Interacting electrons in a random background

Frédéric Klopp

IMJ - UPMC

Quantissima in the Serenissima II Venice, 25/08/2017

F. Klopp (IMJ - UPMC)

Interacting electrons in a random background

25/08/2017

1 / 12

The n particle system

- On Λ large cube of \mathbb{R}^d , consider $H_{\omega}(\Lambda)$ a random Schrödinger operator (single particle model).
- On $\bigwedge_{j=1}^{n} L^{2}(\Lambda) = L_{-}^{2}(\Lambda^{n})$, consider the free operator

$$H^0_{\omega}(\Lambda,n) = \sum_{i=1}^n \underbrace{1 \otimes \ldots \otimes 1}_{i-1 \text{ times}} \otimes H_{\omega}(\Lambda) \otimes \underbrace{1 \otimes \ldots \otimes 1}_{n-i \text{ times}}.$$

• Pick $U: \mathbb{R} \to \mathbb{R}^+$ pair interaction potential Define

$$H^U_{\omega}(\Lambda, n) = H^0_{\omega}(\Lambda, n) + W_n$$
, where $W_n(x^1, \dots, x^n) := \sum_{i < j} U(x^i - x^j)$.

Thermodynamic limit

- Let $E^U_{\omega}(\Lambda, n)$ be the ground state energy of $H_{\omega}(\Lambda, n)$.
- Let $\Psi^{\widetilde{U}}_{\omega}(\Lambda, n)$ be the associated eigenfunction.

Problem

Describe $E^U_{\omega}(\Lambda, n)$ and $\Psi^U_{\omega}(\Lambda, n)$ in the limit $|\Lambda| \to +\infty$ and $\frac{n}{|\Lambda|} \to \rho > 0$.

Description of the ground state: the (reduced) density matrices:

Let $\Psi \in L^2_-(\Lambda^n)$ be a normalized *n*-electron wave function.

- *k*-particle density matrix : $\gamma_{\Psi}^{(k)}(x,y) = \binom{n}{k} \int_{\Lambda^{n-1}} \Psi(x,\tilde{x}) \Psi^*(y,\tilde{x}) d\tilde{x}$.
- $\gamma_{\Psi}^{(k)}$ non negative trace class operator satisfying $\operatorname{tr} \gamma_{\Psi}^{(k)} = \binom{n}{k}$.

The non interacting system Let $(E_p)_{p\geq 1}$ (resp. $(\psi_p)_{p\geq 1}$) be the eigenvalues (resp. associated eigenfunctions) of $H_{\omega}(\Lambda)$.

Define the counting fct per volume unit : $N_{H_{\omega}(\Lambda)}(E) = \frac{\#\{\text{e.v. of } H_{\omega}(\Lambda) \text{ in } (-\infty, E]\}}{|\Lambda|}$.

As $N_{H_{\omega}(\Lambda)}(E_n) = n/|\Lambda| \to \rho$, one has

$$\frac{E_{\omega}^{0}(\Lambda, n)}{n} = \frac{1}{n} \sum_{j=1}^{n} E_{j} = \frac{|\Lambda|}{n} \int_{-\infty}^{E_{n}} E dN_{H_{\omega}(\Lambda)}(E) \underset{\substack{|\Lambda| \to +\infty \\ n/|\Lambda| \to \rho}}{\longrightarrow} \frac{1}{\rho} \int_{-\infty}^{E_{\rho}} E dN(E)$$

where $N(E_{\rho})=\rho$; $E_{\rho}=$ Fermi energy and $N(E):=\lim_{|\Lambda|\to +\infty} N_{H_{\omega}(\Lambda)}(E)$ (IDS of H_{ω}).

