# Manifestations of dynamical localization in the random XXZ spin chain 

Abel Klein

University of California, Irvine
with Alexander Elgart and Günter Stolz
Many-body localization in the droplet spectrum of the random XXZ..., arXiv:1703.07483 Manifestations of dynamical localization in the disordered XXZ spin...., arXiv:1708.00474

## Quantissima in the Serenissima II

Mathematical challenges in classical \& quantum statistical mechanics
Venice, 21-25 August 2017

## The random $X X Z$ quantum spin chain Hamiltonian

The infinite XXZ chain in a random field is given by the Hamiltonian

$$
H_{\omega}=\sum_{i \in \mathbb{Z}}\left\{\frac{1}{4}\left(I-\sigma_{i}^{z} \sigma_{i+1}^{z}\right)-\frac{1}{4 \Delta}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right)\right\}+\lambda \sum_{i \in \mathbb{Z}} \omega_{i} \mathcal{N}_{i},
$$

acting on $\otimes_{i \in \mathbb{Z}} \mathbb{C}_{i}^{2}, \quad \mathbb{C}_{i}^{2}=\mathbb{C}^{2}$ for all $i$, where

## The random $X X Z$ quantum spin chain Hamiltonian

The infinite XXZ chain in a random field is given by the Hamiltonian

$$
H_{\omega}=\sum_{i \in \mathbb{Z}}\left\{\frac{1}{4}\left(I-\sigma_{i}^{z} \sigma_{i+1}^{z}\right)-\frac{1}{4 \Delta}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right)\right\}+\lambda \sum_{i \in \mathbb{Z}} \omega_{i} \mathcal{N}_{i},
$$

acting on $\otimes_{i \in \mathbb{Z}} \mathbb{C}_{i}^{2}, \mathbb{C}_{i}^{2}=\mathbb{C}^{2}$ for all $i$, where
(1) $\sigma^{x}, \sigma^{y}, \sigma^{z}$ are the Pauli matrices- $\sigma_{i}^{x}, \sigma_{i}^{y}, \sigma_{i}^{z}$ act on $\mathbb{C}_{i}^{2}$;

## The random $X X Z$ quantum spin chain Hamiltonian

The infinite XXZ chain in a random field is given by the Hamiltonian

$$
H_{\omega}=\sum_{i \in \mathbb{Z}}\left\{\frac{1}{4}\left(I-\sigma_{i}^{z} \sigma_{i+1}^{z}\right)-\frac{1}{4 \Delta}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right)\right\}+\lambda \sum_{i \in \mathbb{Z}} \omega_{i} \mathcal{N}_{i}
$$

acting on $\otimes_{i \in \mathbb{Z}} \mathbb{C}_{i}^{2}, \mathbb{C}_{i}^{2}=\mathbb{C}^{2}$ for all $i$, where
(1) $\sigma^{x}, \sigma^{y}, \sigma^{z}$ are the Pauli matrices- $\sigma_{i}^{x}, \sigma_{i}^{y}, \sigma_{i}^{z}$ act on $\mathbb{C}_{i}^{2}$;
(2) $\mathcal{N}_{i}=\frac{1}{2}\left(1-\sigma_{i}^{z}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)_{i}$ is the local number operator at site $i$.

## The random $X X Z$ quantum spin chain Hamiltonian

The infinite XXZ chain in a random field is given by the Hamiltonian

$$
H_{\omega}=\sum_{i \in \mathbb{Z}}\left\{\frac{1}{4}\left(I-\sigma_{i}^{z} \sigma_{i+1}^{z}\right)-\frac{1}{4 \Delta}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right)\right\}+\lambda \sum_{i \in \mathbb{Z}} \omega_{i} \mathcal{N}_{i}
$$

acting on $\bigotimes_{i \in \mathbb{Z}} \mathbb{C}_{i}^{2}, \mathbb{C}_{i}^{2}=\mathbb{C}^{2}$ for all $i$, where
(1) $\sigma^{x}, \sigma^{y}, \sigma^{z}$ are the Pauli matrices- $\sigma_{i}^{x}, \sigma_{i}^{y}, \sigma_{i}^{z}$ act on $\mathbb{C}_{i}^{2}$;
(2) $\mathcal{N}_{i}=\frac{1}{2}\left(1-\sigma_{i}^{z}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)_{i}$ is the local number operator at site $i$.
(3) $\Delta>1$ (Ising phase of the $X X Z$ chain);

## The random $X X Z$ quantum spin chain Hamiltonian

The infinite XXZ chain in a random field is given by the Hamiltonian

$$
H_{\omega}=\sum_{i \in \mathbb{Z}}\left\{\frac{1}{4}\left(I-\sigma_{i}^{z} \sigma_{i+1}^{z}\right)-\frac{1}{4 \Delta}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right)\right\}+\lambda \sum_{i \in \mathbb{Z}} \omega_{i} \mathcal{N}_{i}
$$

acting on $\bigotimes_{i \in \mathbb{Z}} \mathbb{C}_{i}^{2}, \mathbb{C}_{i}^{2}=\mathbb{C}^{2}$ for all $i$, where
(1) $\sigma^{x}, \sigma^{y}, \sigma^{z}$ are the Pauli matrices- $\sigma_{i}^{x}, \sigma_{i}^{y}, \sigma_{i}^{z}$ act on $\mathbb{C}_{i}^{2}$;
(2) $\mathcal{N}_{i}=\frac{1}{2}\left(1-\sigma_{i}^{z}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)_{i}$ is the local number operator at site $i$.
(3) $\Delta>1$ (Ising phase of the XXZ chain);
(9) $\lambda>0$ is the disorder parameter;

## The random $X X Z$ quantum spin chain Hamiltonian

The infinite XXZ chain in a random field is given by the Hamiltonian

$$
H_{\omega}=\sum_{i \in \mathbb{Z}}\left\{\frac{1}{4}\left(I-\sigma_{i}^{z} \sigma_{i+1}^{z}\right)-\frac{1}{4 \Delta}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right)\right\}+\lambda \sum_{i \in \mathbb{Z}} \omega_{i} \mathcal{N}_{i},
$$

acting on $\otimes_{i \in \mathbb{Z}} \mathbb{C}_{i}^{2}, \mathbb{C}_{i}^{2}=\mathbb{C}^{2}$ for all $i$, where
(1) $\sigma^{x}, \sigma^{y}, \sigma^{z}$ are the Pauli matrices- $\sigma_{i}^{x}, \sigma_{i}^{y}, \sigma_{i}^{z}$ act on $\mathbb{C}_{i}^{2}$;
(2) $\mathcal{N}_{i}=\frac{1}{2}\left(1-\sigma_{i}^{z}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)_{i}$ is the local number operator at site $i$.
(3) $\Delta>1$ (Ising phase of the $X X Z$ chain);
(9) $\lambda>0$ is the disorder parameter;
(0) $\omega=\left\{\omega_{i}\right\}_{i \in \mathbb{Z}}$ are independent identically distributed random variables whose probability distribution $\mu$ is absolutely continuous with a bounded density, with $\{0,1\} \subset \operatorname{supp} \mu \subset[0,1]$.

## The random $X X Z$ quantum spin chain Hamiltonian

The infinite XXZ chain in a random field is given by the Hamiltonian

$$
H_{\omega}=\sum_{i \in \mathbb{Z}}\left\{\frac{1}{4}\left(I-\sigma_{i}^{z} \sigma_{i+1}^{z}\right)-\frac{1}{4 \Delta}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right)\right\}+\lambda \sum_{i \in \mathbb{Z}} \omega_{i} \mathcal{N}_{i},
$$

acting on $\otimes_{i \in \mathbb{Z}} \mathbb{C}_{i}^{2}, \mathbb{C}_{i}^{2}=\mathbb{C}^{2}$ for all $i$, where
(1) $\sigma^{x}, \sigma^{y}, \sigma^{z}$ are the Pauli matrices- $\sigma_{i}^{x}, \sigma_{i}^{y}, \sigma_{i}^{z}$ act on $\mathbb{C}_{i}^{2}$;
(2) $\mathcal{N}_{i}=\frac{1}{2}\left(1-\sigma_{i}^{z}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)_{i}$ is the local number operator at site $i$.
(3) $\Delta>1$ (Ising phase of the $X X Z$ chain);
(9) $\lambda>0$ is the disorder parameter;
(0) $\omega=\left\{\omega_{i}\right\}_{i \in \mathbb{Z}}$ are independent identically distributed random variables whose probability distribution $\mu$ is absolutely continuous with a bounded density, with $\{0,1\} \subset \operatorname{supp} \mu \subset[0,1]$.
$H_{\omega}$ is a self-adjoint operator on an appropriately defined Hilbert space $\mathcal{H}$.

## The random $X X Z$ quantum spin chain Hamiltonian

The infinite XXZ chain in a random field is given by the Hamiltonian

$$
H_{\omega}=\sum_{i \in \mathbb{Z}}\left\{\frac{1}{4}\left(I-\sigma_{i}^{z} \sigma_{i+1}^{z}\right)-\frac{1}{4 \Delta}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right)\right\}+\lambda \sum_{i \in \mathbb{Z}} \omega_{i} \mathcal{N}_{i},
$$

acting on $\otimes_{i \in \mathbb{Z}} \mathbb{C}_{i}^{2}, \mathbb{C}_{i}^{2}=\mathbb{C}^{2}$ for all $i$, where
(1) $\sigma^{x}, \sigma^{y}, \sigma^{z}$ are the Pauli matrices- $\sigma_{i}^{x}, \sigma_{i}^{y}, \sigma_{i}^{z}$ act on $\mathbb{C}_{i}^{2}$;
(2) $\mathcal{N}_{i}=\frac{1}{2}\left(1-\sigma_{i}^{z}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)_{i}$ is the local number operator at site $i$.
(3) $\Delta>1$ (Ising phase of the $X X Z$ chain);
(9) $\lambda>0$ is the disorder parameter;
(0) $\omega=\left\{\omega_{i}\right\}_{i \in \mathbb{Z}}$ are independent identically distributed random variables whose probability distribution $\mu$ is absolutely continuous with a bounded density, with $\{0,1\} \subset \operatorname{supp} \mu \subset[0,1]$.
$H_{\omega}$ is a self-adjoint operator on an appropriately defined Hilbert space $\mathcal{H}$. We have $\sigma\left(H_{\omega}\right)=\{0\} \cup\left[1-\frac{1}{\Delta}, \infty\right)$ almost surely.

