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Summary

Some parts of this lecture are related to work of three theorists who have
won the 2016 Nobel Prize in Physics:

— \,
I

David Thouless Duncan Haldane Mike Kosterlitz

A survey of “Physics in 2D" is presented:

The Mermin-Wagner- ... theorem is recalled. Crucial ideas — among
others, energy-entropy arguments for defects — in a proof of existence of
the K-T transition in the 2D classical XY model are highlighted.

Subsequently, the TFT-approach to the FQHE and to 2D time-reversal
invariant topological insulators with chiral edge spin-currents (1993) is
described. The roles of anomaly cancellation and of bulk-edge duality in
the analysis of such systems are explained.



Part |. “Topological” Phase Transitions in 2D Systems

I.1 Phase transitions and (absence of) symmetry breaking.
To be specific, consider N-vector models: with each site x of Z?
associate a classical “spin”, S, € SN~1, with Hamiltonian

H({ST.}) =—J> 5.5, +h) Sk, (1)
y) x

where J is the exchange coupling constant, and h is an external
magnetic field in the 1-direction. The Gibbs state at inverse
temperature 3 is defined by

A(51)sn=254 [ A(15}) - expl-BHUS ] %

< [ 6015 = 1)d"s,, (2)

XEZ2

where A is a local functional of {S,},cz2.



Phase transitions — or their absence

(i)

(ii)

(iii)

In any dimension & for N < 3, Lee-Yang implies absence of phase
transitions and exp. decay of conn. correlations whenever h # 0.
What about N > 37

N =1, Ising model
Phase transition with order parameter at h = 0 driven by
(im-)balance between energy and entropy of extended defects, the

Peierls contours. Given (S = —1)-boundary cond.,
Prob{Sp=+1} < Y exp[-BJN]],
contours ~y:
inty 30

= spont. magnetization & spont.breaking of S — —S symmetry at
low enough temps.! Interfaces between + phase and — phase always
rough. (2D lIsing model exactly solved by Onsager, Kaufman,

Yang,. .., Smirnov et al.,...; RG fixed point: unitary CFT; SLE,...)

N > 2, classical XY- and Heisenberg models

At h =0, internal symmetry is SO(N), (connected & continuous for
N > 2). Mermin-Wagner theorem: In 2D, continuous symmetries of
models with short-range interactions not broken spontaneously.



Absence of symmetry breaking

Proof: Fisher's droplet picture made precise using relative entropy!
(iv) McBryan-Spencer bound: For N =2, h = 0, use angular variables:

§j S, = cos(0;j — 0k), H=—J> cos(6; —0), 0, € [0,2r) =
Uisk)

(S0 S =2 /H dg; e'®o— “exp[ﬁJZcosﬁ —0x)]. (3)

Let C(j) =~ —5=¢nlj| (2D Coulomb potential) be the Green fct.
of the discrete Laplacian: —(AC)(j) = doj. Complex transl. in (3):
0, — 0; + iaj, where a; := (B8J)"*[C(j) — C(j — x)].

Using that

(1+¢)(aj — a)?,

N =

|Rcos(0; — Ok + i(aj — ak)) — cos(8; — 6x)| <

for B> Bo(e), and e~ (@=2) < (|x| + 1)~/ we find:



Absence of symmetry breaking — ctd.

Theorem. (McBryan & Spencer, ...)
In the XY Model (N = 2), given & > 0, there is a fp(€) < 00
such that, for 8 > Bo(e),

<§0 . §x>,6’,h:0 < (‘x| + 1)_(1—5)/(271'5-/) (4)
i.e., conn. correlations are bounded above by inverse power laws. [J

Remarks. (i) Using Ginibre's correlation inequalities, result extends to all
N-vector models with N > 2. It also holds for quantum XY model, etc.
(i) In Villain model, (4) holds for ¢ = 0, (by Kramers-Wannier duality)!