Moreover, for non interacting ground state

$$\gamma^{(1)}_{\Psi^0_{m{\omega}}(\Lambda,n)} = \sum_{k=0}^n \ket{\psi_k}ra{\psi_k} \mathop{|igcup_{\ket{\Lambda}
ightarrow + \infty}} \mathbf{1}_{(-\infty,E_{m{
ho}}]}(H_{m{\omega}}).$$

F. Klopp (IMJ - UPMC)

Interacting electrons in a random background

25/08/2017

3 / 12

UPMC

A simple one-dimensional random model

The pieces (or Luttinger-Sy) model

• On \mathbb{R} , consider Poisson process $d\mu(\omega)$ of intensity μ i.e.

$$d\mu(\omega) = \sum_{k\in\mathbb{Z}} \delta_{x_k(\omega)}.$$

• For $\Lambda = [-L/2, L/2]$, on $L^2(\Lambda)$, define

$$H_{\omega}(L) = \bigoplus_{k \in \mathbb{Z}} -\frac{d^2}{dx^2} \Big|_{\Delta_k \cap \Lambda}^D \quad \text{where} \quad \Delta_k = \Delta_k(\omega) = [x_k, x_{k+1}]$$

• Integrated density of states

$$N(E) := \lim_{L \to +\infty} \frac{\sharp \{ \text{eigenvalues of } H_{\omega}(L) \text{ in } (-\infty, E] \}}{L}$$
$$= \frac{\exp(-\ell_E)}{1 - \exp(-\ell_E)} 1_{E \ge 0} \text{ where } \ell_E := \frac{\pi}{\sqrt{E}}.$$

The *n* particle system

• On $\bigwedge_{i=1}^{n} L^{2}([-L/2, L/2]) = L_{-}^{2}([-L/2, L/2]^{n})$, consider the free operator

$$H^0_{\omega}(L,n) = \sum_{i=1}^n \underbrace{1 \otimes \ldots \otimes 1}_{i-1 \text{ times}} \otimes H_{\omega}(L) \otimes \underbrace{1 \otimes \ldots \otimes 1}_{n-i \text{ times}}.$$

• Pick $U: \mathbb{R} \to \mathbb{R}^+$ not identically vanishing, even, bounded. We assume

$$U \in L^p(\mathbb{R})$$
 for some $p \in (1, +\infty]$ and $x^3 \cdot \int_x^{+\infty} U(t) dt \xrightarrow[x \to +\infty]{} 0$.

Define

$$H^U_{\omega}(L,n) = H^0_{\omega}(L,n) + W_n$$
, where $W_n(x^1, \dots, x^n) := \sum_{i < j} U(x^i - x^j)$.

The non interacting system: the ground state energy per particle

$$\mathscr{E}^0(\rho) = \lim_{\substack{L \to +\infty \\ n/L \to \rho}} \frac{E^0_\omega(L,n)}{n} = E_\rho \left(1 + O\left(\sqrt{E_\rho}\right) \right) = \pi^2 \left|\log \rho\right|^{-2} \left(1 + O\left(|\log \rho|^{-1}\right) \right).$$

F. Klopp (IMJ - UPMC)

Interacting electrons in a random background

25/08/2017

5 / 12

The non interacting ground state

- Pick all the pieces $\Delta_k = [x_k(\omega), x_{k+1}(\omega)]$ of length larger than $\ell_{\rho} = \pi/\sqrt{E_{\rho}}$.
- ② For each piece, take all the states associated to levels below E_{ρ} .
- **3** Form the Slater determinant to get the non interacting ground state.

The reduced one-particle density matrix for the non interacting ground state

$$\begin{split} \gamma_{\Psi_{\omega}^{(1)}(L,n)}^{(1)} &= \sum_{j \geq 1} \left[\sum_{j\ell_{\rho} \leq |\Delta_{k}| < (j+1)\ell_{\rho}} \left(\sum_{n=1}^{j} \gamma_{\varphi_{\Delta_{k}}^{(1)}}^{(1)} \right) \right] \\ &= \sum_{\ell_{\rho} \leq |\Delta_{k}| < 2\ell_{\rho}} \gamma_{\varphi_{\Delta_{k}}^{(1)}}^{(1)} + \sum_{2\ell_{\rho} \leq |\Delta_{k}| < 3\ell_{\rho}} \left(\gamma_{\varphi_{\Delta_{k}}^{(1)}}^{(1)} + \gamma_{\varphi_{\Delta_{k}}^{(1)}}^{(1)} \right) + R^{(1)} \end{split}$$

where

- for an interval I, we let φ_I^j be the j-th normalized eigenvector of $-\Delta_{|I}^D$,
- the operator $R^{(1)}$ is trace class and $||R^{(1)}||_1 \le C\rho^2 n$.

