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The random XXZ quantum spin chain

The random XXZ quantum spin chain Hamiltonian
The infinite XXZ chain in a random field is given by the Hamiltonian

Hω =
∑
i∈Z

{
1
4
(
I − σz

i σ
z
i+1
)
− 1

4∆
(
σx

i σ
x
i+1 + σy

i σ
y
i+1
)}

+ λ
∑
i∈Z

ωiNi ,

acting on
⊗

i∈ZC2
i , C2

i = C2 for all i , where

1 σx , σy , σz are the Pauli matrices–σx
i , σ

y
i , σ

z
i act on C2

i ;

2 Ni = 1
2(1− σz

i ) =
(
0 0
0 1

)
i
is the local number operator at site i .

3 ∆ > 1 (Ising phase of the XXZ chain);
4 λ > 0 is the disorder parameter;
5 ω = {ωi}i∈Z are independent identically distributed random variables

whose probability distribution µ is absolutely continuous with a
bounded density, with {0, 1} ⊂ suppµ ⊂ [0, 1].

Hω is a self-adjoint operator on an appropriately defined Hilbert space H.
We have σ(Hω) = {0} ∪

[
1− 1

∆ ,∞
)

almost surely.
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The random XXZ quantum spin chain

XXZ chain Hamiltonian in finite intervals
Consider the finite interval [−L, L] = [−L, L] ∩ Z, L ∈ N, and set

H(L)
ω =

L−1∑
i=−L

{
1
4
(
I − σz

i σ
z
i+1
)
− 1

4∆
(
σx

i σ
x
i+1 + σy

i σ
y
i+1
)}

+ λ
L∑

i=−L
ωiNi

+ β(N−L +NL) on H(L) =
⊗

i∈[−L,L]
C2

i

We fix β ≥ 1
2(1− 1

∆ ), so

σ(H(L)
ω ) = {0} ∪

{[
1− 1

∆ ,∞
)
∩ σ(H(L)

ω )
}
.

Unique ground state ψ0 = ψ
(L)
0 determined by Niψ0 = 0 for all i .

The spectrum of H(L) = H(L)
ω is almost surely simple, so that its

normalized eigenvectors can be labeled as ψE , E ∈ σ(H(L)).
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Droplet localization

The droplet spectrum
The droplet spectrum for the free (λ = 0) XXZ spin chain is given by

I1 =
[
1− 1

∆ , 2
(
1− 1

∆
))
.

We set
I1,δ =

[
1− 1

∆ , (2− δ)
(
1− 1

∆
)]

for 0 ≤ δ < 1.

Note that
I1,δ ( I1 if 0 < δ < 1.

Given an interval I, we set

σI(H(L)
ω ) = σ(H(L)

ω ) ∩ I,

and let
GI = {g : R→ C Borel measurable, |g | ≤ χI} .
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Droplet localization

Theorem (Localization in the droplet spectrum)

There exists a constant K > 0 with the following property:
If ∆ > 1, λ > 0, and 0 < δ < 1 satisfy

λ (δ(∆− 1))
1
2 min {1, (δ(∆− 1))} ≥ K ,

there exist constants C <∞ and m > 0 such that we have, uniformly in L,

E

 ∑
E∈σI1,δ (H(L))

‖NiψE‖ ‖NjψE‖

 ≤ Ce−m|i−j| for all i , j ∈ [−L, L],

and, as a consequence,

E

 sup
g∈GI1,δ

∥∥∥Nig(H(L))Nj
∥∥∥

1

 ≤ Ce−m|i−j| for all i , j ∈ [−L, L].

We will say that we have droplet localization in an interval I if the
conclusions of the theorem hold in the interval I.
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Droplet localization

Best possible interval for droplet localization
We proved droplet localization on intervals

I1,δ =
[
1− 1

∆ , (2− δ)
(
1− 1

∆
)]
⊂
[
1− 1

∆ , 2
(
1− 1

∆
))
.

