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Remerciments

In memory of the great times I lived at IHES – and with thanks
to David Ruelle and Henri Epstein for all they contributed to an
excellent quality of life I enjoyed during those years. – Thanks also
to Hugo Duminil-Copin for inviting me to talk today.

Almost all the material presented in this lecture is the result of
work I was involved in when I was a member of the IHES, between
January 1978 and July 1982. 1 My main partner in this particular
journey (and others) was my friend and mentor Tom Spencer
(IAS). Interactions with David Brydges, Erhard Seiler and Barry
Simon also played a useful role.

1During my 4 1
2
years at IHES, I mainly worked on Statistical Mechanics,

QFT, and the Theory of Disordered Systems.
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Summary

The three theorists who have won the 2016 Nobel Prize in Physics:

David Thouless Duncan Haldane Mike Kosterlitz

A survey of phenomena special to Physics in 2D is presented.
The Mermin-Wagner- . . . theorem is recalled. Some crucial ideas –
among others, the vortex-gas representation, energy-entropy arguments
for vortices, etc. – in a proof of existence of the K-T transition in the 2D
classical XY model are highlighted.

Subsequently, the R-W rep. of the XY model is introduced and used to
study the behaviour of correlations in an external mag. field and to prove
bounds on critical exponents for the magnetisation and the correlation
length, as the external field tends to 0, etc.



1. Phase transitions and (absence of) symmetry breaking

To be specific, consider N-vector models: with each site x of Z2

associate a classical “spin”, ~Sx ∈ SN−1, with Hamiltonian

H
(
{~S·}

)
:= −J

∑
〈x ,y〉

~Sx · ~Sy + h
∑
x

S1
x , (1)

where J is the exchange coupling constant, and h is an external
magnetic field in the 1-direction. The Gibbs state at inverse
temperature β is defined by

〈A
(
{~S·}

)
〉β,h = Z−1β,h

∫
A
(
{~S·}

)
· exp[−βH({~S·})]×

×
∏
x∈Z2

δ(|~Sx |2 − 1) dNSx , (2)

where A is a local functional of {~Sx}x∈Z2 .



Phase transitions – or their absence

(i) For N ≤ 3, Lee-Yang implies absence of phase transitions and exp.
decay of conn. correlations whenever h 6= 0. What about N > 3?

(ii) N = 1, Ising model
Phase transition with order parameter driven by (im-)balance
between energy and entropy of extended defects, the Peierls
contours. Given (S = −1)-boundary cond.,

Prob{S0 = +1} ≤
∑

contours γ:
intγ 3 0

exp[−βJ|γ|],

⇒ spont. magnetization & spont.breaking of S → −S symmetry at
low enough temps.! Interfaces between + phase and − phase always
rough. (2D Ising model exactly solved by Onsager, Kaufman,
Yang,. . . , Smirnov et al.,. . . ; RG fixed point: unitary CFT; SLE,...)

(iii) N ≥ 2, classical XY- and Heisenberg models
Internal symmetry is SO(N), (connected and continuous for N ≥ 2).
Mermin-Wagner theorem says that, in 2D, continuous symmetries of
models with short-range ints. cannot be broken spontaneously.



Absence of symmetry breaking
Proof: Fisher’s droplet picture made precise using relative entropy !

(iv) McBryan-Spencer bound: For N = 2, h = 0, use angular variables:

~Sj · ~Sk = cos(θj − θk), H = −J
∑
〈j,k〉

cos(θj − θk), θj ∈ [0, 2π) ⇒

〈~S0 · ~Sx〉β = Z−1β

∫ ∏
j

dθj e
i(θ0−θx ) exp[βJ

∑
〈j,k〉

cos(θj − θk)]. (3)

Let C (j) ' − 1
2π `n|j | (2D Coulomb potential) be the Green fct.

of the discrete Laplacian: −(∆C )(j) = δ0j . Complex transl. in (3):

θj → θj + iaj , where aj := (βJ)−1[C (j)− C (j − x)].

Using that

|< cos(θj − θk + i(aj − ak))− cos(θj − θk)| ≤ 1

2
(1 + ε)(aj − ak)2,

for β > β0(ε), and e−(a0−ax ) < (|x |+ 1)−(1/πβJ), we find:



Absence of symmetry breaking – ctd.

Theorem. (McBryan & Spencer)
In the XY Model (N = 2), given ε > 0, there is a β0(ε) <∞
such that, for β ≥ β0(ε),

〈~S0 · ~Sx〉β,h=0 ≤ (|x |+ 1)−(1−ε)/(2πβJ) (4)

i.e., conn. correlations are bounded above by inverse power laws. �

Remarks. (i) Using Ginibre’s correlation inequalities, result extends to all
N-vector models with N ≥ 2. It also holds for quantum XY model, etc.
(ii) In Villain model, (4) holds for ε = 0, (↗ vortex-gas rep.)!