Conjecture. (Polyakov) For N > 3, the 2D N-vector model is ultraviolet
asymptotically free, and

(S0 - S g.ho < const. |x|~ /2 exp [—=m(B, N)|x]],

for some “mass gap” m(8, N) which is positive V3 < co. O
It has been proven (F-Spencer, using “infrared bounds”) that

m(B3,N) < const. e"OBI/N),



Kosterlitz- Thouless transition

1.2 The Kosterlitz-Thouless transition in the 2D classical XY model

The following theorem proves a conjecture made by (Berezinskii,...)
Kosterlitz and Thouless.

Theorem. (F-Spencer; proof occupies > 60 pages)
There exists a finite constant By and a ‘dielectric constant”
0 < €(B) < 1 such that, for 3 > [y,

<50 5 >5 h—0 = const. (|X| + 1) (1/27€? ﬁJ) (5)

with e(f) = 1, as 8 - o00. O

Remark. It is well known (and easy to prove) that if 8 is small enough
(So - S )8, h=0 decays exp. fast in |x|. (This can be interpreted as “Debye
screening” in a 2D Coulomb gas dual to the XY model.)

It is a little easier to analyze the “Villain approx.” to the XY model. This
model is “dual” (in the sense of Kramers & Wannier) to the so-called
“discrete Gaussian model” used to study the roughening transition of 2D
interfaces of integer height. Note that:



Kosterlitz-Thouless transition — ctd.

Kramers-Wannier duality ~ Poincaré duality for a 2D cell complex. This
€ss.

(and 71(S) = Z) is extent to which “topology” plays a role in this story.
Using the Poisson summation formula, one shows that

‘ discrete Gaussian ~ 2D Coulomb gas, ‘

with charges in Coulomb gas = vortices in XY- (or Villain) model.
For large T, the Coulomb gas is in a plasma phase of unbound charges.

Multi-scale analysis (F-Spencer):

A purely combinatorial construction is used to rewrite the Coulomb gas
(dual to Villain) as a convex combination of gases of neutral multipoles
(dipoles, quadrupoles, etc.) of arbitrary diameter, with the property that
a multipole p of diameter d(p), (p being a charge distribution of total el.
charge 0) is separated from other multipoles of larger diameter by a dist.
> const.d(p), o€ (3,2). (*)

The “entropy” of a multipole p is denoted by S(p). It is a purely combi-
natorial quantity indep. of 5 and is bd. above by V/(p), where V(p) is a
“multi-scale volume” of supp(p) adapted to (*).



Kosterlitz-Thouless transition — ctd.

Now, using complex translations to derive rather intricate electrostatic
inequalities that exploit (*), one shows that the self-energy, £(p), of a
neutral multipole with distribution p is bounded below by

[E(p) > aillplB + cabnd(p) > eV (p).] (®)

where ¢;, i = 1,2, 3, are positive constants.
The bound (6) implies that the “free energy”,F(p), of a neutral multi-
pole with charge distribution p is bounded below by

provided 8 > f(¢), for some finite (). This implies that, for 5 large
enough, neutral multipoles with charge distribution p of large (multi-
scale) volume V/(p), and hence large electrostatic energy E(p), have a
very tiny density; (dipoles of small dipole moment dominate!).

The proof of the Theorem is completed by showing that dilute gases of
neutral multipoles do not screen electric charges = inverse power-law
decay of spin-spin correlations,  exp[(¢23J)~! x (Coulomb pot.)].



Braid statistics, violation of Huyghens' Principle, etc.
1.3 Survey of phenomena special to Physics in 2D

1. A type of quantum statistics not anticipated by the founders of QM
is braid (group) statistics, which only appears as statistics of fields
in (14+1)-D QFT (1975), and as statistics of fields/particles in 2D
systems, (1977, 1987). Particles in 2D with braid stat. always have
fractional spin and often fract. electric charge. They are expected
to exist as quasi-particles in 2DEG exhibiting the QHE — see Part II.
They may have applications to topological quantum computation.