Droplet localization for the random XXZ spin chain (in the sense of the
Theorem) is not possible outside the droplet spectrum.

Theorem

Suppose we have droplet localization in the interval I =
[
1− 1

∆ ,Θ
]
.

Then
Θ ≤ 2

(
1− 1

∆
)
,

that is, we must have

I = I1,δ for some 0 ≤ δ < 1.
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Consequences of droplet localization

Preliminaries

� H = Hω will be a random XXZ spin chain satisfying droplet localization
in the interval I = I1,δ =

[
1− 1

∆ , (2− δ)
(
1− 1

∆
)]
.

� P(L)
B = χB(H(L)) for B ⊂ R, with P(L)

E = P(L)
{E} for E ∈ R.

� I0 =
[
0, (2− δ)(1− 1

∆ )
]
≈ {0} ∪ I =⇒ P(L)

I0 = P(L)
0 + P(L)

I .

� A local observable X with support J ⊂ [−L, L] is an operator on
⊗j∈JC2

j , considered as an operator on H(L) by acting as the identity on
spins not in J . We always take J to an interval. Supports of observables
are not uniquely defined.

� Given a local observable X , we will generally specify a support for X ,
denoted by SX = [sX , rX ]. We always assume ∅ 6= SX ⊂ [−L, L].

� If ` ≥ 1, we set SX ,` = (SX )` = [sX − `, rX + `] ∩ [−L, L].

� Given two local observables X ,Y we set dist(X ,Y ) = dist(SX ,SY ).
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Consequences of droplet localization

Time evolution in an energy window

The time evolution of a local observable X under H(L) is given by

τt(X ) = τ
(L)
t (X ) = eitH(L)Xe−itH(L) for t ∈ R.

Since we only have localization in the energy interval I, and hence also in
I0, we should only expect manifestations of dynamical localization in these
energy intervals.

Thus, given an energy interval J , we consider the sub-Hilbert space
RanP(L)

J , spanned by the the eigenstates of H(L) with energies in J , and
localize an observable X in the energy interval J by considering its
restriction to RanP(L)

J ,
XJ = P(L)

J XP(L)
J .

Clearly τt (XJ) = (τt (X ))J .
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Consequences of droplet localization

Non-spreading of information in the interval I0

Theorem
There exists C <∞, independent of L, such that for all local observables
X, t ∈ R and ` > 0, there is a local observable X`(t) = (X`(t))ω with
support SX ,`, satisfying

E
(
sup
t∈R

∥∥∥(X`(t)− τt (X ))I0

∥∥∥
1

)
≤ C‖X‖e−

1
16 m`.

XI = (XI0)I =⇒ the theorem holds with I substituted for I0.
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Consequences of droplet localization

Zero-velocity Lieb-Robinson bounds

Theorem
The following holds uniformly in L:

E
(
sup
t∈R
‖[τt (XI) ,YI ]‖1

)
≤ C‖X‖‖Y ‖e−

1
8 m dist(X ,Y ),

E
(
sup
t∈R
‖[τt (XI0) ,YI0 ]− (τt (X ) P0Y − YP0τt (X ))I‖1

)
(1)

≤ C‖X‖‖Y ‖e−
1
8 m dist(X ,Y ),

E
(
sup

t,s∈R
‖[[τt (XI0) , τs (YI0)] ,ZI0 ]‖1

)
≤ C‖X‖‖Y ‖‖Z‖e−

1
8 m min{dist(X ,Y ),dist(X ,Z),dist(Y ,Z)}.

Moreover, the estimate (1) is not true without the counterterms.
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Consequences of droplet localization

Correlators
We define the truncated time evolution of an observable X in the energy
window I by (H = H(L)

ω ),
τ I

t (X ) = eitHI Xe−itHI , where HI = HPI .

Note that
(
τ I

t (X )
)

I
= (τt (X ))I = τt (XI).