## XXZ chain Hamiltonian in finite intervals

Consider the finite interval $[-L, L]=[-L, L] \cap \mathbb{Z}, L \in \mathbb{N}$, and set

$$
\begin{gathered}
H_{\omega}^{(L)}=\sum_{i=-L}^{L-1}\left\{\frac{1}{4}\left(I-\sigma_{i}^{z} \sigma_{i+1}^{z}\right)-\frac{1}{4 \Delta}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right)\right\}+\lambda \sum_{i=-L}^{L} \omega_{i} \mathcal{N}_{i} \\
+\beta\left(\mathcal{N}_{-L}+\mathcal{N}_{L}\right) \quad \text { on } \quad \mathcal{H}^{(L)}=\bigotimes_{i \in[-L, L]} \mathbb{C}_{i}^{2}
\end{gathered}
$$

## XXZ chain Hamiltonian in finite intervals

Consider the finite interval $[-L, L]=[-L, L] \cap \mathbb{Z}, L \in \mathbb{N}$, and set

$$
\begin{gathered}
H_{\omega}^{(L)}=\sum_{i=-L}^{L-1}\left\{\frac{1}{4}\left(I-\sigma_{i}^{z} \sigma_{i+1}^{z}\right)-\frac{1}{4 \Delta}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right)\right\}+\lambda \sum_{i=-L}^{L} \omega_{i} \mathcal{N}_{i} \\
+\beta\left(\mathcal{N}_{-L}+\mathcal{N}_{L}\right) \quad \text { on } \quad \mathcal{H}^{(L)}=\bigotimes_{i \in[-L, L]} \mathbb{C}_{i}^{2}
\end{gathered}
$$

- We fix $\beta \geq \frac{1}{2}\left(1-\frac{1}{\Delta}\right)$, so

$$
\sigma\left(H_{\omega}^{(L)}\right)=\{0\} \cup\left\{\left[1-\frac{1}{\Delta}, \infty\right) \cap \sigma\left(H_{\omega}^{(L)}\right)\right\} .
$$

## XXZ chain Hamiltonian in finite intervals

Consider the finite interval $[-L, L]=[-L, L] \cap \mathbb{Z}, L \in \mathbb{N}$, and set

$$
\begin{gathered}
H_{\omega}^{(L)}=\sum_{i=-L}^{L-1}\left\{\frac{1}{4}\left(I-\sigma_{i}^{z} \sigma_{i+1}^{z}\right)-\frac{1}{4 \Delta}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right)\right\}+\lambda \sum_{i=-L}^{L} \omega_{i} \mathcal{N}_{i} \\
+\beta\left(\mathcal{N}_{-L}+\mathcal{N}_{L}\right) \quad \text { on } \quad \mathcal{H}^{(L)}=\bigotimes_{i \in[-L, L]} \mathbb{C}_{i}^{2}
\end{gathered}
$$

- We fix $\beta \geq \frac{1}{2}\left(1-\frac{1}{\Delta}\right)$, so

$$
\sigma\left(H_{\omega}^{(L)}\right)=\{0\} \cup\left\{\left[1-\frac{1}{\Delta}, \infty\right) \cap \sigma\left(H_{\omega}^{(L)}\right)\right\} .
$$

- Unique ground state $\psi_{0}=\psi_{0}^{(L)}$ determined by $\mathcal{N}_{i} \psi_{0}=0$ for all $i$.


## XXZ chain Hamiltonian in finite intervals

Consider the finite interval $[-L, L]=[-L, L] \cap \mathbb{Z}, L \in \mathbb{N}$, and set

$$
\begin{gathered}
H_{\omega}^{(L)}=\sum_{i=-L}^{L-1}\left\{\frac{1}{4}\left(I-\sigma_{i}^{z} \sigma_{i+1}^{z}\right)-\frac{1}{4 \Delta}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right)\right\}+\lambda \sum_{i=-L}^{L} \omega_{i} \mathcal{N}_{i} \\
+\beta\left(\mathcal{N}_{-L}+\mathcal{N}_{L}\right) \quad \text { on } \quad \mathcal{H}^{(L)}=\bigotimes_{i \in[-L, L]} \mathbb{C}_{i}^{2}
\end{gathered}
$$

- We fix $\beta \geq \frac{1}{2}\left(1-\frac{1}{\Delta}\right)$, so

$$
\sigma\left(H_{\omega}^{(L)}\right)=\{0\} \cup\left\{\left[1-\frac{1}{\Delta}, \infty\right) \cap \sigma\left(H_{\omega}^{(L)}\right)\right\} .
$$

- Unique ground state $\psi_{0}=\psi_{0}^{(L)}$ determined by $\mathcal{N}_{i} \psi_{0}=0$ for all $i$.
- The spectrum of $H^{(L)}=H_{\omega}^{(L)}$ is almost surely simple, so that its normalized eigenvectors can be labeled as $\psi_{E}, E \in \sigma\left(H^{(L)}\right)$.


## The droplet spectrum

The droplet spectrum for the free $(\lambda=0) X X Z$ spin chain is given by

$$
I_{1}=\left[1-\frac{1}{\Delta}, 2\left(1-\frac{1}{\Delta}\right)\right) .
$$

## The droplet spectrum

The droplet spectrum for the free $(\lambda=0) X X Z$ spin chain is given by

$$
I_{1}=\left[1-\frac{1}{\Delta}, 2\left(1-\frac{1}{\Delta}\right)\right) .
$$

We set

$$
I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right] \quad \text { for } \quad 0 \leq \delta<1
$$

## The droplet spectrum

The droplet spectrum for the free $(\lambda=0) X X Z$ spin chain is given by

$$
I_{1}=\left[1-\frac{1}{\Delta}, 2\left(1-\frac{1}{\Delta}\right)\right) .
$$

We set

$$
I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right] \quad \text { for } \quad 0 \leq \delta<1
$$

Note that

$$
I_{1, \delta} \subsetneq I_{1} \quad \text { if } \quad 0<\delta<1
$$

## The droplet spectrum

The droplet spectrum for the free $(\lambda=0) X X Z$ spin chain is given by

$$
I_{1}=\left[1-\frac{1}{\Delta}, 2\left(1-\frac{1}{\Delta}\right)\right) .
$$

We set

$$
I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right] \quad \text { for } \quad 0 \leq \delta<1
$$

Note that

$$
I_{1, \delta} \subsetneq I_{1} \quad \text { if } \quad 0<\delta<1 .
$$

Given an interval I, we set

$$
\sigma_{l}\left(H_{\omega}^{(L)}\right)=\sigma\left(H_{\omega}^{(L)}\right) \cap I,
$$

## The droplet spectrum

The droplet spectrum for the free $(\lambda=0) X X Z$ spin chain is given by

$$
I_{1}=\left[1-\frac{1}{\Delta}, 2\left(1-\frac{1}{\Delta}\right)\right) .
$$

We set

$$
I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right] \quad \text { for } \quad 0 \leq \delta<1
$$

Note that

$$
I_{1, \delta} \subsetneq I_{1} \quad \text { if } \quad 0<\delta<1 .
$$

Given an interval I, we set

$$
\sigma_{l}\left(H_{\omega}^{(L)}\right)=\sigma\left(H_{\omega}^{(L)}\right) \cap I,
$$

and let

$$
G_{I}=\left\{g: \mathbb{R} \rightarrow \mathbb{C} \text { Borel measurable, }|g| \leq \chi_{I}\right\}
$$

## Theorem (Localization in the droplet spectrum)

## Theorem (Localization in the droplet spectrum)

There exists a constant $K>0$ with the following property:

## Theorem (Localization in the droplet spectrum)

There exists a constant $K>0$ with the following property: If $\Delta>1, \lambda>0$, and $0<\delta<1$ satisfy

$$
\lambda(\delta(\Delta-1))^{\frac{1}{2}} \min \{1,(\delta(\Delta-1))\} \geq K
$$

## Theorem (Localization in the droplet spectrum)

There exists a constant $K>0$ with the following property:
If $\Delta>1, \lambda>0$, and $0<\delta<1$ satisfy

$$
\lambda(\delta(\Delta-1))^{\frac{1}{2}} \min \{1,(\delta(\Delta-1))\} \geq K
$$

there exist constants $C<\infty$ and $m>0$ such that we have, uniformly in $L$,

## Theorem (Localization in the droplet spectrum)

There exists a constant $K>0$ with the following property:
If $\Delta>1, \lambda>0$, and $0<\delta<1$ satisfy

$$
\lambda(\delta(\Delta-1))^{\frac{1}{2}} \min \{1,(\delta(\Delta-1))\} \geq K
$$

there exist constants $C<\infty$ and $m>0$ such that we have, uniformly in $L$,

$$
\mathbb{E}\left(\sum_{E \in \sigma_{1, \delta}\left(H^{(L)}\right)}\left\|\mathcal{N}_{i} \psi_{E}\right\|\left\|\mathcal{N}_{j} \psi_{E}\right\|\right) \leq C e^{-m|i-j|} \text { for all } i, j \in[-L, L],
$$

## Theorem (Localization in the droplet spectrum)

There exists a constant $K>0$ with the following property:
If $\Delta>1, \lambda>0$, and $0<\delta<1$ satisfy

$$
\lambda(\delta(\Delta-1))^{\frac{1}{2}} \min \{1,(\delta(\Delta-1))\} \geq K
$$

there exist constants $C<\infty$ and $m>0$ such that we have, uniformly in $L$,

$$
\mathbb{E}\left(\sum_{E \in \sigma_{1, \delta}\left(H^{(L)}\right)}\left\|\mathcal{N}_{i} \psi_{E}\right\|\left\|\mathcal{N}_{j} \psi_{E}\right\|\right) \leq C e^{-m|i-j|} \text { for all } i, j \in[-L, L]
$$

and, as a consequence,

$$
\mathbb{E}\left(\sup _{g \in G_{l, \delta}}\left\|\mathcal{N}_{i} g\left(H^{(L)}\right) \mathcal{N}_{j}\right\|_{1}\right) \leq C e^{-m|i-j|} \text { for all } i, j \in[-L, L] .
$$

## Theorem (Localization in the droplet spectrum)

There exists a constant $K>0$ with the following property: If $\Delta>1, \lambda>0$, and $0<\delta<1$ satisfy

$$
\lambda(\delta(\Delta-1))^{\frac{1}{2}} \min \{1,(\delta(\Delta-1))\} \geq K
$$

there exist constants $C<\infty$ and $m>0$ such that we have, uniformly in $L$,

$$
\mathbb{E}\left(\sum_{E \in \sigma_{1, \delta}\left(H^{(L)}\right)}\left\|\mathcal{N}_{i} \psi_{E}\right\|\left\|\mathcal{N}_{j} \psi_{E}\right\|\right) \leq C e^{-m|i-j|} \text { for all } i, j \in[-L, L],
$$

and, as a consequence,

$$
\mathbb{E}\left(\sup _{g \in G_{l, \delta}}\left\|\mathcal{N}_{i} g\left(H^{(L)}\right) \mathcal{N}_{j}\right\|_{1}\right) \leq C e^{-m|i-j|} \text { for all } i, j \in[-L, L] .
$$

We will say that we have droplet localization in an interval / if the conclusions of the theorem hold in the interval $I$.