The 2 point correlation function

Theorem

Assume U cpct support. There exists $\rho_U > 0$ and $\mu > 0$ s.t. for $0 < \rho < \rho_U$ sufficiently small, one has

$$\sup_{\Lambda} \sup_{(x,x',y,y')\in\Lambda^4} \mathbb{E}(|\gamma_{\Psi_{\omega}^U(L,n)}^{(2)}(x,y;x',y')|e^{\mu(|x-y|+|x'-y'|)}) < +\infty.$$

Ground state energy per particle

Theorem (K.-Veniaminov)

Under our assumptions on U, ω -almost surely, the following limit exists, is independent of ω and admits the asymptotic expansion

$$\mathscr{E}^U(
ho) := \lim_{\substack{L o +\infty \ n/L o
ho}} rac{E^U_\omega(L,n)}{n} = \mathscr{E}^0(
ho) + rac{\pi^2 \gamma_*}{|\log
ho|^3}
ho + o\left(rac{
ho}{|\log
ho|^3}
ight),$$

where
$$\gamma_* = 1 - \exp\left(-\frac{\gamma}{8\pi^2}\right)$$
.

F. Klopp (IMJ - UPMC)

Interacting electrons in a random background

25/08/2017

7/12

Systems of two electrons within the same piece:

Lemma (K.-Veniaminov)

Assume that $U \in L^p(\mathbb{R})$ for some $p \in (1, +\infty]$ and that $\int_{\mathbb{R}} x^2 U(x) dx < +\infty$. Consider two electrons in $[0, \ell]$ interacting via the pair potential U, i.e., on $L^2([0, \ell]) \wedge L^2([0, \ell])$, consider the Hamiltonian

$$-\frac{d^2}{dx_1^2} - \frac{d^2}{dx_2^2} + U(x_1 - x_2). \tag{1}$$

Then, for large ℓ , $E^{2,U}(\ell)$, its ground state energy admits the following expansion

$$E^{2,U}(\ell) = \frac{5\pi^2}{\ell^2} + \frac{\gamma}{\ell^3} + o\left(\ell^{-3}\right)$$

where
$$\gamma := \frac{5\pi^2}{2} \left\langle \bullet \sqrt{U(\bullet)}, \left(Id + \frac{1}{2}U^{1/2}(-\Delta_1)^{-1}U^{1/2} \right)^{-1} \bullet \sqrt{U(\bullet)} \right\rangle$$
.

Uniqueness of the ground state:

Theorem (K.-Veniaminov)

Assume U is analytic. Then, for any L and n, $H^U_{\omega}(L,n)$ has a unique ground state ω -almost surely.

Interacting ground state: "optimal" approximation

Let ζ_I^1 be the ground state of $-\Delta \Big|_{I^2}^D + U$ acting on $L^2_-(I^2)$. Define

$$\gamma_{\Psi_{L,n}^{\text{opt}}}^{(1)} = \sum_{\ell_{\rho} - \rho \gamma_{*} \leq |\Delta_{k}| \leq 2\ell_{\rho} - \log(1 - \gamma_{*})} \gamma_{\varphi_{\Delta_{k}}^{1}}^{(1)} + \sum_{2\ell_{\rho} - \log(1 - \gamma_{*}) \leq |\Delta_{k}|} \gamma_{\zeta_{\Delta_{k}}^{1}}^{(1)},$$

Theorem (K.-Veniaminov)

We assume U cpct support. There exists $\rho_0 > 0$ s.t. for $\rho \in (0, \rho_0)$, ω -a.s., one has

$$\lim_{\substack{L \to +\infty \\ n/L \to \rho}} \frac{1}{n} \left\| \gamma_{\Psi_{\omega}^{U}(L,n)}^{(1)} - \gamma_{\Psi_{L,n}^{opt}}^{(1)} \right\|_{1} \lesssim \frac{\rho}{|\log \rho|},$$

$$\lim_{\substack{L \to +\infty \\ n/L \to \rho}} \frac{1}{n^{2}} \left\| \gamma_{\Psi_{\omega}^{U}(L,n)}^{(2)} - \frac{1}{2} (Id - Ex) \left[\gamma_{\Psi_{L,n}^{opt}}^{(1)} \otimes \gamma_{\Psi_{L,n}^{opt}}^{(1)} \right] \right\|_{1} \lesssim \frac{\rho}{|\log \rho|}.$$

