Critical BCS-temperature in a constant magnetic field

Christian HAINZL
(Universität Tübingen)

Venice, 21.8.2017

We study the bottom of the spectrum of the following two-particle operator: This is the second variation of the corresponding BCS-functional.

$$
\begin{gathered}
M_{T, B}+V: L^{2}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right) \rightarrow L^{2}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right) \\
M_{T, B}=\frac{\mathfrak{h}_{x}+\mathfrak{h}_{y}}{\tanh \frac{\mathfrak{h}_{x}}{2 T}+\tanh \frac{\mathfrak{h}_{y}}{2 T}}, \quad V=V(x-y) \\
\mathfrak{h}_{x}=\left(-i \nabla_{x}+\frac{\mathbf{B}}{2} \wedge x\right)^{2}-\mu=\Pi_{x}^{2}-\mu, \quad \Pi_{x}=p_{x}+\frac{\mathbf{B}}{2} \wedge x
\end{gathered}
$$

with μ chemical potential, T temperature, and

$$
\mathbf{B}=(0,0, B)
$$

Goal: Obtain T as a function of B under the condition that

$$
\inf \sigma\left(M_{T, B}+V\right)=0
$$

In this way we want to obtain the critical temperature as a function of B, i.e., $T_{c}(B)$, for small B.

Idea

The ground-state eigenfunction separates into relative and center-of-mass motion

$$
\begin{gathered}
\alpha(x, y) \simeq \alpha_{*}(x-y) \psi\left(\frac{x+y}{2}\right)=\alpha_{*}(r) \psi(X), \\
r=x-y, \quad p_{r}=\frac{p_{x}-p_{y}}{2}, \quad x=\frac{r}{2}+\frac{X}{2}, \quad p_{x}=p_{r}+\frac{p_{X}}{2} \\
X=\frac{x+y}{2}, \quad p_{X}=p_{x}+p_{y}, \quad y=-\frac{r}{2}+\frac{X}{2}, \quad p_{y}=-p_{r}+\frac{p_{X}}{2} \\
\Pi_{x}=p_{x}+\frac{\mathbf{B}}{2} \wedge x=p_{r}+\frac{p_{X}}{2}+\frac{\mathbf{B}}{4} \wedge r+\frac{\mathrm{B}}{2} \wedge X=\Pi_{r}+\frac{\Pi_{X}}{2} \\
\Pi_{y}=p_{y}+\frac{\mathbf{B}}{2} \wedge y=-p_{r}+\frac{p_{X}}{2}-\frac{\mathbf{B}}{4} \wedge r+\frac{\mathbf{B}}{2} \wedge X=-\Pi_{r}+\frac{\Pi_{X}}{2} \\
\left\langle\alpha, M_{T, B} \alpha\right\rangle=\left\langle\alpha, \frac{\left(\Pi_{r}+\frac{\Pi_{x}}{2}\right)^{2}-\mu+\left(\Pi_{r}-\frac{\Pi_{x}}{2}\right)^{2}-\mu}{\tanh \frac{\left(\Pi_{r}+\frac{\Pi_{x}}{2}\right)^{2}-\mu}{2 T}+\tanh \frac{\left(\Pi_{r}-\frac{\Pi_{x}}{2}\right)^{2}-\mu}{2 T}} \alpha\right\rangle
\end{gathered}
$$