## Best possible interval for droplet localization

We proved droplet localization on intervals

$$
I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right] \subset\left[1-\frac{1}{\Delta}, 2\left(1-\frac{1}{\Delta}\right)\right) .
$$

## Best possible interval for droplet localization

We proved droplet localization on intervals

$$
I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right] \subset\left[1-\frac{1}{\Delta}, 2\left(1-\frac{1}{\Delta}\right)\right) .
$$

Droplet localization for the random XXZ spin chain (in the sense of the Theorem) is not possible outside the droplet spectrum.

## Best possible interval for droplet localization

We proved droplet localization on intervals

$$
I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right] \subset\left[1-\frac{1}{\Delta}, 2\left(1-\frac{1}{\Delta}\right)\right) .
$$

Droplet localization for the random XXZ spin chain (in the sense of the Theorem) is not possible outside the droplet spectrum.

Theorem
Suppose we have droplet localization in the interval I $=\left[1-\frac{1}{\Delta}, \Theta\right]$.

## Best possible interval for droplet localization

We proved droplet localization on intervals

$$
I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right] \subset\left[1-\frac{1}{\Delta}, 2\left(1-\frac{1}{\Delta}\right)\right) .
$$

Droplet localization for the random XXZ spin chain (in the sense of the Theorem) is not possible outside the droplet spectrum.

## Theorem

Suppose we have droplet localization in the interval I $=\left[1-\frac{1}{\Delta}, \Theta\right]$. Then

$$
\Theta \leq 2\left(1-\frac{1}{\Delta}\right)
$$

## Best possible interval for droplet localization

We proved droplet localization on intervals

$$
I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right] \subset\left[1-\frac{1}{\Delta}, 2\left(1-\frac{1}{\Delta}\right)\right) .
$$

Droplet localization for the random XXZ spin chain (in the sense of the Theorem) is not possible outside the droplet spectrum.

## Theorem

Suppose we have droplet localization in the interval I $=\left[1-\frac{1}{\Delta}, \Theta\right]$. Then

$$
\Theta \leq 2\left(1-\frac{1}{\Delta}\right),
$$

that is, we must have

$$
I=I_{1, \delta} \quad \text { for some } \quad 0 \leq \delta<1
$$

## Preliminaries

- $H=H_{\omega}$ will be a random XXZ spin chain satisfying droplet localization in the interval $I=I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right]$.


## Preliminaries

- $H=H_{\omega}$ will be a random XXZ spin chain satisfying droplet localization in the interval $I=I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right]$.
- $P_{B}^{(L)}=\chi_{B}\left(H^{(L)}\right)$ for $B \subset \mathbb{R}$, with $P_{E}^{(L)}=P_{\{E\}}^{(L)}$ for $E \in \mathbb{R}$.


## Preliminaries

- $H=H_{\omega}$ will be a random XXZ spin chain satisfying droplet localization in the interval $I=I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right]$.
- $P_{B}^{(L)}=\chi_{B}\left(H^{(L)}\right)$ for $B \subset \mathbb{R}$, with $P_{E}^{(L)}=P_{\{E\}}^{(L)}$ for $E \in \mathbb{R}$.
$\bullet I_{0}=\left[0,(2-\delta)\left(1-\frac{1}{\Delta}\right)\right] \approx\{0\} \cup I \quad \Longrightarrow \quad P_{I_{0}}^{(L)}=P_{0}^{(L)}+P_{I}^{(L)}$.


## Preliminaries

- $H=H_{\omega}$ will be a random XXZ spin chain satisfying droplet localization in the interval $I=I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right]$.
- $P_{B}^{(L)}=\chi_{B}\left(H^{(L)}\right)$ for $B \subset \mathbb{R}$, with $P_{E}^{(L)}=P_{\{E\}}^{(L)}$ for $E \in \mathbb{R}$.
$\bullet I_{0}=\left[0,(2-\delta)\left(1-\frac{1}{\Delta}\right)\right] \approx\{0\} \cup I \quad \Longrightarrow \quad P_{I_{0}}^{(L)}=P_{0}^{(L)}+P_{I}^{(L)}$.
- A local observable $X$ with support $J \subset[-L, L]$ is an operator on $\otimes_{j \in J} \mathbb{C}_{j}^{2}$, considered as an operator on $\mathcal{H}^{(L)}$ by acting as the identity on spins not in $J$. We always take $J$ to an interval. Supports of observables are not uniquely defined.


## Preliminaries

- $H=H_{\omega}$ will be a random XXZ spin chain satisfying droplet localization in the interval $I=I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right]$.
- $P_{B}^{(L)}=\chi_{B}\left(H^{(L)}\right)$ for $B \subset \mathbb{R}$, with $P_{E}^{(L)}=P_{\{E\}}^{(L)}$ for $E \in \mathbb{R}$.
$\bullet I_{0}=\left[0,(2-\delta)\left(1-\frac{1}{\Delta}\right)\right] \approx\{0\} \cup I \quad \Longrightarrow \quad P_{I_{0}}^{(L)}=P_{0}^{(L)}+P_{I}^{(L)}$.
- A local observable $X$ with support $J \subset[-L, L]$ is an operator on $\otimes_{j \in J} \mathbb{C}_{j}^{2}$, considered as an operator on $\mathcal{H}^{(L)}$ by acting as the identity on spins not in $J$. We always take $J$ to an interval. Supports of observables are not uniquely defined.
Given a local observable $X$, we will generally specify a support for $X$, denoted by $\mathcal{S}_{X}=\left[s_{X}, r_{X}\right]$. We always assume $\emptyset \neq \mathcal{S}_{X} \subset[-L, L]$.


## Preliminaries

- $H=H_{\omega}$ will be a random XXZ spin chain satisfying droplet localization in the interval $I=I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right]$.
- $P_{B}^{(L)}=\chi_{B}\left(H^{(L)}\right)$ for $B \subset \mathbb{R}$, with $P_{E}^{(L)}=P_{\{E\}}^{(L)}$ for $E \in \mathbb{R}$.
$\bullet I_{0}=\left[0,(2-\delta)\left(1-\frac{1}{\Delta}\right)\right] \approx\{0\} \cup I \quad \Longrightarrow \quad P_{I_{0}}^{(L)}=P_{0}^{(L)}+P_{I}^{(L)}$.
- A local observable $X$ with support $J \subset[-L, L]$ is an operator on $\otimes_{j \in J} \mathbb{C}_{j}^{2}$, considered as an operator on $\mathcal{H}^{(L)}$ by acting as the identity on spins not in $J$. We always take $J$ to an interval. Supports of observables are not uniquely defined.

Given a local observable $X$, we will generally specify a support for $X$, denoted by $\mathcal{S}_{X}=\left[s_{X}, r_{X}\right]$. We always assume $\emptyset \neq \mathcal{S}_{X} \subset[-L, L]$.
$\bullet$ If $\ell \geq 1$, we set $\mathcal{S}_{X, \ell}=\left(\mathcal{S}_{X}\right)_{\ell}=\left[s_{X}-\ell, r_{X}+\ell\right] \cap[-L, L]$.

## Preliminaries

- $H=H_{\omega}$ will be a random XXZ spin chain satisfying droplet localization in the interval $I=I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right]$.
- $P_{B}^{(L)}=\chi_{B}\left(H^{(L)}\right)$ for $B \subset \mathbb{R}$, with $P_{E}^{(L)}=P_{\{E\}}^{(L)}$ for $E \in \mathbb{R}$.
$\bullet I_{0}=\left[0,(2-\delta)\left(1-\frac{1}{\Delta}\right)\right] \approx\{0\} \cup I \quad \Longrightarrow \quad P_{I_{0}}^{(L)}=P_{0}^{(L)}+P_{I}^{(L)}$.
- A local observable $X$ with support $J \subset[-L, L]$ is an operator on $\otimes_{j \in J} \mathbb{C}_{j}^{2}$, considered as an operator on $\mathcal{H}^{(L)}$ by acting as the identity on spins not in $J$. We always take $J$ to an interval. Supports of observables are not uniquely defined.

Given a local observable $X$, we will generally specify a support for $X$, denoted by $\mathcal{S}_{X}=\left[s_{X}, r_{X}\right]$. We always assume $\emptyset \neq \mathcal{S}_{X} \subset[-L, L]$.

- If $\ell \geq 1$, we set $\mathcal{S}_{X, \ell}=\left(\mathcal{S}_{X}\right)_{\ell}=\left[s_{X}-\ell, r_{X}+\ell\right] \cap[-L, L]$.
- Given two local observables $X, Y$ we set $\operatorname{dist}(X, Y)=\operatorname{dist}\left(\mathcal{S}_{X}, \mathcal{S}_{Y}\right)$.