F. Klopp (IMJ - UPMC)

Interacting electrons in a random background

25/08/2017

9/12

Quantification of the influence of interactions

Influence of interactions on the ground state is essentially described by

$$\begin{split} & \gamma_{\Psi_{\omega}^{0}(L,n)}^{(1)} - \gamma_{\Psi_{L,n}^{0\text{pt}}}^{(1)} = \sum_{2\ell_{\rho} - \log(1 - \gamma_{*}) \leq |\Delta_{k}|} \left(\gamma_{\varphi_{\Delta_{k}}^{1}}^{(1)} + \gamma_{\varphi_{\Delta_{k}}^{2}}^{(1)} - \gamma_{\zeta_{\Delta_{k}}^{1}}^{(1)} \right) \\ & - \sum_{\ell_{\rho} - \rho \gamma_{*} \leq |\Delta_{k}| \leq \ell_{\rho}} \gamma_{\varphi_{\Delta_{k}}^{1}}^{(1)} + \sum_{2\ell_{\rho} \leq |\Delta_{k}| \leq 2\ell_{\rho} - \log(1 - \gamma_{*})} \gamma_{\varphi_{\Delta_{k}}^{2}}^{(1)} + \widetilde{R}^{(1)} \end{split}$$

In particular,

$$\lim_{\substack{L \to +\infty \\ n/L \to \rho}} \frac{1}{n} \left\| \gamma_{\Psi_{\omega}^{0}(L,n)}^{(1)} - \gamma_{\Psi_{\omega}^{U}(L,n)}^{(1)} \right\|_{1} = 2\gamma_{*}\rho + O\left(\frac{\rho}{|\log \rho|}\right),$$

and

$$\lim_{\substack{L \to +\infty \\ n/L \to \rho}} \frac{1}{n^2} \left\| \gamma_{\Psi_{\omega}^0(L,n)}^{(2)} - \gamma_{\Psi_{\omega}^U(L,n)}^{(2)} \right\|_1 = 2\gamma_* \rho + O\left(\frac{\rho}{|\log \rho|}\right).$$

To be compared with

$$\limsup_{\substack{L \to +\infty \\ n/L \to \rho}} \frac{1}{n} \left\| \gamma_{\Psi_{\omega}^{U}(L,n)}^{(1)} - \gamma_{\Psi_{L,n}^{\mathrm{opt}}}^{(1)} \right\|_{1} \lesssim \frac{\rho}{|\log \rho|}.$$

A more realistic random model

The Poisson potential

• On \mathbb{R} , consider the Poisson point process $d\mu(\omega)$ of intensity 1

$$d\mu(\omega) = \sum_{k \in \mathbb{Z}} \delta_{x_k(\omega)}$$

• Fix $v : \mathbb{R} \to \mathbb{R}^+$, $v \ge 0$, continuous compactly supported and define

$$H_{\omega} = -\Delta + \int_{\mathbb{R}} v(x-y) d\mu(y) = -\Delta + \sum_{k \in \mathbb{Z}} v(x-x_k(\omega)).$$

• Integrated density of states cannot be computed explicitly

Theorem

For E small, one has the asymptotic expansion

$$-\log N(E) = \ell_E - c_0 + \sum_{k>1} c_k \ell_E^{-k}$$
 where $\ell_E = \frac{\pi}{\sqrt{E}}$.

F. Klopp (IMJ - UPMC)

Interacting electrons in a random background

25/08/2017

11 / 12

Ground state energy per particle

Theorem

For U repulsive and continuous of cpct support, ω -almost surely, the following limit exists, is independent of ω and admits the asymptotic expansion

$$\mathscr{E}^U(
ho) := \lim_{\substack{L o +\infty \ n/L o
ho}} rac{E^U_\omega(L,n)}{n} = \mathscr{E}^0(
ho) + rac{\pi^2 \gamma_*}{|\log
ho|^3}
ho + o\left(rac{
ho}{|\log
ho|^3}
ight).$$

One also has description of ground states (not necessarily unique).

Some open questions

- Prove exponential decay of 2 point correlation for random Schrödinger model. (related work of Mastropietro (2014-16)).
- Study the influence of the range of the interaction U.
- What happens if ρ is increased?
- What happens for random Schrödinger model in dimension $d \ge 2$?
- What happens when $T \neq 0$? (Mastropietro (2014-16)).