2. Among quasi-particles in 2D quantum systems (graphene, topol.
insulators) are ones that mimic, e.g., 2-component Dirac fermions,
leading to phenomena such as an anomalous Hall effect; ~ Part Il.

3. General principles of quantum physics, such as gauge anomalies and
their cancellations, bulk-edge duality, holography, etc. are mani-
fested (with impact) in various 2D quantum many-body systems.

4. Huyghens' Principle — i.e., e.m. waves propagating along surface of
light cones — is violated in 2D. This might imply that 2D systems
are fundamentally quantum, without classical facets.



Part II.

What Topological Field Theory Tells Us About the

FQHE and Topological Insulators

General goals of analysis

>

Classify bulk- and surface states of (condensed) matter, using
concepts and results from gauge theory, current algebra & GR:
Effective actions (= generating functionals of connected current
Green fcts.! transport coefficients!), gauge-invariance, anomalies &
their cancellation, “holography"”, etc.

Extend Landau Theory of Phases and Phase Transitions to a
Gauge Theory of Phases of Matter.

Applications

Fractional Quantum Hall Effect (1989 — 2012)
Topological Insulators and -Superconductors (1994 — 2015)

Higher-dimensional cousins of QHE = Cosmology: Primordial
magnetic fields in the Universe, matter-antimatter asymmetry,
dark matter & dark energy, etc. (2000 — ---)



The chiral anomaly

Anomalous axial currents (for massless fermions):
In 2D:

Ot = 5-E. =S, 12,0, 0] " iad (% - 7)
In 4D: ayJ gE ,§
5 T
and (ACO) . =

i B(7. ) Vyb(x - 7)



1. Anomalous Chiral Edge Currents in Incomp. Hall Fluids
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Setup & basic quantities
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2D EG confined to Q C xy - plane , in mag. field By L §2; v such that
R; = 0. Response of 2D EG to small perturb. em field, £||Q, B L Q,
with B = 5, + B, B:=|B|, E:=(E,E).
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Field tensor: F:=| —E 0 —B | =dA, (A: vector pot.)
-E, B 0



Electrodynamics of 2D incompressible e™-gases
Def.:
J1x) = (J(x))a, p=0,1,2.
(1) Hall's Law

*

j(x)=on(E(x))", (RL.=0!) — broken P, T
(2) Charge conservation

0

EP(X) +V-j(x)=0

(3) Faraday's induction law

%Bgof LY AE(X) =0

Then



ED of 2D e -gases, ctd.

Integrate (4) in t, with integration constants chosen as follows:
J°(x) = p(x) + e-n, B(x) = B*(x) — By =

(4) Chern-Simons Gauss law

J°(x) = onB(x) (5)
Egs. (1) and (5) = [j*(x) = on " Fa(x) (6)

Now
02 9, L N @, Fn 40, (7

wherever oy # const., e.g., at 0Q2. — Actually, j#* is bulk current
density, (jl’fu,k), = conserved total electric current density:

, , , , w0
Jtot = Jbuik +Jgdge7 Opftor =0, but Opujipy # 0 (8)



Anomalous chiral edge currents

We have that

SUPP Jpgge = SUPP(Von) 209, j .. L Vou.
“Holography”: On supp(Von),
(8 . (6)
aﬂ-/gdge = _allel;ulk|5UPP(zUH) = —0HE||supp(von) (9)

Chiral anomaly in 1+1 dimensions!

Edge current, jé‘dge = j', is anomalous chiral current in 1+ 1 D: At
edge,

;Bt"tv” = (VVedge)”; Vedge : confining edge pot.



Skipping orbits, hurricanes and fractional charges

A

Analogous phenomenon in classical physics: Hurricanes!
B — @eartn, Lorentz force — Coriolis force , V Veqge — V pressure .