## Time evolution in an energy window

The time evolution of a local observable $X$ under $H^{(L)}$ is given by

$$
\tau_{t}(X)=\tau_{t}^{(L)}(X)=\mathrm{e}^{i t H^{(L)}} X \mathrm{e}^{-i t H^{(L)}} \quad \text { for } \quad t \in \mathbb{R}
$$

## Time evolution in an energy window

The time evolution of a local observable $X$ under $H^{(L)}$ is given by

$$
\tau_{t}(X)=\tau_{t}^{(L)}(X)=\mathrm{e}^{i t H^{(L)}} X \mathrm{e}^{-i t H^{(L)}} \quad \text { for } \quad t \in \mathbb{R} .
$$

Since we only have localization in the energy interval I, and hence also in $I_{0}$, we should only expect manifestations of dynamical localization in these energy intervals.

## Time evolution in an energy window

The time evolution of a local observable $X$ under $H^{(L)}$ is given by

$$
\tau_{t}(X)=\tau_{t}^{(L)}(X)=\mathrm{e}^{i t H^{(L)}} X \mathrm{e}^{-i t H^{(L)}} \quad \text { for } \quad t \in \mathbb{R}
$$

Since we only have localization in the energy interval $I$, and hence also in $I_{0}$, we should only expect manifestations of dynamical localization in these energy intervals.

Thus, given an energy interval $J$, we consider the sub-Hilbert space Ran $P_{J}^{(L)}$, spanned by the the eigenstates of $H^{(L)}$ with energies in $J$, and localize an observable $X$ in the energy interval $J$ by considering its restriction to $\operatorname{Ran} P_{J}^{(L)}$,

$$
X_{J}=P_{J}^{(L)} X P_{J}^{(L)}
$$

## Time evolution in an energy window

The time evolution of a local observable $X$ under $H^{(L)}$ is given by

$$
\tau_{t}(X)=\tau_{t}^{(L)}(X)=\mathrm{e}^{i t H^{(L)}} X \mathrm{e}^{-i t H^{(L)}} \quad \text { for } \quad t \in \mathbb{R}
$$

Since we only have localization in the energy interval $I$, and hence also in $I_{0}$, we should only expect manifestations of dynamical localization in these energy intervals.

Thus, given an energy interval $J$, we consider the sub-Hilbert space Ran $P_{J}^{(L)}$, spanned by the the eigenstates of $H^{(L)}$ with energies in $J$, and localize an observable $X$ in the energy interval $J$ by considering its restriction to $\operatorname{Ran} P_{J}^{(L)}$,

Clearly

$$
\begin{aligned}
X_{J} & =P_{J}^{(L)} X P_{J}^{(L)} \\
\tau_{t}\left(X_{J}\right) & =\left(\tau_{t}(X)\right)_{J} .
\end{aligned}
$$

## Non-spreading of information in the interval $I_{0}$

## Non-spreading of information in the interval $I_{0}$

## Theorem

There exists $C<\infty$, independent of $L$, such that for all local observables $X, t \in \mathbb{R}$ and $\ell>0$,

## Non-spreading of information in the interval $I_{0}$

## Theorem

There exists $C<\infty$, independent of $L$, such that for all local observables $X, t \in \mathbb{R}$ and $\ell>0$, there is a local observable $X_{\ell}(t)=\left(X_{\ell}(t)\right)_{\omega}$ with support $\mathcal{S}_{X, \ell}$,

## Non-spreading of information in the interval $I_{0}$

## Theorem

There exists $C<\infty$, independent of $L$, such that for all local observables $X, t \in \mathbb{R}$ and $\ell>0$, there is a local observable $X_{\ell}(t)=\left(X_{\ell}(t)\right)_{\omega}$ with support $\mathcal{S}_{X, \ell}$, satisfying

$$
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left(X_{\ell}(t)-\tau_{t}(X)\right)_{I_{0}}\right\|_{1}\right) \leq C\|X\| \mathrm{e}^{-\frac{1}{16} m \ell} .
$$

## Non-spreading of information in the interval $I_{0}$

## Theorem

There exists $C<\infty$, independent of $L$, such that for all local observables $X, t \in \mathbb{R}$ and $\ell>0$, there is a local observable $X_{\ell}(t)=\left(X_{\ell}(t)\right)_{\omega}$ with support $\mathcal{S}_{X, \ell}$, satisfying

$$
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left(X_{\ell}(t)-\tau_{t}(X)\right)_{I_{0}}\right\|_{1}\right) \leq C\|X\| \mathrm{e}^{-\frac{1}{16} m \ell} .
$$

$X_{I}=\left(X_{I_{0}}\right)_{I} \Longrightarrow$ the theorem holds with $I$ substituted for $I_{0}$.

## Zero-velocity Lieb-Robinson bounds

## Zero-velocity Lieb-Robinson bounds

Theorem<br>The following holds uniformly in L:

## Zero-velocity Lieb-Robinson bounds

Theorem
The following holds uniformly in L:

$$
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left[\tau_{t}\left(X_{l}\right), Y_{l}\right]\right\|_{1}\right) \leq C\|X\|\|Y\| \mathrm{e}^{-\frac{1}{8} m \operatorname{dist}(X, Y)}
$$

## Zero-velocity Lieb-Robinson bounds

## Theorem

The following holds uniformly in $L$ :

$$
\begin{gather*}
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left[\tau_{t}\left(X_{l}\right), Y_{l}\right]\right\|_{1}\right) \leq C\|X\|\|Y\| \mathrm{e}^{-\frac{1}{8} m \operatorname{dist}(X, Y)} \\
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left[\tau_{t}\left(X_{l_{0}}\right), Y_{l_{0}}\right]-\left(\tau_{t}(X) P_{0} Y-Y P_{0} \tau_{t}(X)\right)_{I}\right\|_{1}\right)  \tag{1}\\
\leq C\|X\|\|Y\| \mathrm{e}^{-\frac{1}{8} m \operatorname{dist}(X, Y)} \\
\mathbb{E}\left(\sup _{t, s \in \mathbb{R}}\left\|\left[\left[\tau_{t}\left(X_{l_{0}}\right), \tau_{s}\left(Y_{l_{0}}\right)\right], Z_{l_{0}}\right]\right\| \|_{1}\right) \\
\leq C\|X\|\|Y\|\|Z\| \mathrm{e}^{-\frac{1}{8} m \min \{\operatorname{dist}(X, Y), \operatorname{dist}(X, Z), \operatorname{dist}(Y, Z)\}}
\end{gather*}
$$

## Zero-velocity Lieb-Robinson bounds

## Theorem

The following holds uniformly in $L$ :

$$
\begin{gather*}
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left[\tau_{t}\left(X_{l}\right), Y_{I}\right]\right\|_{1}\right) \leq C\|X\|\|Y\| \mathrm{e}^{-\frac{1}{8} m \operatorname{dist}(X, Y)} \\
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left[\tau_{t}\left(X_{l_{0}}\right), Y_{l_{0}}\right]-\left(\tau_{t}(X) P_{0} Y-Y P_{0} \tau_{t}(X)\right)_{I}\right\|_{1}\right)  \tag{1}\\
\leq C\|X\|\|Y\| \mathrm{e}^{-\frac{1}{8} m \operatorname{dist}(X, Y)} \\
\mathbb{E}\left(\sup _{t, s \in \mathbb{R}}\left\|\left[\left[\tau_{t}\left(X_{I_{0}}\right), \tau_{s}\left(Y_{l_{0}}\right)\right], Z_{l_{0}}\right]\right\|_{1}\right) \\
\leq C\|X\|\|Y\|\|Z\| \mathrm{e}^{-\frac{1}{8} m \min \{\operatorname{dist}(X, Y), \operatorname{dist}(X, Z), \operatorname{dist}(Y, Z)\}}
\end{gather*}
$$

Moreover, the estimate (1) is not true without the counterterms.

## Correlators

We define the truncated time evolution of an observable $X$ in the energy window I by $\left(H=H_{\omega}^{(L)}\right)$,

$$
\tau_{t}^{\prime}(X)=\mathrm{e}^{i t H_{l}} X \mathrm{e}^{-i t H_{l}}, \quad \text { where } H_{l}=H P_{l} .
$$

## Correlators

We define the truncated time evolution of an observable $X$ in the energy window I by $\left(H=H_{\omega}^{(L)}\right)$,

$$
\tau_{t}^{\prime}(X)=\mathrm{e}^{i t H_{l}} X \mathrm{e}^{-i t H_{l}}, \quad \text { where } H_{l}=H P_{l} .
$$

Note that $\left(\tau_{t}^{\prime}(X)\right)_{I}=\left(\tau_{t}(X)\right)_{I}=\tau_{t}\left(X_{I}\right)$.

