# Quantization of Hall conductance in gapped systems

## Wojciech De Roeck (Leuven) with Sven Bachmann, Alex Bols and Martin Fraas

24th August 2017

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

# Motivation: Two recent papers

Hastings and Michalakis (2015)

- Spin systems on discrete 2-torus
- Assume unique ground state with spectral gap
- Conserved local 'charge'  $Q_x 
  ightarrow$  current and potential
- Result: Hall conductance is  $(2\pi \times)$  integer.
- $\bullet\,$  Tools: quasi-adiabatic flow  $\to\,$  Talk of Bruno
- Hard to understand

Giuliani, Mastropietro, Porta (2016)

- Weakly interacting fermions on discrete 2-torus
- Assume only that non-interacting system has spectral gap.
- Result: Hall conductance is  $(2\pi \times)$  integer.
- Tool: Fermionic PT and Ward identities

Our goal: Simple rendering of (weakened) H-M, no original result

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

### Interacting fermions on 2-torus

• Discrete torus  $(\mathbb{Z}/L\mathbb{Z})^2$  with sites x and linear size L.



with  $\{c_x, c_y^*\} = \delta_{x,y}$  and  $n_x = c_x^* c_x$ .

- Set local charge  $Q_x \equiv n_x$ .
- Unitary gauge transf.  $V_{\theta} = \bigotimes_{x} e^{-i\theta(x)Q_{x}}$  for functions  $\theta(x)$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

## Vector potential a

• Gauge transformation  $V_{ heta}$  affects hopping

$$V_{\theta}HV_{\theta}^{*} = D + \sum_{x,i} (\alpha_{i}c_{x}^{*}c_{x+e_{i}}e^{i\nabla_{i}\theta(x)} + hc)$$

with vector potential  $a_i(x) = \nabla_i \theta(x) = \theta(x + e_i) - \theta(x)$ .

• For general fields  $\mathbf{a} = \mathbf{a}(x)$ 

$$H^{\mathbf{a}} \equiv D + + \sum_{x,i} (\alpha_i c_x^* c_{x+e_i} \mathrm{e}^{\mathrm{i}a_i(x)} + hc)$$

expect that  $H^{\mathbf{a}} \neq V_{\theta} H V_{\theta}^{*}$  for some gauge  $\theta$ .

• We need just small class of **a**: no **B** piercing the lattice, only thread fluxes through torus.

We define Twist-antitwist Hamiltonians  $H(\phi_1, \phi_2)$ : Consider **a** inducing a twist  $\phi_1$  and antitwist  $-\phi_1$ .



Call resulting Hamiltonian  $H(\phi_1) \equiv H^a = V(\theta)HV^*(\theta)$ . Analagously, put also T-AT in 2-direction  $\Rightarrow H(\phi_1, \phi_2)$  We define Twist Hamiltonians  $\tilde{H}(\phi_1, \phi_2)$ : Consider **a** inducing a twist flux  $\phi_1$ .



Not pure gauge! Net flux $\phi_1$  inserted

Call resulting Hamiltonian  $\tilde{H}(\phi_1) = H^a$ . Analagously, put also T in 2-direction  $\Rightarrow \tilde{H}(\phi_1, \phi_2)$ 

(日) (四) (王) (王) (王)

æ

We define Twist Hamiltonians  $\tilde{H}(\phi_1, \phi_2)$ : Consider **a** inducing a twist flux  $\phi_1$ .



Not pure gauge! Net flux $\phi_1$  inserted

Call resulting Hamiltonian  $\tilde{H}(\phi_1) = H^a$ . Analagously, put also T in 2-direction  $\Rightarrow \tilde{H}(\phi_1, \phi_2)$ 

《曰》 《聞》 《臣》 《臣》 三臣

- No obvious spectral relation between the  $\tilde{H}(\phi_1, \phi_2)$ .
- We write  $H(\phi), \tilde{H}(\phi)$  with  $\phi = (\phi_1, \phi_2)$ .
- Fundamental objects will be  $\tilde{H}(\phi)$  rather than  $H(\phi)$ .

# Torus $\mathbb{T}^2$ of fluxes $\phi = (\phi_1, \phi_2)$

Assumption: Family  $\tilde{H}(\phi)$  has uniform gap (in *L* and in  $\phi$ ). Let  $\tilde{P}(\theta)$  be the (rank-1) GS projection of  $\tilde{H}(\theta)$ .

#### Fact 1: Hall Conductance = Berry curvature

Hall conductance of  $ilde{H} = ilde{H}(\phi)$  is given by  $(\lim_{L \to \infty} (\cdot) \text{ of })$ 

$$\kappa(\theta) = \mathrm{i} \operatorname{Tr} \tilde{P}[\partial_1 \tilde{P}, \partial_2 \tilde{P}], \qquad \partial_i = \partial_{\phi_i}$$

Fact 2: Integral of Berry curvature = Chern number

$$rac{1}{2\pi}\int_{\mathbb{T}^2} d^2 \theta \,\kappa( heta)$$
 is an integer

To conclude that Hall conductance is quantized, it hence suffices to show that  $\kappa(\phi)$  is constant in  $\phi$ , as  $L \to \infty$ :

'To remove averaging assumption'

This is what I will mainly explain.