Chiral anomaly in (1 + 1)D:

2 i 2
aujs“Z_eW( S @) "B o= %ZQ‘?" (10)

species «

where @, - e is fractional electric charge of quasi-particle species «.



Edge- and bulk effective actions
Apparently, if oy ¢ G—:Z then there exist fractionally charged
quasi-particles propagating along supp(Voy)!
Chiral edge current d. Jé‘dge = generator of U(1)- current algebra
(free massless fields!) Green functions of Jé‘dge obtained from 2D
anomalous effective action Faoxr(A|) = -, where A is
restriction of vector potential, A, to boundary 9Q x R.
Anomaly of o4l gaxr(A|) — consequence of fact that Jgdge is not
cons. — is cancelled by the one of bulk effective action, Sqxr(A):

Joun(x) = <J“(x))AEW

© oHeM Fa(x), x ¢ 9Q xR

o2
- SM(A)ZQH/Q ANdA+ onToaxr(A)) (11)
xR

Chern-Simons action on manifold with boundary!



Classification of “abelian” QH fluids (with help from L.M.)

Chiral anomaly (10) = several (N) species of gapless quasi-particles
propagating along edge < described by N chiral scalar Bose fields
{@*}N_, with propagation speeds {v,}¥_;, such that

1. Chiral electric edge current operator & Hall conductivity
e? T
edgeieZQ au(P y (Ql)”'aQN)’ GH:?Q’Q

2. Multi-electron /hole states loc. along edge created by vertex ops.
N a
:expi(Zq&cp“) Sd=| 1 |enj=1...,N (12
=1 qj/v
Charge < Statistics = T an odd-integral lattice of rank N. Hence:
3. Classifying data are
{T'; @ eT*: “visible"; (q{;()j’-\"“:l : ~ CKM matrix ; v = (vo)V_;}

— quasi-particles w. abelian braid statistics!



Success of classification — comparison with data
I = odd-integral lattice, Q € T'*

= (&

h

)710/-/ S @(') -




2. Chiral Spin Currents in Planar Topological Insulators

So far, we have not paid attention to electron spin, although there
are 2D EG exhibiting the fractional quantum Hall effect where spin
plays an important role. Won't study these systems, today.
Instead, we consider time-reversal-invariant 2d topological
insulators (2D TI) exhibiting chiral spin currents.

Pauli Eq. for a spinning electron:

. n?
IhDoV = —ﬂg 1/2Dk (gl/zgk/) Dy, (13)

where m is the mass of an electron, (gx/) = metric of sample,

4
V,(x) = ( Zig; ) € L’(R})®C?:  2-component Pauli spinor

S - L, ho o
ihDy = ihdy +ep— Wo-& Wo:pc28+ZVAV(14)

Zeeman coupling



U(1)em x SU(2)spin-gauge invariance

h

h —
Dy = =0k + eAx — mgVix — Wi - 7, (15)
i i

where A is em vector potential, Vis velocity field describing mean
motion (flow) of sample, (V- V =0),

spin-orbit interactions

and i = p+ % (+— Thomas precession).

Note that the Pauli equation (13) respects U(1)em x SU(2)spin -
gauge invariance.

We now consider an interacting 2D gas of electrons confined to a
region Q of the xy- plane, with B L Q and E, V||Q. Then the

SU(2) - conn., l/T/w is given by Vl/y3 o3, (WM =0, for M =1,2).