## Correlators

We define the truncated time evolution of an observable $X$ in the energy window I by $\left(H=H_{\omega}^{(L)}\right)$,

$$
\tau_{t}^{\prime}(X)=\mathrm{e}^{i t H_{l}} X \mathrm{e}^{-i t H_{l}}, \quad \text { where } H_{l}=H P_{l} .
$$

Note that $\left(\tau_{t}^{\prime}(X)\right)_{I}=\left(\tau_{t}(X)\right)_{I}=\tau_{t}\left(X_{I}\right)$.
The correlator operator of two observables $X$ and $Y$ in the energy window $I$ is given by ( $\bar{P}_{I}=1-P_{l}$ )

$$
R_{l}(X, Y)=P_{l} X \bar{P}_{l} Y P_{l}=(X Y)_{l}-X_{l} Y_{l}
$$

## Correlators

We define the truncated time evolution of an observable $X$ in the energy window I by $\left(H=H_{\omega}^{(L)}\right)$,

$$
\tau_{t}^{\prime}(X)=\mathrm{e}^{i t H_{l}} X \mathrm{e}^{-i t H_{l}}, \quad \text { where } H_{l}=H P_{l} .
$$

Note that $\left(\tau_{t}^{\prime}(X)\right)_{I}=\left(\tau_{t}(X)\right)_{I}=\tau_{t}\left(X_{I}\right)$.
The correlator operator of two observables $X$ and $Y$ in the energy window $I$ is given by $\left(\bar{P}_{I}=1-P_{l}\right)$

$$
R_{l}(X, Y)=P_{l} X \bar{P}_{l} Y P_{l}=(X Y)_{l}-X_{l} Y_{l}
$$

If $E$ is a simple eigenvalue with normalized eigenvector $\psi_{E}$, we have, with $R_{E}(X, Y)=R_{\{E\}}(X, Y)$,

$$
\operatorname{tr}\left(R_{E}(X, Y)\right)=\left\langle\psi_{E}, X Y \psi_{E}\right\rangle-\left\langle\psi_{E}, X \psi_{E}\right\rangle\left\langle\psi_{E}, Y \psi_{E}\right\rangle .
$$

## Correlators

We define the truncated time evolution of an observable $X$ in the energy window I by $\left(H=H_{\omega}^{(L)}\right)$,

$$
\tau_{t}^{\prime}(X)=\mathrm{e}^{i t H_{l}} X \mathrm{e}^{-i t H_{l}}, \quad \text { where } H_{l}=H P_{l} .
$$

Note that $\left(\tau_{t}^{\prime}(X)\right)_{I}=\left(\tau_{t}(X)\right)_{I}=\tau_{t}\left(X_{I}\right)$.
The correlator operator of two observables $X$ and $Y$ in the energy window $I$ is given by ( $\left.\bar{P}_{I}=1-P_{I}\right)$

$$
R_{l}(X, Y)=P_{l} X \bar{P}_{l} Y P_{l}=(X Y)_{l}-X_{l} Y_{l} .
$$

If $E$ is a simple eigenvalue with normalized eigenvector $\psi_{E}$, we have, with $R_{E}(X, Y)=R_{\{E\}}(X, Y)$,

$$
\operatorname{tr}\left(R_{E}(X, Y)\right)=\left\langle\psi_{E}, X Y \psi_{E}\right\rangle-\left\langle\psi_{E}, X \psi_{E}\right\rangle\left\langle\psi_{E}, Y \psi_{E}\right\rangle .
$$

We are interested in quantities of the form $(K \subset I)$
$R_{K}\left(\tau_{t}^{\prime}(X), Y\right)=\left(\tau_{t}^{\prime}(X) Y\right)_{K}-\left(\tau_{t}^{\prime}(X)\right)_{K} Y_{K}=\left(\tau_{t}^{\prime}(X) Y\right)_{K}-\tau_{t}\left(X_{K}\right) Y_{K}$.

## Dynamical exponential clustering

## Theorem

For all local observables $X$ and $Y$ we have, uniformly in $L$,

## Dynamical exponential clustering

## Theorem

For all local observables $X$ and $Y$ we have, uniformly in $L$,

$$
\mathbb{E}\left(\sup _{t \in \mathbb{R}} \sum_{E \in \sigma_{l}\left(H^{(L)}\right)}\left|\operatorname{tr}\left(R_{E}\left(\tau_{t}^{\prime}(X), Y\right)\right)\right|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-m \operatorname{dist}(X, Y)}
$$

## Dynamical exponential clustering

## Theorem

For all local observables $X$ and $Y$ we have, uniformly in $L$,

$$
\begin{aligned}
& \mathbb{E}\left(\sup _{t \in \mathbb{R}} \sum_{E \in \sigma_{l}\left(H^{(L)}\right)}\left|\operatorname{tr}\left(R_{E}\left(\tau_{t}^{\prime}(X), Y\right)\right)\right|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-m \operatorname{dist}(X, Y)}, \\
& \mathbb{E}\left(\sup _{t \in \mathbb{R}} \sum_{E \in \sigma_{l}\left(H^{(L)}\right)}\left|\operatorname{tr}\left(R_{E}\left(\tau_{t}\left(X_{l}\right), Y_{l}\right)\right)\right|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-m \operatorname{dist}(X, Y)},
\end{aligned}
$$

## Dynamical exponential clustering

## Theorem

For all local observables $X$ and $Y$ we have, uniformly in $L$,

$$
\begin{aligned}
& \mathbb{E}\left(\sup _{t \in \mathbb{R}} \sum_{E \in \sigma_{l}\left(H^{(L)}\right)}\left|\operatorname{tr}\left(R_{E}\left(\tau_{t}^{\prime}(X), Y\right)\right)\right|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-m \operatorname{dist}(X, Y)}, \\
& \mathbb{E}\left(\sup _{t \in \mathbb{R}} \sum_{E \in \sigma_{l}\left(H^{(L)}\right)}\left|\operatorname{tr}\left(R_{E}\left(\tau_{t}\left(X_{l}\right), Y_{l}\right)\right)\right|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-m \operatorname{dist}(X, Y)},
\end{aligned}
$$

and

$$
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left|\operatorname{tr}\left(R_{l}\left(\tau_{t}^{\prime}(X), Y\right)\right)\right|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-m \operatorname{dist}(X, Y)} .
$$

## General dynamical clustering

## General dynamical clustering

## Theorem

Fix an interval $K=\left[1-\frac{1}{\Delta}, \Theta\right] \subsetneq I_{1, \delta}$, and $\alpha \in(0,1)$.

## General dynamical clustering

## Theorem

Fix an interval $K=\left[1-\frac{1}{\Delta}, \Theta\right] \subsetneq I_{1, \delta}$, and $\alpha \in(0,1)$. There exists $\tilde{m}>0$, such that for all local observables $X$ and $Y$ we have, uniformly in $L$,

## General dynamical clustering

## Theorem

Fix an interval $K=\left[1-\frac{1}{\Delta}, \Theta\right] \subsetneq I_{1, \delta}$, and $\alpha \in(0,1)$. There exists $\tilde{m}>0$, such that for all local observables $X$ and $Y$ we have, uniformly in $L$,

$$
\begin{aligned}
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|R_{K}\left(\tau_{t}^{K}(X), Y\right)-\left(\tau_{t}^{K}(X) P_{0} Y+\tau_{t}^{K}(Y) P_{0} X\right)_{K}\right\|\right) \\
\leq C\left(1+\ln \left(\min \left\{\left|\mathcal{S}_{X}\right|,\left|\mathcal{S}_{Y}\right|\right\}\right)\right)\|X\|\|Y\| \mathrm{e}^{-\tilde{m}(\operatorname{dist}(X, Y))^{\alpha}} .
\end{aligned}
$$

## General dynamical clustering

## Theorem

Fix an interval $K=\left[1-\frac{1}{\Delta}, \Theta\right] \subsetneq I_{1, \delta}$, and $\alpha \in(0,1)$. There exists $\tilde{m}>0$, such that for all local observables $X$ and $Y$ we have, uniformly in $L$,

$$
\begin{aligned}
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|R_{K}\left(\tau_{t}^{K}(X), Y\right)-\left(\tau_{t}^{K}(X) P_{0} Y+\tau_{t}^{K}(Y) P_{0} X\right)_{K}\right\|\right) \\
\leq C\left(1+\ln \left(\min \left\{\left|\mathcal{S}_{X}\right|,\left|\mathcal{S}_{Y}\right|\right\}\right)\right)\|X\|\|Y\| \mathrm{e}^{-\tilde{m}(\operatorname{dist}(X, Y))^{\alpha}}
\end{aligned}
$$

Moreover, the estimate is not true without the counterterms.

## General dynamical clustering

## Theorem

Fix an interval $K=\left[1-\frac{1}{\Delta}, \Theta\right] \subsetneq I_{1, \delta}$, and $\alpha \in(0,1)$. There exists $\tilde{m}>0$, such that for all local observables $X$ and $Y$ we have, uniformly in $L$,

$$
\begin{aligned}
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|R_{K}\left(\tau_{t}^{K}(X), Y\right)-\left(\tau_{t}^{K}(X) P_{0} Y+\tau_{t}^{K}(Y) P_{0} X\right)_{K}\right\|\right) \\
\leq C\left(1+\ln \left(\min \left\{\left|\mathcal{S}_{X}\right|,\left|\mathcal{S}_{Y}\right|\right\}\right)\right)\|X\|\|Y\| \mathrm{e}^{-\tilde{m}(\operatorname{dist}(X, Y))^{\alpha}}
\end{aligned}
$$

Moreover, the estimate is not true without the counterterms.
While it is obvious where the first counterterm comes from, the same is not true of the second, where the time evolution seems to sit in the wrong place: it is $\tau_{t}^{K}(Y)$ and not $\tau_{t}^{K}(X)$.

## General dynamical clustering

## Theorem

Fix an interval $K=\left[1-\frac{1}{\Delta}, \Theta\right] \subsetneq I_{1, \delta}$, and $\alpha \in(0,1)$. There exists $\tilde{m}>0$, such that for all local observables $X$ and $Y$ we have, uniformly in $L$,

$$
\begin{aligned}
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|R_{K}\left(\tau_{t}^{K}(X), Y\right)-\left(\tau_{t}^{K}(X) P_{0} Y+\tau_{t}^{K}(Y) P_{0} X\right)_{K}\right\|\right) \\
\leq C\left(1+\ln \left(\min \left\{\left|\mathcal{S}_{X}\right|,\left|\mathcal{S}_{Y}\right|\right\}\right)\right)\|X\|\|Y\| \mathrm{e}^{-\tilde{m}(\operatorname{dist}(X, Y))^{\alpha}}
\end{aligned}
$$

Moreover, the estimate is not true without the counterterms.
While it is obvious where the first counterterm comes from, the same is not true of the second, where the time evolution seems to sit in the wrong place: it is $\tau_{t}^{K}(Y)$ and not $\tau_{t}^{K}(X)$. It turns out this term encodes information about the states above the energy window $K$, and the appearance of $\tau_{t}^{K}(Y)$ is related to the reduction of this data to $P_{0}$.

## Decomposition of local observables

## Decomposition of local observables

Given a local observable $X$, we define projections $P_{ \pm}^{(X)}$ by

$$
P_{+}^{(X)}=\bigotimes_{j \in \mathcal{S}_{X}} \frac{1}{2}\left(1+\sigma_{j}^{z}\right) \quad \text { and } \quad P_{-}^{(X)}=1-P_{+}^{(S)}
$$

## Decomposition of local observables

Given a local observable $X$, we define projections $P_{ \pm}^{(X)}$ by

$$
P_{+}^{(X)}=\bigotimes_{j \in \mathcal{S}_{X}} \frac{1}{2}\left(1+\sigma_{j}^{z}\right) \quad \text { and } \quad P_{-}^{(X)}=1-P_{+}^{(S)}
$$

Note that $P_{-}^{(X)} \leq \sum_{i \in \mathcal{S}_{X}} \mathcal{N}_{i}$ and $P_{-}^{(X)} P_{0}=P_{0} P_{-}^{(X)}=0$.