Conjecture. (Polyakov) For N ≥ 3, the 2D N-vector model is ultraviolet
asymptotically free, and

〈~S0 · ~Sx〉β,h=0 ≤ const. |x |−(1/2) exp [−m(β,N)|x |],

for some “mass gap” m(β,N) which is positive ∀β <∞. �
It has been proven (F-Spencer, using “infrared bounds”) that

m(β,N) ≤ const. e−O(βJ/N).



2. Kosterlitz-Thouless transition

The following theorem proves a conjecture made by (Feynman,
Berezinskii,...) Kosterlitz and Thouless.

Theorem. (F-Spencer; proof occupies ≥ 60 pages)
There exists a finite constant β0 and a “dielectric constant”
0 < ε(β) < 1 such that, for β > β0,

〈~S0 · ~Sx〉β,h=0 ≥ const. (|x |+ 1)−(1/2πε
2βJ), (5)

with ε(β)→ 1, as β →∞. �

Remark. It is well known (and easy to prove) that if β is small enough

〈~S0 · ~Sx〉β,h=0 decays exp. fast in |x |. (This can be interpreted as “Debye
screening” in a 2D Coulomb gas dual to the XY model.)

It is a little easier to analyze the “Villain approx.” to the XY model. This
model is “dual” (in the sense of Kramers & Wannier) to the so-called
“discrete Gaussian model” used to study the roughening transition of 2D
interfaces of integer height. Note that:

Kramers-Wannier duality '
ess.

Poincaré duality for a 2D cell complex.



Kosterlitz-Thouless transition – ctd.

This (and π1(S1) = Z) is extent to which “topology” plays a role in this
story.

Using the Poisson summation formula, one shows that

discrete Gaussian ' 2D Coulomb gas,

with charges in Coulomb gas = vortices in XY- (or Villain) model.
For large T , the Coulomb gas is in a plasma phase of unbound charges
(→ Debye screening).

Multi-scale analysis (F-Spencer):

A purely combinatorial construction is used to rewrite the Coulomb gas
(dual to Villain) as a convex combination of gases of neutral multipoles
(dipoles, quadrupoles, etc.) of arbitrary diameter, with the property that
a multipole ρ of diameter d(ρ), (ρ being a charge distribution of total el.
charge 0) is separated from other multipoles of larger diameter by a dist.

≥ const.d(ρ)α, α ∈
(
3
2 , 2
)
. (∗)

The “entropy” of a multipole ρ is denoted by S(ρ). It is a purely combi-
natorial quantity indep. of β and is bd. above by V (ρ), where V (ρ) is a
“multi-scale volume” of supp(ρ) adapted to (∗)..., (see sketch).



Kosterlitz-Thouless transition – ctd.

Now, using complex translations to derive rather intricate electrostatic
inequalities that exploit (∗), one shows that the self-energy, E (ρ), of a
neutral multipole with distribution ρ is bounded below by

E (ρ) ≥ c1‖ρ‖22 + c2`n d(ρ) ≥ c3V (ρ), (6)

where ci , i = 1, 2, 3, are positive constants.
The bound (6) implies that the “free energy”,F (ρ), of a neutral multi-
pole with charge distribution ρ is bounded below by

F (ρ) > (1− ε)E (ρ)

provided β > β(ε), for some finite β(ε). This implies that, for β large
enough, neutral multipoles with charge distribution ρ of large (multi-
scale) volume V (ρ), and hence large electrostatic energy E (ρ), have a
very tiny density; (dipoles of small dipole moment dominate!).
The proof of the Theorem is completed by showing that dilute gases of
neutral multipoles do not screen electric charges ⇒ inverse power-law
decay of spin-spin correlations, ∝ exp[(ε2βJ)−1 × (Coulomb pot.)].



3. Remarks on peculiarities of Physics in 2D

1. A type of quantum statistics not anticipated by the founders of QM
is braid (group) statistics, which only appears as statistics of fields
in (1+1)-D QFT (1975), and as statistics of fields/particles in 2D
systems, (1977, 1987). Particles in 2D with braid stat. always have
fractional spin and often fract. electric charge. They are expected
to exist as quasi-particles in 2DEG exhibiting the QHE. They may
have applications to topological quantum computation.

2. Among quasi-particles in 2D quantum systems (graphene, topol.
insulators) are ones that mimic, e.g., 2-component Dirac fermions,
leading to phenomena such as an anomalous Hall effect.

3. General principles of quantum physics, such as gauge anomalies and
their cancellations, bulk-edge duality, holography, etc. are mani-
fested (with impact) in various 2D quantum many-body systems.

4. Huyghens’ Principle – i.e., e.m. waves propagating along surface of
light cones – is violated in 2D. This might imply that 2D systems
are fundamentally quantum, without classical facets.

Next, I turn to vortex-gas and R-W representations of XY model (BB)!