Idea

The ground-state eigenfunction separates into relative and center-of-mass motion

$$
\begin{gathered}
\alpha(x, y) \simeq \alpha_{*}(x-y) \psi\left(\frac{x+y}{2}\right)=\alpha_{*}(r) \psi(X), \\
r=x-y, \quad p_{r}=\frac{p_{x}-p_{y}}{2}, \quad x=\frac{r}{2}+\frac{X}{2}, \quad p_{x}=p_{r}+\frac{p_{X}}{2} \\
X=\frac{x+y}{2}, \quad p_{x}=p_{x}+p_{y}, \quad y=-\frac{r}{2}+\frac{X}{2}, p_{y}=-p_{r}+\frac{p_{X}}{2} \\
\Pi_{x}=p_{x}+\frac{\mathbf{B}}{2} \wedge x=\left(p_{r}+\frac{\mathbf{B}}{4} \wedge r\right)+\left(\frac{p_{X}}{2}+\frac{\mathbf{B}}{2} \wedge x\right)=\Pi_{r}+\frac{\Pi_{x}}{2} \\
\Pi_{y}=p_{y}+\frac{\mathbf{B}}{2} \wedge y=-\left(p_{r}+\frac{\mathbf{B}}{4} \wedge r\right)+\left(\frac{p_{X}}{2}+\frac{\mathbf{B}}{2} \wedge X\right)=-\Pi_{r}+\frac{\Pi_{x}}{2} \\
\left\langle\alpha, M_{T, B} \alpha\right\rangle=\left\langle\alpha, \frac{\left(\Pi_{r}+\frac{\Pi_{x}}{2}\right)^{2}-\mu+\left(\Pi_{r}-\frac{\Pi_{x}}{2}\right)^{2}-\mu}{\tanh \frac{\left(\Pi_{r}+\frac{\Pi_{x}}{2}\right)^{2}-\mu}{2 T}+\tanh \frac{\left(\Pi_{r}-\frac{\Pi_{x}}{2}\right)^{2}-\mu}{2 T}} \alpha\right\rangle
\end{gathered}
$$

Idea

$$
\begin{gathered}
\alpha \simeq \alpha_{*}(r) \psi(X) \\
\left\langle\alpha, M_{T, B} \alpha\right\rangle \simeq\left\langle\alpha_{*}, \frac{\Pi_{r}^{2}-\mu}{\tanh \frac{\Pi_{r}^{2}-\mu}{2 T}} \alpha_{*}\right\rangle\|\psi\|_{2}^{2}+\Lambda_{0}\left\langle\psi, \Pi_{X}^{2} \psi\right\rangle+o(B)
\end{gathered}
$$

$$
\begin{align*}
0= & \inf _{\|\alpha\|=1}\left\langle\alpha,\left(M_{T, B}+V\right) \alpha\right\rangle \\
& \simeq \inf _{\left\|\alpha_{*}\right\|=1}\left\langle\alpha_{*},\left(\frac{p_{r}^{2}-\mu}{\tanh \frac{p_{r}^{2}-\mu}{2 T}}+V(r)\right) \alpha_{*}\right\rangle+\Lambda_{0} \inf _{\|\psi\|=1}\left\langle\psi, \Pi_{X}^{2} \psi\right\rangle+o(B) \\
& \simeq-\Lambda_{2} \frac{T_{c}(0)-T}{T_{c}(0)}+\Lambda_{0} 2 B+o(B), \tag{1}
\end{align*}
$$

hence

$$
T(B)=T_{c}(B)=T_{c}(0)\left(1-\frac{\Lambda_{0}}{\Lambda_{2}} 2 B\right)+o(B)
$$

Difficulties

There are severe difficulties:

- $M_{T, B}$ is an ugly symbol.
- $\mathbf{B} \wedge x$ is an unbounded perturbation of an unbounded operator
- the components of $\left(-i \nabla+\frac{\mathrm{B}}{2} \wedge x\right)$ do not commute
- We need an operator inequality of the form

$$
M_{T, B}+V \geq \frac{p_{r}^{2}-\mu}{\tanh \frac{p_{r}^{2}-\mu}{2 T}}+V(r)+c \Pi_{X}^{2}+o(B), \quad c>0
$$