## Decomposition of local observables

Given a local observable $X$, we define projections $P_{ \pm}^{(X)}$ by

$$
P_{+}^{(X)}=\bigotimes_{j \in \mathcal{S}_{X}} \frac{1}{2}\left(1+\sigma_{j}^{z}\right) \quad \text { and } \quad P_{-}^{(X)}=1-P_{+}^{(S)}
$$

Note that $P_{-}^{(X)} \leq \sum_{i \in \mathcal{S}_{X}} \mathcal{N}_{i}$ and $P_{-}^{(X)} P_{0}=P_{0} P_{-}^{(X)}=0$.
We have $X=\sum_{a, b \in\{+,-\}} X^{a, b}$, where $\quad X^{a, b}=P_{a}^{(X)} X P_{b}^{(X)}$.

## Decomposition of local observables

Given a local observable $X$, we define projections $P_{ \pm}^{(X)}$ by

$$
P_{+}^{(X)}=\bigotimes_{j \in \mathcal{S}_{X}} \frac{1}{2}\left(1+\sigma_{j}^{z}\right) \quad \text { and } \quad P_{-}^{(X)}=1-P_{+}^{(S)}
$$

Note that $P_{-}^{(X)} \leq \sum_{i \in \mathcal{S}_{X}} \mathcal{N}_{i}$ and $P_{-}^{(X)} P_{0}=P_{0} P_{-}^{(X)}=0$.
We have $X=\sum_{a, b \in\{+,-\}} X^{a, b}$, where $X^{a, b}=P_{a}^{(X)} X P_{b}^{(X)}$.
Moreover, since $P_{+}^{(X)}$ is a rank one projection on $\mathcal{H}_{\mathcal{S}_{X}}$, we must have

$$
X^{+,+}=\zeta_{X} P_{+}^{(X)}, \quad \text { where } \quad \zeta_{x} \in \mathbb{C},\left|\zeta_{x}\right| \leq\|X\|
$$

## Decomposition of local observables

Given a local observable $X$, we define projections $P_{ \pm}^{(X)}$ by

$$
P_{+}^{(X)}=\bigotimes_{j \in \mathcal{S}_{X}} \frac{1}{2}\left(1+\sigma_{j}^{z}\right) \quad \text { and } \quad P_{-}^{(X)}=1-P_{+}^{(S)}
$$

Note that $P_{-}^{(X)} \leq \sum_{i \in \mathcal{S}_{X}} \mathcal{N}_{i}$ and $P_{-}^{(X)} P_{0}=P_{0} P_{-}^{(X)}=0$.
We have $X=\sum_{a, b \in\{+,-\}} X^{a, b}$, where $X^{a, b}=P_{a}^{(X)} X P_{b}^{(X)}$.
Moreover, since $P_{+}^{(X)}$ is a rank one projection on $\mathcal{H}_{\mathcal{S}_{X}}$, we must have

$$
X^{+,+}=\zeta_{X} P_{+}^{(X)}, \quad \text { where } \quad \zeta_{x} \in \mathbb{C},\left|\zeta_{x}\right| \leq\|X\|
$$

In particular,

$$
\left(X-\zeta_{x}\right)^{+,+}=0 \quad \text { and } \quad\left\|X-\zeta_{x}\right\| \leq 2\|X\|
$$

so we can assume $\quad X^{+,+}=0$ in the proofs.

## Consequences of droplet localization

## Lemma

Let $X, Y$ be local observables, $\ell \geq 1$. Then

$$
\begin{aligned}
& \mathbb{E}\left(\sup _{g \in G_{I_{0}}}\left\|P_{-}^{(X)} g(H) P_{-}^{(Y)}\right\|_{1}\right) \leq C \mathrm{e}^{-m \operatorname{dist}(X, Y)} \\
& \mathbb{E}\left(\left\|P_{-}^{(Y)} P_{-}^{(X)} P_{I_{0}}\right\|_{1}\right) \leq C \mathrm{e}^{-\frac{1}{2} m \operatorname{dist}(X, Y)} \\
& \mathbb{E}\left(\sup _{I \in G_{l}}\left\|P_{-}^{(X)} g(H) P_{+}^{\left(\mathcal{S}_{X, \ell}\right)}\right\|_{1}\right) \leq C \mathrm{e}^{-m \ell} \\
& \mathbb{E}\left(\sup _{g \in G_{l}}\left\|P_{+}^{\left(\mathcal{S}_{Y, \ell}^{c}\right)} g(H) P_{+}^{\left(\mathcal{S}_{X, \ell}^{c}\right)}\right\|_{1}\right) \leq C \mathrm{e}^{-m(\operatorname{dist}(X, Y)-2 \ell)}
\end{aligned}
$$

## Non-spreading of information- Sketch of proof

To prove: Given a local observables $X, t \in \mathbb{R}$ and $\ell>0$, there is a local observable $X_{\ell}(t)=\left(X_{\ell}(t)\right)_{\omega}$ with support $\mathcal{S}_{X, \ell}$ satisfying

$$
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left(X_{\ell}(t)-\tau_{t}(X)\right)_{I_{0}}\right\|_{1}\right) \leq C\|X\| \mathrm{e}^{-\frac{1}{16} m \ell}
$$

## Non-spreading of information- Sketch of proof

To prove: Given a local observables $X, t \in \mathbb{R}$ and $\ell>0$, there is a local observable $X_{\ell}(t)=\left(X_{\ell}(t)\right)_{\omega}$ with support $\mathcal{S}_{X, \ell}$ satisfying

$$
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left(X_{\ell}(t)-\tau_{t}(X)\right)_{I_{0}}\right\|_{1}\right) \leq C\|X\| \mathrm{e}^{-\frac{1}{16} m \ell}
$$

Sketch of proof: Let $\mathcal{S}_{X}=\left[s_{X}, r_{X}\right]$, recall $\mathcal{S}_{X, \ell}=\left[s_{X}-\ell, r_{X}+\ell\right]$, and set

$$
\begin{aligned}
& \mathcal{O}=[-L, L] \backslash \mathcal{S}_{X, \frac{\ell}{2}}=\left[-L, s_{X}-\frac{\ell}{2}\right) \cup\left(r_{X}+\frac{\ell}{2}, L\right] \\
& \mathcal{T}=\mathcal{S}_{X, \ell} \cap \mathcal{O}=\left[s_{X}-\ell, s_{X}-\frac{\ell}{2}\right) \cup\left(r_{X}+\frac{\ell}{2}, r_{X}+\ell\right]
\end{aligned}
$$

## Non-spreading of information- Sketch of proof

To prove: Given a local observables $X, t \in \mathbb{R}$ and $\ell>0$, there is a local observable $X_{\ell}(t)=\left(X_{\ell}(t)\right)_{\omega}$ with support $\mathcal{S}_{X, \ell}$ satisfying

$$
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left(X_{\ell}(t)-\tau_{t}(X)\right)_{I_{0}}\right\|_{1}\right) \leq C\|X\| \mathrm{e}^{-\frac{1}{16} m \ell} .
$$

Sketch of proof: Let $\mathcal{S}_{X}=\left[s_{X}, r_{X}\right]$, recall $\mathcal{S}_{X, \ell}=\left[s_{X}-\ell, r_{X}+\ell\right]$, and set

$$
\begin{aligned}
& \mathcal{O}=[-L, L] \backslash \mathcal{S}_{X, \frac{\ell}{2}}=\left[-L, s_{X}-\frac{\ell}{2}\right) \cup\left(r_{X}+\frac{\ell}{2}, L\right] \\
& \mathcal{T}=\mathcal{S}_{X, \ell} \cap \mathcal{O}=\left[s_{X}-\ell, s_{X}-\frac{\ell}{2}\right) \cup\left(r_{X}+\frac{\ell}{2}, r_{X}+\ell\right]
\end{aligned}
$$

We first prove that

$$
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left(P_{+}^{(\mathcal{O})} \tau_{t}\left(X_{I_{0}}\right) P_{+}^{(\mathcal{O})}-\tau_{t}(X)\right)_{I_{0}}\right\|_{1}\right) \leq C\|X\| \mathrm{e}^{-\frac{1}{16} m \ell} .
$$

We now observe that for all observables $Z$ we have

$$
P_{+}^{(\mathcal{O})} Z P_{+}^{(\mathcal{O})}=\tilde{Z} P_{+}^{(\mathcal{O})}=P_{+}^{(\mathcal{O})} \tilde{Z}
$$

where $\tilde{Z}$ is an observable with $\mathcal{S}_{\tilde{Z}}=\mathcal{S}_{X, \frac{\ell}{2}}$ and $\|\tilde{Z}\| \leq\|Z\|$.