Effective action of a 2D TI

Thus the connection for parallel transport of the component 9" of
V is given by a4+ w, while parallel transport of ¢t is determined by
a—w, where a, = —eA, + mV,,w, = Wi. These connections are
abelian, (phase transformations). Under time reversal,

ap — ap, ax — —ak, but wg — —wp, wi — wy. (16)

The dominant term in the effective action of a 2D insulator is a
Chern-Simons term. If there were only the gauge field a, with

w = 0, or only the gauge field w, with a = 0, a Chern-Simons
term would not be invariant under time reversal, and the dominant
term would be given by

S(a) = /dtdzx {eE? — u'B?} (17)

But, in the presence of two gauge fields, a and w, satisfying (16):



Effective action of a 2D TI, ctd.
Combination of two Chern-Simons terms is time-reversal invariant:
Saw) = 5 [{a+wn datw)—(a-w)n da-w)
= a/{a/\ dw + w A da}

This reproduces (17) for phys. choice of w! (,* J.F., Les Houches
'941) — The gauge fields a and w transform independently under
gauge transformations, and the Chern-Simons action is anomalous
under these gauge trsfs. on a 2D sample space-time A = Q x R
with a non-empty boundary, OA. The anomalous chiral boundary
actions,

j:ol'((a + W)|||),

cancel anomaly of bulk action! Are generating functionals of conn.
Green functions of two counter-propagating chiral edge currents:



Edge degrees of freedom: Spin currents

One of the two counter propagating edge currents has

(in +3-direction, L Q), the other one has . Thus, a
net chiral spin current, sed .» €an be excited to propagate along the
edge; but there is no net eIectric edge current!

Response Equations, (2 oppositely (spin-)polarized bands):
Jj(x) =20(VB)*, and

-2

= edge spin current — as in (7)!

= 20" F,\(X) (18)

We should ask what kinds of quasi-particles may produce the
(bulk) Chern-Simons terms

Si(atw)= /{a:l:w)/\ d(a £ w),



where, apparently + stands for “spin-up” and — stands for “spin-down".
Well, it has been known ever since the seventies ! that a two-component
relativistic Dirac fermion with mass M > 0 (M < 0), coupled to an
abelian gauge field A, breaks parity and time-reversal invariance and
induces a Chern-Simons term

+ x AN dA

(-)2m
We thus argue that a 2D time-reversal invariant topological insulator with
chiral edge spin-current exhibits two species of charged quasi-particles in
the bulk, with one species (spin-up) related to the other one (spin-down)
by time reversal, and each species has two degenerate states per wave
vector mimicking a 2-component Dirac fermion (at small wave vectors).

the first published account of this observation — originally due to Magnen,
Sénéor and myself — appears in a paper by Deser, Jackiw and-Templeton-of 1982



Conclusions

e Physics in 2D is surprisingly rich. Important problems — in particular,
ones concerning phase transitions and critical phenomena — appear to be
exactly solved, using techniques ranging from the Bethe ansatz and the
use of solutions to the Yang-Baxter equation, over 2D CFT, SLE, all the
way to discrete-holomorphic functions. Yet, qualitative analysis, such as
multi-scale analysis (K-T transition), still has a significant role to play.

e 2DEG, Bose gases and magnetic materials are fascinating play grounds
for experimentalists and theorists alike, because general principles, such
as anomalies and their cancellation, holography, two-comp. Dirac-like
fermions, braid statistics, fractional spin & fractional electric charges, etc.
all appear to manifest themselves in the physics of specific 2D systems.

e |t is interesting to consider higher-dimensional cousins of the QHE and
of topological insulators invariant under T. They are likely to be relevant
in cosmology — in connection with the generation of primordial magnetic
fields in the Universe, Dark Matter & Dark Energy. But these matters are
left for another occasion.

Je vous remercie de votre attention!



“Survivre et Vivre" — 47 years later

... depuis fin juillet 1970 je consacre la plus grande partie de mon
temps en militant pour le mouvement Survivre, fondé en juillet a
Montréal. Son but est la lutte pour la survie de I'espéce humaine,
et méme de la vie tout court, menacée par le déséquilibre
écologique croissant causé par une utilisation indiscriminée de la
science et de la technologie et par des mécanismes sociaux
suicidaires, et menacée également par des conflits militaires liés a
la prolifération des appareils militaires et des industries

d’armements ...

Alexandre Grothendieck