As a way out, we will deal with the Birman-Schwinger version:

$$
V \geq 0:\left(M_{T, B}-V\right) \alpha=0 \Longleftrightarrow V^{1 / 2} \frac{1}{M_{T, B}} V^{1 / 2} \varphi=\varphi, \quad \varphi=V^{1 / 2} \alpha
$$

hence we study the equation

$$
0=\inf \sigma\left(1-V^{1 / 2} \frac{1}{M_{T, B}} V^{1 / 2}\right)
$$

$B=0$ and $T_{c}(0)$

In order to determine $T_{c}(0)$ one has to solve for T :

$$
0=\inf \sigma\left(M_{T, 0}+V\right)
$$

We abbreviate $M_{T}=M_{T, 0}$ which can be represented as multiplication operator.

$$
\widehat{M_{T} \alpha}(p, q)=\frac{p^{2}-\mu+q^{2}-\mu}{\tanh \frac{p^{2}-\mu}{2 T}+\tanh \frac{q^{2}-\mu}{2 T}} \hat{\alpha}(p, q)
$$

One has the algebraic inequality

$$
M_{T}(p, q) \geq \frac{1}{2}\left(\frac{p^{2}-\mu}{\tanh \frac{p^{2}-\mu}{2 T}}+\frac{q^{2}-\mu}{\tanh \frac{q^{2}-\mu}{2 T}}\right) \geq 2 T
$$

since

$$
\frac{x}{\tanh \frac{x}{2 T}} \geq 2 T
$$

The task to solve for the critical temperature T_{c} is non-trivial, even in the $B=0$ case.

$M_{T}+V$ for $p_{X}=0[H H S S]$

At $p_{X}=0$

$$
\begin{gathered}
M_{T}\left(p_{r}+\frac{p_{X}}{2},-p_{r}+\frac{p_{X}}{2}\right)=M_{T}\left(p_{r},-p_{r}\right) \\
=K_{T}\left(p_{r}\right)=\frac{p_{r}^{2}-\mu}{\tanh \left(\left(p_{r}^{2}-\mu\right) / 2 T\right)} \\
K_{T}(-i \nabla)+V(r): L^{2}\left(\mathbb{R}^{3}\right) \rightarrow L^{2}\left(\mathbb{R}^{3}\right) .
\end{gathered}
$$

Critical temperature: Since the operator $K_{T}+V$ is monotone in T, there exists unique $0 \leq T_{c}<\infty$ such that

$$
\inf \sigma\left(K_{T_{c}}+V\right)=0,
$$

respectively 0 is the lowest eigenvalue of $K_{T_{c}}+V$.
T_{c} is the critical temperature for the effective one particle system ($p_{X}=0$).

Known results about $K_{T}+V$

- $\lim _{T \rightarrow 0} \frac{p^{2}-\mu}{\tanh \frac{p^{2}-\mu}{2 T}}=\left|p^{2}-\mu\right|$, hence

$$
T_{c}>0 \text { iff } \inf \sigma\left(\left|p^{2}-\mu\right|+V\right)<0
$$

- $\frac{1}{\left|p^{2}-\mu\right|}$ has same type of singularity as $1 / p^{2}$ in $2 D[\mathrm{~S}]$.
- In [FHNS, HS08, HS16] we classify V 's such that $T_{c}>0$. (E.g. $\int V<0$ is enough)
- In [LSW] shown that $\left|p^{2}-\mu\right|+V$ has ∞ many eigenvalues if $V \leq 0$.
- the operator appeared in terms of scattering theory [BY93]

```
[FHNS] R. Frank, C. Hainzl, S. Naboko, R. Seiringer, Journal of Geometric Analysis, 17, No 4, 549-567 (2007)
[HS08] C. Hainzl, R. Seiringer, Phys. Rev. B, 77, 184517 (2008)
[HS16] C. Hainzl, R. Seiringer, J. Math. Phys. }57\mathrm{ (2016), no. 2, }02110
[BY93] Birman, Yafaev, St. Petersburg Math. J. 4, 1055-1079 (1993)
[LSW] A. Laptev, O. Safronov, T. WeidI, Nonlinear problems in mathematical physics and related topics I, pp. 233-246, Int. Math. Ser. (N.Y.),
Kluwer/Plenum, New York (2002)
[S] B. Simon, Ann. Phys. 97, 279-288 (1976)
```