We now observe that for all observables $Z$ we have

$$
P_{+}^{(\mathcal{O})} Z P_{+}^{(\mathcal{O})}=\tilde{Z} P_{+}^{(\mathcal{O})}=P_{+}^{(\mathcal{O})} \tilde{Z}
$$

where $\tilde{Z}$ is an observable with $\mathcal{S}_{\tilde{Z}}=\mathcal{S}_{X, \frac{\ell}{2}}$ and $\|\tilde{Z}\| \leq\|Z\|$. We conclude that

$$
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left(P_{+}^{(\mathcal{O})} \widetilde{\tau_{t}\left(X_{I_{0}}\right)}-\tau_{t}(X)\right)_{I_{0}}\right\|_{1}\right) \leq C\|X\| \mathrm{e}^{-\frac{1}{16} m \ell}
$$

We now observe that for all observables $Z$ we have

$$
P_{+}^{(\mathcal{O})} Z P_{+}^{(\mathcal{O})}=\tilde{Z} P_{+}^{(\mathcal{O})}=P_{+}^{(\mathcal{O})} \tilde{Z}
$$

where $\tilde{Z}$ is an observable with $\mathcal{S}_{\tilde{Z}}=\mathcal{S}_{X, \frac{\ell}{2}}$ and $\|\tilde{Z}\| \leq\|Z\|$.
We conclude that

$$
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left(P_{+}^{(\mathcal{O})} \widetilde{\tau_{t}\left(X_{I_{0}}\right)}-\tau_{t}(X)\right)_{I_{0}}\right\|_{1}\right) \leq C\|X\| \mathrm{e}^{-\frac{1}{16} m \ell}
$$

Since $P_{+}^{(\mathcal{O})} \widetilde{\tau_{t}\left(X_{l_{0}}\right)}$ does not have support in $\mathcal{S}_{X, \ell}$, we now define

$$
X_{\ell}(t)=P_{+}^{(\mathcal{T})} \widetilde{\tau_{t}\left(X_{l_{0}}\right)} \quad \text { for } \quad t \in \mathbb{R}
$$

an observable with support in $\mathcal{S}_{X, \frac{\ell}{2}} \cup \mathcal{T}=\mathcal{S}_{X, \ell}$,

We now observe that for all observables $Z$ we have

$$
P_{+}^{(\mathcal{O})} Z P_{+}^{(\mathcal{O})}=\tilde{Z} P_{+}^{(\mathcal{O})}=P_{+}^{(\mathcal{O})} \tilde{Z}
$$

where $\tilde{Z}$ is an observable with $\mathcal{S}_{\tilde{Z}}=\mathcal{S}_{X, \frac{\ell}{2}}$ and $\|\tilde{Z}\| \leq\|Z\|$.
We conclude that

$$
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left(P_{+}^{(\mathcal{O})} \widetilde{\tau_{t}\left(X_{1_{0}}\right)}-\tau_{t}(X)\right)_{I_{0}}\right\|_{1}\right) \leq C\|X\| \mathrm{e}^{-\frac{1}{16} m \ell}
$$

Since $P_{+}^{(\mathcal{O})} \widetilde{\tau_{t}\left(X_{l_{0}}\right)}$ does not have support in $\mathcal{S}_{X, \ell}$, we now define

$$
X_{\ell}(t)=P_{+}^{(\mathcal{T})} \widetilde{\tau_{t}\left(X_{l_{0}}\right)} \quad \text { for } \quad t \in \mathbb{R}
$$

an observable with support in $\mathcal{S}_{X, \frac{\ell}{2}} \cup \mathcal{T}=\mathcal{S}_{X, \ell}$, and prove

$$
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left(P_{+}^{(\mathcal{O})} \widetilde{\tau_{t}\left(X_{I_{0}}\right)}-X_{\ell}(t)\right)_{I_{0}}\right\|_{1}\right) \leq C\|X\| \mathrm{e}^{-\frac{1}{4} m \ell}
$$

The following lemma is an adaptation of an argument of Hastings, which combines the Lieb-Robinson bound with estimates on Fourier transforms.

The following lemma is an adaptation of an argument of Hastings, which combines the Lieb-Robinson bound with estimates on Fourier transforms.

Lemma
Let $\alpha \in(0,1)$, and consider a function $f \in C_{c}^{\infty}(\mathbb{R})$ such that

$$
|\hat{f}(t)| \leq C_{f} \mathrm{e}^{-m_{f}|t|^{\alpha}} \quad \text { for all } \quad|t| \geq 1
$$

The following lemma is an adaptation of an argument of Hastings, which combines the Lieb-Robinson bound with estimates on Fourier transforms.

Lemma
Let $\alpha \in(0,1)$, and consider a function $f \in C_{c}^{\infty}(\mathbb{R})$ such that

$$
|\hat{f}(t)| \leq C_{f} \mathrm{e}^{-m_{f}|t|^{\alpha}} \quad \text { for all } \quad|t| \geq 1
$$

Then for all local observables $X$ and $Y$ we have, uniformly in $L$,

The following lemma is an adaptation of an argument of Hastings, which combines the Lieb-Robinson bound with estimates on Fourier transforms.

## Lemma

Let $\alpha \in(0,1)$, and consider a function $f \in C_{c}^{\infty}(\mathbb{R})$ such that

$$
|\hat{f}(t)| \leq C_{f} \mathrm{e}^{-m_{f}|t|^{\alpha}} \quad \text { for all } \quad|t| \geq 1
$$

Then for all local observables $X$ and $Y$ we have, uniformly in $L$,

$$
\begin{aligned}
& \left\|X f(H) Y-\int_{\mathbb{R}} \mathrm{e}^{-i r H} Y \tau_{r}(X) \hat{f}(r) \mathrm{d} r\right\| \\
& \quad \leq C_{1}\|X\|\|Y\|\left(1+\|\hat{f}\|_{1}\right) \mathrm{e}^{-m_{1}(\operatorname{dist}(X, Y))^{\alpha}}
\end{aligned}
$$

The following lemma is an adaptation of an argument of Hastings, which combines the Lieb-Robinson bound with estimates on Fourier transforms.

## Lemma

Let $\alpha \in(0,1)$, and consider a function $f \in C_{c}^{\infty}(\mathbb{R})$ such that

$$
|\hat{f}(t)| \leq C_{f} \mathrm{e}^{-m_{f}|t|^{\alpha}} \quad \text { for all } \quad|t| \geq 1
$$

Then for all local observables $X$ and $Y$ we have, uniformly in $L$,

$$
\begin{aligned}
& \left\|X f(H) Y-\int_{\mathbb{R}} \mathrm{e}^{-i r H} Y \tau_{r}(X) \hat{f}(r) \mathrm{d} r\right\| \\
& \quad \leq C_{1}\|X\|\|Y\|\left(1+\|\hat{f}\|_{1}\right) \mathrm{e}^{-m_{1}(\operatorname{dist}(X, Y))^{\alpha}}
\end{aligned}
$$

$$
X f(H) Y-\int_{\mathbb{R}} \mathrm{e}^{-i r H} Y \tau_{r}(X) \hat{f}(r) \mathrm{d} r=\int_{\mathbb{R}} \mathrm{e}^{-i r H}\left[\tau_{r}(X), Y\right] \hat{f}(r) \mathrm{d} r
$$

The following lemma is an adaptation of an argument of Hastings, which combines the Lieb-Robinson bound with estimates on Fourier transforms.

## Lemma

Let $\alpha \in(0,1)$, and consider a function $f \in C_{c}^{\infty}(\mathbb{R})$ such that

$$
|\hat{f}(t)| \leq C_{f} \mathrm{e}^{-m_{f}|t|^{\alpha}} \quad \text { for all } \quad|t| \geq 1
$$

Then for all local observables $X$ and $Y$ we have, uniformly in $L$,

$$
\begin{aligned}
& \left\|X f(H) Y-\int_{\mathbb{R}} \mathrm{e}^{-i r H} Y \tau_{r}(X) \hat{f}(r) \mathrm{d} r\right\| \\
& \quad \leq C_{1}\|X\|\|Y\|\left(1+\|\hat{f}\|_{1}\right) \mathrm{e}^{-m_{1}(\operatorname{dist}(X, Y))^{\alpha}}
\end{aligned}
$$

$$
X f(H) Y-\int_{\mathbb{R}} \mathrm{e}^{-i r H} Y \tau_{r}(X) \hat{f}(r) \mathrm{d} r=\int_{\mathbb{R}} \mathrm{e}^{-i r H}\left[\tau_{r}(X), Y\right] \hat{f}(r) \mathrm{d} r
$$

The commutator can be estimated by the Lieb-Robinson bound.

## Lemma

Let $K=\left[\Theta_{0}, \Theta_{2}\right]$ and $f \in C_{c}^{\infty}(\mathbb{R})$ with supp $f \subset\left[a_{f}, b_{f}\right]$.

## Lemma

Let $K=\left[\Theta_{0}, \Theta_{2}\right]$ and $f \in C_{c}^{\infty}(\mathbb{R})$ with supp $f \subset\left[a_{f}, b_{f}\right]$. Then for all local observables $X$ and $Y$ we have

$$
\int_{\mathbb{R}}\left(\mathrm{e}^{-i r H} Y \tau_{r}(X)\right)_{K} \hat{f}(r) \mathrm{d} r=\int_{\mathbb{R}}\left(\mathrm{e}^{-i r H} Y\left\{P_{K_{f}}\right\} \tau_{r}(X)\right)_{K} \hat{f}(r) \mathrm{d} r,
$$

## Lemma

Let $K=\left[\Theta_{0}, \Theta_{2}\right]$ and $f \in C_{c}^{\infty}(\mathbb{R})$ with supp $f \subset\left[a_{f}, b_{f}\right]$. Then for all local observables $X$ and $Y$ we have

$$
\int_{\mathbb{R}}\left(\mathrm{e}^{-i r H} Y \tau_{r}(X)\right)_{K} \hat{f}(r) \mathrm{d} r=\int_{\mathbb{R}}\left(\mathrm{e}^{-i r H} Y\left\{P_{K_{f}}\right\} \tau_{r}(X)\right)_{K} \hat{f}(r) \mathrm{d} r
$$

where

$$
K_{f}=K+K-\operatorname{supp} f \subset\left[2 \Theta_{0}-b_{f}, 2 \Theta_{2}-a_{f}\right] .
$$

## Lemma

Let $K=\left[\Theta_{0}, \Theta_{2}\right]$ and $f \in C_{c}^{\infty}(\mathbb{R})$ with supp $f \subset\left[a_{f}, b_{f}\right]$. Then for all local observables $X$ and $Y$ we have

$$
\int_{\mathbb{R}}\left(\mathrm{e}^{-i r H} Y \tau_{r}(X)\right)_{K} \hat{f}(r) \mathrm{d} r=\int_{\mathbb{R}}\left(\mathrm{e}^{-i r H} Y\left\{P_{K_{f}}\right\} \tau_{r}(X)\right)_{K} \hat{f}(r) \mathrm{d} r
$$

where

$$
K_{f}=K+K-\operatorname{supp} f \subset\left[2 \Theta_{0}-b_{f}, 2 \Theta_{2}-a_{f}\right] .
$$

For $E, E^{\prime} \in K$ we have

$$
\begin{aligned}
& P_{E}\left(\int_{\mathbb{R}} \mathrm{e}^{-i r H} Y \tau_{r}(X) \hat{f}(r) \mathrm{d} r\right) P_{E^{\prime}}=P_{E} Y f\left(E+E^{\prime}-H\right) X P_{E^{\prime}} \\
& =P_{E} Y P_{K_{f}} f\left(E+E^{\prime}-H\right) X P_{E^{\prime}}=P_{E}\left(\int_{\mathbb{R}} \mathrm{e}^{-i r H} Y\left\{P_{K_{f}}\right\} \tau_{r}(X) \hat{f}(r) \mathrm{d} r\right) P_{E^{\prime}} .
\end{aligned}
$$

## Interval for droplet localization- Sketch of proof

To prove: Droplet localization in $I=\left[1-\frac{1}{\Delta}, \Theta_{1}\right] \Longrightarrow \Theta_{1} \leq 2\left(1-\frac{1}{\Delta}\right)$.

