
Quantization of Hall conductance in gapped
systems

Wojciech De Roeck (Leuven)

with Sven Bachmann, Alex Bols and Martin Fraas

24th August 2017



Motivation: Two recent papers

Hastings and Michalakis (2015)

Spin systems on discrete 2-torus

Assume unique ground state with spectral gap

Conserved local ’charge’ Qx → current and potential

Result: Hall conductance is (2π×) integer.

Tools: quasi-adiabatic flow → Talk of Bruno

Hard to understand

Giuliani, Mastropietro, Porta (2016)

Weakly interacting fermions on discrete 2-torus

Assume only that non-interacting system has spectral gap.

Result: Hall conductance is (2π×) integer.

Tool: Fermionic PT and Ward identities

Our goal: Simple rendering of (weakened) H-M, no original result



Interacting fermions on 2-torus

Discrete torus (Z/LZ)2 with sites x and linear size L.

Typical Hamiltonian

H =
∑
x

(vx − µ)nx +
∑
x ,i

winxnx+ei︸ ︷︷ ︸
=:D (diagonal in nx )

+
∑
x ,i

(αic
∗
x cx+ei + hc)

with {cx , c∗y } = δx ,y and nx = c∗x cx .

Set local charge Qx ≡ nx .

Unitary gauge transf. Vθ = ⊗xe
−iθ(x)Qx for functions θ(x).



Vector potential a

Gauge transformation Vθ affects hopping

VθHV
∗
θ = D +

∑
x ,i

(αic
∗
x cx+ei e

i∇iθ(x) + hc)

with vector potential ai (x) = ∇iθ(x) = θ(x + ei )− θ(x).

For general fields a = a(x)

Ha ≡ D + +
∑
x ,i

(αic
∗
x cx+ei e

iai (x) + hc)

expect that Ha 6=VθHV
∗
θ for some gauge θ.

We need just small class of a: no B piercing the lattice, only
thread fluxes through torus.



We define Twist-antitwist Hamiltonians H(φ1, φ2):
Consider a inducing a twist φ1 and antitwist −φ1.

Call resulting Hamiltonian H(φ1) ≡ Ha = V (θ)HV ∗(θ).
Analagously, put also T-AT in 2-direction ⇒ H(φ1, φ2)



We define Twist Hamiltonians H̃(φ1, φ2):
Consider a inducing a twist flux φ1.

Call resulting Hamiltonian H̃(φ1) = Ha. Analagously, put also T in
2-direction ⇒ H̃(φ1, φ2)

No obvious spectral relation between the H̃(φ1, φ2).

We write H(φ), H̃(φ) with φ = (φ1, φ2).

Fundamental objects will be H̃(φ) rather than H(φ).
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Torus T2 of fluxes φ = (φ1, φ2)

Assumption: Family H̃(φ) has uniform gap (in L and in φ). Let
P̃(θ) be the (rank-1) GS projection of H̃(θ).

Fact 1: Hall Conductance = Berry curvature

Hall conductance of H̃ = H̃(φ) is given by (limL→∞(·) of )

κ(θ) = iTr P̃[∂1P̃, ∂2P̃], ∂i = ∂φi

Fact 2: Integral of Berry curvature = Chern number

1

2π

∫
T2

d2θ κ(θ) is an integer

To conclude that Hall conductance is quantized, it hence suffices
to show that κ(φ) is constant in φ, as L→∞:

‘To remove averaging assumption’

This is what I will mainly explain.



Result and comments

Theorem: κ(φ) constant

1 sup |κ(φ)− κ(φ′)| = O(L−∞) hence d(κ(φ), 2πZ) = O(L−∞).

2 If TL limit exists: limL Tr(PLA) exists for any local A, then
(1/2π) limL κL(φ) exists and is integer.

Setup: Spin systems, finite rangle, locally conserved charges
Qx with integer spectrum. ⇒ straightforward definition of
fluxes, potentials. . . .

Lattice fermions also OK by forthcoming work of
Nachtergaele-Sims-Young.

Gap assumption for weakly interacting fermions: proof by
fermionic cluster expansion (Salmhofer, in preparation)

Gap assumption in general. Perhaps intuitive argument that
gap at φ = 0, then gap at φ 6= 0.



Preliminaries on locality

1 Local Generator of evolution in θ (Bruno’s talk)

∂i P̃ = −i[K̃i , P̃], i = 1, 2

K̃i can be chosen as (quasi-)local Hamiltonians, unlike
i[P, ∂iP]

2 Local perturbations perturb locally K̃i acts only where the
perturbing field a is nonzero.

3 Recast κ using P̃K̃i P̃ = 0

κ = iTr P̃[∂1P̃, ∂2P̃] = Tr P̃G , with G̃ = i[K̃1, K̃2]



Same applies for generators Ki implementing the twist-antiwists.

There are local Hamiltonians Ki

∂iP = −i[Ki ,P], i = 1, 2

Now i[K1,K2] = G = Gtt + Gta + Gat + Gaa

But, twist-antitwist are pure gauge ⇒ each of the quantities
A = P,Ki ,G is given by

A(φ) = VθA(0)V ∗θ , for some gauge θ = θ(φ)

Since Vθ acts locally and G is sum of distant terms, also

Gtt(φ) = VθGtt(0)V ∗θ (up to O(L−∞))



Locally, Twist = Twist-Antitwist

Generators Ki , K̃i depend locally on the H, H̃, so

Ki = K̃i in the pink box

Generators Ki , K̃i generate the P, P̃, so also

Tr(PO) = Tr(P̃O) for O in the pink box

Now we are done:

κ = Tr P̃G̃ = Tr P̃Gtt = TrPGtt

Since PGtt depends on φ unitarily, its trace is φ-independent,
hence so is κ
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Comment on gap assumption

By unitary gauge trafo “spread vector potentials over full volume

In this way, for any flux φ, H̃(φ)− H is Hamiltonian with local
small terms ⇒ Stability of gap?

Anyhow, Hastings-Michalakis need gap assumption only for small
φ. More reason for this to hold than for any φ?
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