Lemma (FHSS12)

Let the 0 eigenvector of $K_{T_{c}}+V$ be non-degenerate. Then
(a)

$$
M_{T_{c}}+V \gtrsim p_{X}^{2}
$$

(b)

$$
\inf \sigma\left(M_{T_{c}}+V\right)=0
$$

meaning $T_{c}(0)$ for the two-particle system is determined by T_{c} the critical temperature of the one-particle operator $K_{T}+V$, which satisfies $0=\inf \sigma\left(K_{T_{c}}+V\right)$.

The proof of is non-trivial, because

$$
M_{T}\left(p_{r}+\frac{p_{X}}{2},-p_{r}+\frac{p_{X}}{2}\right) \nsupseteq M_{T}\left(p_{r},-p_{r}\right)=K_{T}\left(p_{r}\right) .
$$

(a) only holds for $V=V(x-y)$, not for general $V(x, y)$.

In the presence of \mathbf{B} the proof is significantly harder and the main difficulty of our work.
[FHSS12] R.L. Frank, C. Hainzl, R. Seiringer, J.P. Solovej, J. Amer. Math. Soc. 25, 667-713 (2012).

Main Theorem

$$
\begin{equation*}
0=\inf \sigma\left(1-V^{1 / 2} \frac{1}{M_{T, B}} V^{1 / 2}\right) \tag{2}
\end{equation*}
$$

Theorem (FHL17)

Let $V \leq 0, V$ and $|r| V(r)$ in L^{∞}, and the 0 -eigenvector of $K_{T_{c}}+V$ be non-degenerate, then there are parameters Λ_{0}, Λ_{2}, depending on V, μ, such that there exists a solution $T_{c}(B)$ of equation (2) such that for small B

$$
T_{c}(B)=T_{c}\left(1-\frac{\Lambda_{0}}{\Lambda_{2}} 2 B\right)+o(B)
$$

This proves and generalizes a famous result of Helfand, Hohenberg and Werthamer [HHW].

Ingredients of the proof

Advantage: $M_{T, B}^{-1}$ can be expressed in terms of resolvents.

$$
M_{T, B}^{-1}=\frac{1}{2 i \pi} \int_{C} \tanh \left(\frac{z}{2 T}\right) \frac{1}{z-\mathfrak{h}_{x}} \frac{1}{z+\mathfrak{h}_{y}} d z=T \sum_{n \in \mathbb{Z}} \frac{1}{\mathfrak{h}_{x}-i \omega_{n}} \frac{1}{\mathfrak{h}_{y}+i \omega_{n}}
$$

with $\omega_{n}=\pi(2 n+1) T$.

$$
\begin{align*}
& \left(M_{T, B}^{-1} V^{1 / 2} \alpha\right)(x, y)= \\
& \quad \iint d x^{\prime} d y^{\prime} T \sum_{n \in \mathbb{Z}} \frac{1}{\mathfrak{h}_{B}-i \omega_{n}}\left(x, x^{\prime}\right) \frac{1}{\mathfrak{h}_{B}+i \omega_{n}}\left(y, y^{\prime}\right) V^{1 / 2}\left(x^{\prime}-y^{\prime}\right) \alpha\left(x^{\prime}, y^{\prime}\right) \tag{3}
\end{align*}
$$

We show

$$
\frac{1}{z-\mathfrak{h}_{B}}(x, y) \simeq e^{-i \frac{\mathrm{~B}}{2} \cdot x \wedge y} \frac{1}{z-\mathfrak{h}_{0}}(x-y)
$$

and introduce center-of-mass and relative coordinates, and use

$$
e^{-i Z \cdot(\mathbf{B} \wedge X)} \psi(X-Z)=e^{-i Z \cdot(\mathbf{B} \wedge X)}\left(e^{-i Z \cdot p_{X}} \psi\right)(X)=\left(e^{-i Z \cdot \Pi_{X}} \psi\right)(X) .
$$

High- T_{C}-superconductors

But if V is more general, $V=V(r, X)$, then $M_{T}+V$ does not necessarily attain its infimum for $p_{X}=0[\mathrm{HL}]$.