## Interval for droplet localization- Sketch of proof

To prove: Droplet localization in $I=\left[1-\frac{1}{\Delta}, \Theta_{1}\right] \Longrightarrow \Theta_{1} \leq 2\left(1-\frac{1}{\Delta}\right)$. Sketch of proof: Let $\Theta_{0}=1-\frac{1}{\Delta}$ and suppose $\Theta_{1}>2 \Theta_{0}$. Let $K=\left[\Theta_{0}, \Theta_{2}\right]$, where $\Theta_{0}<\Theta_{2}<\Theta_{1}$, and $\varepsilon=\min \left\{\Theta_{1}-2 \Theta_{2}, \Theta_{0}\right\}>0$.

## Interval for droplet localization- Sketch of proof

To prove: Droplet localization in $I=\left[1-\frac{1}{\Delta}, \Theta_{1}\right] \Longrightarrow \Theta_{1} \leq 2\left(1-\frac{1}{\Delta}\right)$. Sketch of proof: Let $\Theta_{0}=1-\frac{1}{\Delta}$ and suppose $\Theta_{1}>2 \Theta_{0}$. Let $K=\left[\Theta_{0}, \Theta_{2}\right]$, where $\Theta_{0}<\Theta_{2}<\Theta_{1}$, and $\varepsilon=\min \left\{\Theta_{1}-2 \Theta_{2}, \Theta_{0}\right\}>0$. Fix a Gevrey class function $h$ such that

$$
0 \leq h \leq 1, \text { supp } h \subset(-\varepsilon, \varepsilon), h(0)=1, \text { and }|\hat{h}(t)| \leq C \mathrm{e}^{-c|t|^{\frac{1}{2}}}
$$

## Interval for droplet localization- Sketch of proof

To prove: Droplet localization in $I=\left[1-\frac{1}{\Delta}, \Theta_{1}\right] \Longrightarrow \Theta_{1} \leq 2\left(1-\frac{1}{\Delta}\right)$. Sketch of proof: Let $\Theta_{0}=1-\frac{1}{\Delta}$ and suppose $\Theta_{1}>2 \Theta_{0}$. Let $K=\left[\Theta_{0}, \Theta_{2}\right]$, where $\Theta_{0}<\Theta_{2}<\Theta_{1}$, and $\varepsilon=\min \left\{\Theta_{1}-2 \Theta_{2}, \Theta_{0}\right\}>0$. Fix a Gevrey class function $h$ such that

$$
0 \leq h \leq 1, \operatorname{supp} h \subset(-\varepsilon, \varepsilon), h(0)=1, \text { and }|\hat{h}(t)| \leq C \mathrm{e}^{-c|t|^{\frac{1}{2}}}
$$

Note that $P_{0}=h(H)$.

## Interval for droplet localization- Sketch of proof

To prove: Droplet localization in $I=\left[1-\frac{1}{\Delta}, \Theta_{1}\right] \Longrightarrow \Theta_{1} \leq 2\left(1-\frac{1}{\Delta}\right)$. Sketch of proof: Let $\Theta_{0}=1-\frac{1}{\Delta}$ and suppose $\Theta_{1}>2 \Theta_{0}$. Let $K=\left[\Theta_{0}, \Theta_{2}\right]$, where $\Theta_{0}<\Theta_{2}<\Theta_{1}$, and $\varepsilon=\min \left\{\Theta_{1}-2 \Theta_{2}, \Theta_{0}\right\}>0$. Fix a Gevrey class function $h$ such that

$$
0 \leq h \leq 1, \operatorname{supp} h \subset(-\varepsilon, \varepsilon), h(0)=1, \text { and }|\hat{h}(t)| \leq C \mathrm{e}^{-c|t|^{\frac{1}{2}}}
$$

Note that $P_{0}=h(H)$.
Let $X, Y$ be local observables with $X^{+,+}=Y^{+,+}=0$. The Lemmas yield

$$
\begin{aligned}
\left\|\left(X P_{0} Y\right)_{K}\right\| & =\left\|(X h(H) Y)_{K}\right\| \\
& \leq C\|X\|\|Y\| \mathrm{e}^{-m_{1}(\operatorname{dist}(X, Y))^{\frac{1}{2}}}+C^{\prime} \sup _{r \in \mathbb{R}}\left\|\left(Y P_{K_{h}} \tau_{r}(X)\right)_{K}\right\|
\end{aligned}
$$

where $K_{h} \subset\left[2 \Theta_{0}-\varepsilon, 2 \Theta_{2}+\varepsilon\right] \subset\left[\Theta_{0}, \Theta_{1}\right]=I$.

## We can prove

$$
\mathbb{E}\left(\sup _{r \in \mathbb{R}}\left\|\left(Y P_{K_{h}} \tau_{r}(X)\right)_{K}\right\|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-\frac{1}{8} m \operatorname{dist}(X, Y)}
$$

## We can prove

$$
\mathbb{E}\left(\sup _{r \in \mathbb{R}}\left\|\left(Y P_{K_{h}} \tau_{r}(X)\right)_{K}\right\|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-\frac{1}{8} m \operatorname{dist}(X, Y)}
$$

so we conclude that

$$
\mathbb{E}\left(\left\|\left(X P_{0} Y\right)_{K}\right\|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-m_{2}(\operatorname{dist}(X, Y))^{\frac{1}{2}}}
$$

We can prove

$$
\mathbb{E}\left(\sup _{r \in \mathbb{R}}\left\|\left(Y P_{K_{h}} \tau_{r}(X)\right)_{K}\right\|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-\frac{1}{8} m \operatorname{dist}(X, Y)}
$$

so we conclude that

$$
\mathbb{E}\left(\left\|\left(X P_{0} Y\right)_{K}\right\|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-m_{2}(\operatorname{dist}(X, Y))^{\frac{1}{2}}}
$$

In particular, it follows that we have, uniformly in $L$,

$$
\begin{equation*}
\mathbb{E}\left(\left\|\left(\sigma_{i}^{\times} P_{0}^{(L)} \sigma_{j}^{\times}\right)_{K}\right\|\right) \leq C \mathrm{e}^{-m_{2}(|i-j|)^{\frac{1}{2}}} \quad \text { for all } \quad i, j \in[-L, L] . \tag{2}
\end{equation*}
$$

We can prove

$$
\mathbb{E}\left(\sup _{r \in \mathbb{R}}\left\|\left(Y P_{K_{h}} \tau_{r}(X)\right)_{K}\right\|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-\frac{1}{8} m \operatorname{dist}(X, Y)}
$$

so we conclude that

$$
\mathbb{E}\left(\left\|\left(X P_{0} Y\right)_{K}\right\|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-m_{2}(\operatorname{dist}(X, Y))^{\frac{1}{2}}}
$$

In particular, it follows that we have, uniformly in $L$,

$$
\begin{equation*}
\mathbb{E}\left(\left\|\left(\sigma_{i}^{\chi} P_{0}^{(L)} \sigma_{j}^{\chi}\right)_{K}\right\|\right) \leq C \mathrm{e}^{-m_{2}(|i-j|)^{\frac{1}{2}}} \quad \text { for all } \quad i, j \in[-L, L] . \tag{2}
\end{equation*}
$$

But we can show that for all $i, j \in \mathbb{Z}$ with $|i-j| \geq R_{K}$, we have

$$
\begin{equation*}
\mathbb{E}\left(\liminf _{L \rightarrow \infty}\left\|\left(\sigma_{i}^{\times} P_{0}^{(L)} \sigma_{j}^{\times}\right)_{K}\right\|\right) \geq \gamma_{K}>0 \tag{3}
\end{equation*}
$$

We can prove

$$
\mathbb{E}\left(\sup _{r \in \mathbb{R}}\left\|\left(Y P_{K_{h}} \tau_{r}(X)\right)_{K}\right\|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-\frac{1}{8} m \operatorname{dist}(X, Y)}
$$

so we conclude that

$$
\mathbb{E}\left(\left\|\left(X P_{0} Y\right)_{K}\right\|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-m_{2}(\operatorname{dist}(X, Y))^{\frac{1}{2}}}
$$

In particular, it follows that we have, uniformly in $L$,

$$
\begin{equation*}
\mathbb{E}\left(\left\|\left(\sigma_{i}^{\times} P_{0}^{(L)} \sigma_{j}^{\times}\right)_{K}\right\|\right) \leq C \mathrm{e}^{-m_{2}(|i-j|)^{\frac{1}{2}}} \quad \text { for all } \quad i, j \in[-L, L] . \tag{2}
\end{equation*}
$$

But we can show that for all $i, j \in \mathbb{Z}$ with $|i-j| \geq R_{K}$, we have

$$
\begin{equation*}
\mathbb{E}\left(\liminf _{L \rightarrow \infty}\left\|\left(\sigma_{i}^{\times} P_{0}^{(L)} \sigma_{j}^{\times}\right)_{K}\right\|\right) \geq \gamma_{K}>0 \tag{3}
\end{equation*}
$$

(2) and (3) give a contradiction $\quad \Longrightarrow \quad \Theta_{1} \leq 2 \Theta_{0}$.