The correlator operator of two observables X and Y in the energy window
I is given by (P̄I = 1− PI)

RI(X ,Y ) = PIXP̄IYPI = (XY )I − XIYI .

If E is a simple eigenvalue with normalized eigenvector ψE , we have, with
RE (X ,Y ) = R{E}(X ,Y ),

tr (RE (X ,Y )) = 〈ψE ,XYψE 〉 − 〈ψE ,XψE 〉 〈ψE ,YψE 〉.
We are interested in quantities of the form (K ⊂ I)

RK (τ I
t (X ) ,Y ) =

(
τ I

t (X ) Y
)

K
−
(
τ I

t (X )
)

K
YK =

(
τ I

t (X ) Y
)

K
−τt (XK ) YK .
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Consequences of droplet localization

Dynamical exponential clustering

Theorem
For all local observables X and Y we have, uniformly in L,

E

sup
t∈R

∑
E∈σI (H(L))

∣∣∣tr (RE (τ I
t (X ) ,Y )

)∣∣∣
 ≤ C‖X‖‖Y ‖e−m dist(X ,Y ),

E

sup
t∈R

∑
E∈σI (H(L))

|tr (RE (τt (XI) ,YI))|

 ≤ C‖X‖‖Y ‖e−m dist(X ,Y ),

and
E
(
sup
t∈R

∣∣∣tr (RI(τ I
t (X ) ,Y )

)∣∣∣) ≤ C‖X‖‖Y ‖e−m dist(X ,Y ).
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Consequences of droplet localization

General dynamical clustering

Theorem
Fix an interval K = [1− 1

∆ ,Θ] ( I1,δ, and α ∈ (0, 1).There exists m̃ > 0,
such that for all local observables X and Y we have, uniformly in L,

E
(
sup
t∈R

∥∥∥RK
(
τK

t (X ) ,Y
)
−
(
τK

t (X )P0Y + τK
t (Y ) P0X

)
K

∥∥∥)
≤ C (1 + ln (min {|SX | , |SY |})) ‖X‖‖Y ‖e−m̃(dist(X ,Y ))α .

Moreover, the estimate is not true without the counterterms.

While it is obvious where the first counterterm comes from, the same is
not true of the second, where the time evolution seems to sit in the wrong
place: it is τK

t (Y ) and not τK
t (X ). It turns out this term encodes

information about the states above the energy window K , and the
appearance of τK

t (Y ) is related to the reduction of this data to P0.
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Some flavor of the proofs

Decomposition of local observables

Given a local observable X , we define projections P(X)
± by

P(X)
+ =

⊗
j∈SX

1
2(1 + σz

j ) and P(X)
− = 1− P(S)

+ .

Note that P(X)
− ≤

∑
i∈SX
Ni and P(X)

− P0 = P0P(X)
− = 0.

We have X =
∑

a,b∈{+,−} X a,b, where X a,b = P(X)
a XP(X)

b .

Moreover, since P(X)
+ is a rank one projection on HSX , we must have

X +,+ = ζX P(X)
+ , where ζX ∈ C, |ζX | ≤ ‖X‖.

In particular,

(X − ζX )+,+ = 0 and ‖X − ζX‖ ≤ 2 ‖X‖ ,

so we can assume X +,+ = 0 in the proofs.
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Some flavor of the proofs

Consequences of droplet localization

Lemma

Let X ,Y be local observables, ` ≥ 1. Then

E
(

sup
g∈GI0

∥∥∥P(X)
− g(H)P(Y )

−

∥∥∥
1

)
≤ Ce−m dist(X ,Y )

E
(∥∥∥P(Y )

− P(X)
− PI0

∥∥∥
1

)
≤ Ce−

1
2 m dist(X ,Y )

E
(
sup
I∈GI

∥∥∥∥P(X)
− g(H)P(SX ,`)