This suggests a different type of pair formation in situations where the interaction is not translation-invariant.

We suggest that this happens in high- T_{c}-superconductors.
[HL] C. Hainzl, M. Loss, EPJ B (2017)

Previous results on the influence of A, W on critical temperature

In previous works we investigated the change of the critical temperature by bounded external fields Felder $h^{2} W, h \mathbf{A}$ by means of the full non-linear functional. The shift in the critical temperature happens through the lowest eigenvalue of the linearized Ginzburg-Landau operator

$$
D_{c}=\frac{1}{\Lambda_{0}} \inf \sigma\left(\Lambda_{2}(-i \nabla+2 \mathbf{A}(x))^{2}+\Lambda_{1} W(x)\right)
$$

Theorem ([FHSS12, FHSS16])

If \mathbf{A} and W are bounded and periodic, the ground state of $K_{T_{c}}+V$ non-degenerate, then there exist constants $\Lambda_{0}, \Lambda_{1}, \Lambda_{2}$ such that

$$
T_{c}^{\mathrm{BCS}}=T_{c}\left(1-D_{c} h^{2}\right)+o\left(h^{2}\right) .
$$

[FHSS16] R. L. Frank, C. Hainzl, R. Seiringer, J P Solovej, Commun. Math. Phys. 342 (2016), no. 1, 189-216
[FHSS12] R.L. Frank, C. Hainzl, R. Seiringer, J.P. Solovej, J. Amer. Math. Soc. 25, 667-713 (2012).

Proof [FHSS12]

$$
\begin{aligned}
& M_{T_{c}}\left(p_{r}+\frac{p_{X}}{2}, p_{r}-\frac{p_{X}}{2}\right)+V(r) \geq \frac{1}{2}\left(K_{T_{c}}\left(p_{r}+\frac{p_{X}}{2}\right)+K_{T_{c}}\left(p_{r}-\frac{p_{X}}{2}\right)\right)+V(r) \\
&=\frac{1}{2}\left(e^{i r \cdot p_{X} / 2} K_{T_{c}}\left(p_{r}\right) e^{-i r \cdot p_{X} / 2}+e^{-i r \cdot p_{X} / 2} K_{T_{c}}\left(p_{r}\right) e^{i r \cdot p_{X} / 2}\right)+V(r) \\
&=\frac{1}{2}\left(U_{p_{X}}\left[K_{T_{c}}+V\right] U_{p_{X}}^{*}+U_{p_{X}}^{*}\left[K_{T_{c}}+V\right] U_{p_{X}}\right) \\
& \geq \kappa\left(U_{p_{X}}\left[1-\left|\alpha_{*}\right\rangle\left\langle\alpha_{*}\right|\right] U_{p_{X}}^{*}+U_{p_{X}}^{*}\left[1-\left|\alpha_{*}\right\rangle\left\langle\alpha_{*}\right|\right] U_{p_{X}}\right) \\
& \geq \kappa\left[1-\left.\left|\int \cos \left(p_{X} \cdot r\right)\right| \alpha_{*}(r)\right|^{2} d r \mid\right] \simeq c^{2} p_{X}^{2}
\end{aligned}
$$

for small momenta p_{X},

$$
\left(K_{T_{c}}+V\right) \alpha_{*}=0 .
$$

The proof crucially depends on $V=V(r)$ being translation invariant.
The proof is significantly harder if magnetic field \mathbf{B} is included.
Using $e^{i r \cdot \Pi_{X} / 2}$ has the difficulty that $r_{1} \Pi_{X_{1}}$ and $r_{2} \Pi_{X_{2}}$ do not commute.