#### Theorem: $\kappa(\phi)$ constant

- sup  $|\kappa(\phi) \kappa(\phi')| = \mathcal{O}(L^{-\infty})$  hence  $d(\kappa(\phi), 2\pi\mathbb{Z}) = \mathcal{O}(L^{-\infty})$ .
- If TL limit exists:  $\lim_{L} \operatorname{Tr}(P_{L}A)$  exists for any local A, then  $(1/2\pi) \lim_{L} \kappa_{L}(\phi)$  exists and is integer.
  - Setup: Spin systems, finite rangle, locally conserved charges  $Q_x$  with integer spectrum.  $\Rightarrow$  straightforward definition of fluxes, potentials....
  - Lattice fermions also OK by forthcoming work of Nachtergaele-Sims-Young.
  - Gap assumption for weakly interacting fermions: proof by fermionic cluster expansion (Salmhofer, in preparation)
  - Gap assumption in general. Perhaps intuitive argument that gap at  $\phi = 0$ , then gap at  $\phi \neq 0$ .

# Preliminaries on locality

**(**) Local Generator of evolution in  $\theta$  (Bruno's talk)

$$\partial_i \tilde{P} = -\mathrm{i}[\tilde{K}_i, \tilde{P}], \qquad i = 1, 2$$

 $\tilde{K}_i$  can be chosen as *(quasi-)local Hamiltonians*, unlike  $i[P, \partial_i P]$ 

2 Local perturbations perturb locally  $\tilde{K}_i$  acts only where the perturbing field **a** is nonzero.

• Recast 
$$\kappa$$
 using  $\tilde{P}\tilde{K}_i\tilde{P}=0$ 

$$\kappa = \mathrm{i} \operatorname{Tr} \tilde{P}[\partial_1 \tilde{P}, \partial_2 \tilde{P}] = \operatorname{Tr} \tilde{P}G, \qquad \text{with } \tilde{G} = \mathrm{i} [\tilde{K}_1, \tilde{K}_2]$$



(日) (部) (目) (目)

Same applies for generators  $K_i$  implementing the twist-antiwists.

• There are local Hamiltonians K<sub>i</sub>

$$\partial_i P = -\mathrm{i}[K_i, P], \qquad i = 1, 2$$

• Now  $i[K_1, K_2] = G = G_{tt} + G_{ta} + G_{at} + G_{aa}$ 



• But, twist-antitwist are pure gauge  $\Rightarrow$  each of the quantities  $A = P, K_i, G$  is given by

 $A(\phi) = V_{ heta}A(0)V_{ heta}^*,$  for some gauge  $heta = heta(\phi)$ 

Since  $V_{\theta}$  acts locally and G is sum of distant terms, also

 $G_{tt}(\phi) = V_{\theta}G_{tt}(0)V_{\theta}^{*} \qquad (\text{up to } \mathcal{O}(L^{-\infty}))$ 

# Locally, Twist = Twist-Antitwist

Generators  $K_i, \tilde{K}_i$  depend locally on the  $H, \tilde{H}$ , so

 $K_i = \tilde{K}_i$  in the pink box



Generators  $K_i, \tilde{K}_i$  generate the  $P, \tilde{P}$ , so also

 $Tr(PO) = Tr(\tilde{P}O)$  for O in the pink box

æ

# Locally, Twist = Twist-Antitwist

Generators  $K_i, \tilde{K}_i$  depend locally on the  $H, \tilde{H}$ , so

 $K_i = \tilde{K}_i$  in the pink box



Generators  $K_i, \tilde{K}_i$  generate the  $P, \tilde{P}$ , so also

 $Tr(PO) = Tr(\tilde{P}O)$  for O in the pink box

Now we are done:

$$\kappa = \operatorname{Tr} \tilde{P}\tilde{G} = \operatorname{Tr} \tilde{P}G_{\mathrm{tt}} = \operatorname{Tr} PG_{\mathrm{tt}}$$

Since  $PG_{tt}$  depends on  $\phi$  unitarily, its trace is  $\phi$ -independent, hence so is  $\kappa$ 

# Comment on gap assumption

By unitary gauge trafo "spread vector potentials over full volume



In this way, for any flux  $\phi$ ,  $\tilde{H}(\phi) - H$  is Hamiltonian with local small terms  $\Rightarrow$  Stability of gap?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

# Comment on gap assumption

By unitary gauge trafo "spread vector potentials over full volume



In this way, for any flux  $\phi$ ,  $\tilde{H}(\phi) - H$  is Hamiltonian with local small terms  $\Rightarrow$  Stability of gap?

Anyhow, Hastings-Michalakis need gap assumption only for *small*  $\phi$ . More reason for this to hold than for any  $\phi$ ?