+

∥∥∥∥
1

)
≤ Ce−m`

E
(
sup
g∈GI

∥∥∥∥P
(
Sc

Y ,`

)
+ g(H)P

(
Sc

X ,`

)
+

∥∥∥∥
1

)
≤ Ce−m(dist(X ,Y )−2`)
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Some flavor of the proofs

Non-spreading of information- Sketch of proof
To prove: Given a local observables X , t ∈ R and ` > 0, there is a local
observable X`(t) = (X`(t))ω with support SX ,` satisfying

E
(
sup
t∈R

∥∥∥(X`(t)− τt (X ))I0

∥∥∥
1

)
≤ C‖X‖e−

1
16 m`.

Sketch of proof: Let SX = [sX , rX ], recall SX ,` = [sX − `, rX + `], and set

O = [−L, L] \ SX , `2
= [−L, sX − `

2) ∪ (rX + `
2 , L]

T = SX ,` ∩ O = [sX − `, sX − `
2) ∪ (rX + `

2 , rX + `]

We first prove that

E
(
sup
t∈R

∥∥∥∥(P(O)
+ τt (XI0) P(O)

+ − τt (X )
)

I0

∥∥∥∥
1

)
≤ C‖X‖e−

1
16 m`.
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Some flavor of the proofs

We now observe that for all observables Z we have

P(O)
+ ZP(O)

+ = Z̃P(O)
+ = P(O)

+ Z̃ ,

where Z̃ is an observable with SZ̃ = SX , `2
and ‖Z̃‖ ≤ ‖Z‖.

We conclude that

E
(
sup
t∈R

∥∥∥∥∥
(

P(O)
+ τ̃t (XI0)− τt (X )

)
I0

∥∥∥∥∥
1

)
≤ C‖X‖e−

1
16 m`.

Since P(O)
+ τ̃t (XI0) does not have support in SX ,`, we now define

X`(t) = P(T )
+ τ̃t (XI0) for t ∈ R,

an observable with support in SX , `2
∪ T = SX ,`, and prove

E
(
sup
t∈R

∥∥∥∥∥
(

P(O)
+ τ̃t (XI0)− X`(t)

)
I0

∥∥∥∥∥
1

)
≤ C ‖X‖ e−

1
4 m`.
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+ τ̃t (XI0)− X`(t)

)
I0

∥∥∥∥∥
1

)
≤ C ‖X‖ e−

1
4 m`.
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Some flavor of the proofs

The following lemma is an adaptation of an argument of Hastings , which
combines the Lieb-Robinson bound with estimates on Fourier transforms.

Lemma
Let α ∈ (0, 1), and consider a function f ∈ C∞c (R) such that∣∣∣f̂ (t)

∣∣∣ ≤ Cf e−mf |t|α for all |t| ≥ 1.

Then for all local observables X and Y we have, uniformly in L,∥∥∥∥Xf (H)Y −
∫
R

e−irHY τr (X ) f̂ (r) dr
∥∥∥∥

≤ C1 ‖X‖ ‖Y ‖
(
1 +

∥∥∥f̂ ∥∥∥
1

)
e−m1(dist(X ,Y ))α .

Xf (H)Y −
∫
R

e−irHY τr (X ) f̂ (r) dr =
∫
R

e−irH [τr (X ) ,Y ]f̂ (r) dr .

The commutator can be estimated by the Lieb-Robinson bound.
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Some flavor of the proofs

Lemma
Let K = [Θ0,Θ2] and f ∈ C∞c (R) with supp f ⊂ [af , bf ].

Then for all
local observables X and Y we have∫

R

(
e−irHY τr (X )

)
K

f̂ (r) dr =
∫
R

(
e−irHY {PKf } τr (X )

)
K

f̂ (r) dr ,

where
Kf = K + K − supp f ⊂ [2Θ0 − bf , 2Θ2 − af ].

