen.* **25** (1992).
- L. E. Thomas: Multiparticle Schrödinger Hamiltonians with point interactions. *Phys. Rev. D* **30** (1984).
- J. Dereziński: Van Hove Hamiltonians Exactly Solvable Models of the Infrared and Ultraviolet Problem. *Ann. Henri Poincaré* **4** (2003).
- M. Griesemer and A. Wünsch: Self-adjointness and domain of the Fröhlich Hamiltonian. *J. Math. Phys.* **57** (2016).
- J.L., J. Schmidt, S. Teufel and R. Tumulka: Particle Creation at a Point Source by Means of Interior-Boundary Conditions. *arXiv:1703.04476* (2017).
- J.L., J. Schmidt: Particle creation by boundary conditions at moving sources in one and two dimensions. *In preparation*.