For E ,E ′ ∈ K we have

PE

(∫
R

e−irHY τr (X ) f̂ (r) dr
)

PE ′ = PE Yf (E + E ′ − H)XPE ′

= PE YPKf f (E + E ′ − H)XPE ′ = PE

(∫
R

e−irHY {PKf } τr (X ) f̂ (r) dr
)

PE ′ .
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Some flavor of the proofs

Interval for droplet localization- Sketch of proof

To prove: Droplet localization in I =
[
1− 1

∆ ,Θ1
]

=⇒ Θ1 ≤ 2
(
1− 1

∆
)
.

Sketch of proof: Let Θ0 = 1− 1
∆ and suppose Θ1 > 2Θ0. Let

K = [Θ0,Θ2], where Θ0 < Θ2 < Θ1, and ε = min {Θ1 − 2Θ2,Θ0} > 0.
Fix a Gevrey class function h such that

0 ≤ h ≤ 1, supp h ⊂ (−ε, ε), h(0) = 1, and
∣∣∣ĥ(t)

∣∣∣ ≤ Ce−c|t|
1
2

Note that P0 = h(H).
Let X ,Y be local observables with X +,+ = Y +,+ = 0. The Lemmas yield

‖(XP0Y )K‖ = ‖(Xh(H)Y )K‖

≤ C ‖X‖ ‖Y ‖ e−m1(dist(X ,Y ))
1
2 + C ′ sup

r∈R

∥∥(YPKhτr (X ))K
∥∥ ,

where Kh ⊂ [2Θ0 − ε, 2Θ2 + ε] ⊂ [Θ0,Θ1] = I.
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∣∣∣ĥ(t)

∣∣∣ ≤ Ce−c|t|
1
2

Note that P0 = h(H).

Let X ,Y be local observables with X +,+ = Y +,+ = 0. The Lemmas yield

‖(XP0Y )K‖ = ‖(Xh(H)Y )K‖

≤ C ‖X‖ ‖Y ‖ e−m1(dist(X ,Y ))
1
2 + C ′ sup

r∈R

∥∥(YPKhτr (X ))K
∥∥ ,

where Kh ⊂ [2Θ0 − ε, 2Θ2 + ε] ⊂ [Θ0,Θ1] = I.

Abel Klein Dynamical localization in the disordered XXZ spin chain



Some flavor of the proofs

Interval for droplet localization- Sketch of proof

To prove: Droplet localization in I =
[
1− 1

∆ ,Θ1
]

=⇒ Θ1 ≤ 2
(
1− 1

∆
)
.

Sketch of proof: Let Θ0 = 1− 1
∆ and suppose Θ1 > 2Θ0. Let

K = [Θ0,Θ2], where Θ0 < Θ2 < Θ1, and ε = min {Θ1 − 2Θ2,Θ0} > 0.
Fix a Gevrey class function h such that

0 ≤ h ≤ 1, supp h ⊂ (−ε, ε), h(0) = 1, and
∣∣∣ĥ(t)
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Some flavor of the proofs

We can prove

E
(
sup
r∈R

∥∥(YPKhτr (X ))K
∥∥) ≤ C ‖X‖ ‖Y ‖ e−

1
8 m dist(X ,Y ),

so we conclude that

E (‖(XP0Y )K‖) ≤ C ‖X‖ ‖Y ‖ e−m2(dist(X ,Y ))
1
2 .

In particular, it follows that we have, uniformly in L,

E
(∥∥∥(σx

i P(L)
0 σx

j

)
K

∥∥∥) ≤ Ce−m2(|i−j|)
1
2 for all i , j ∈ [−L, L]. (2)

But we can show that for all i , j ∈ Z with |i − j | ≥ RK , we have

E
(
lim inf
L→∞

∥∥∥(σx
i P(L)

0 σx
j

)
K

∥∥∥) ≥ γK > 0. (3)

(2) and (3) give a contradiction =⇒ Θ1 ≤ 2Θ0.
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