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Motivation: Two recent papers

Hastings and Michalakis (2015)
@ Spin systems on discrete 2-torus
@ Assume unique ground state with spectral gap
@ Conserved local 'charge’ Q« — current and potential
@ Result: Hall conductance is (27 x) integer.
@ Tools: quasi-adiabatic flow — Talk of Bruno
@ Hard to understand
Giuliani, Mastropietro, Porta (2016)
@ Weakly interacting fermions on discrete 2-torus
@ Assume only that non-interacting system has spectral gap.
@ Result: Hall conductance is (27x) integer.

@ Tool: Fermionic PT and Ward identities

Our goal: Simple rendering of (weakened) H-M, no original result



Interacting fermions on 2-torus

o Discrete torus (Z/LZ)? with sites x and linear size L.

. . . el L J L J L J
@ Typical Hamiltonian

H= Z w)ny + Z WiNy Nyt + Z QCy Cxte; + hC)

XI XI

=:D (diagonal in ny)

. * %k
with {CX,Cy} = 0, and ny = cjcy.
@ Set local charge Qx = ny.

o Unitary gauge transf. Vj = ®,e~ /()@ for functions 6(x).



Vector potential a

@ Gauge transformation Vj affects hopping

VGHVH* =D+ Z(O‘icicx—i—e,-eivie(x) + hC)
with vector potential a;(x) = V;0(x) = 0(x + &) — 0(x).

@ For general fields a = a(x)

H*=D++ Z(a;cjcx+eieia’(x) + hc)

X, i

expect that H?#VyHV,S for some gauge 6.

@ We need just small class of a: no B piercing the lattice, only
thread fluxes through torus.



We define Twist-antitwist Hamiltonians H(¢1, ¢2):
Consider a inducing a twist ¢; and antitwist —¢j.

Pure gauge!
No net flux inserted
Or, flux inserted and

extracted
(==> Twist-antitwist)
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Call resulting Hamiltonian H(¢1) = H® = V(0)HV*(0).
Analagously, put also T-AT in 2-direction = H(¢1, $2)



We define Twist Hamiltonians H(¢1, ¢2):
Consider a inducing a twist flux ¢;.

s
O

= 222222222

Not pure gauge! Net ﬂUngl inserted

Call resulting Hamiltonian H(¢$1) = H2. Analagously, put also T in
2-direction = H(¢1, ¢2)



We define Twist Hamiltonians H(¢1, ¢2):
Consider a inducing a twist flux ¢;.

s
O

= 222222222

Not pure gauge! Net ﬂUngl inserted

Call resulting Hamiltonian H(¢$1) = H2. Analagously, put also T in
2-direction = H(¢1, ¢2)

o No obvious spectral relation between the H(¢1, $2).

o We write H(¢), H(¢) with ¢ = (é1, $2).
o Fundamental objects will be H(¢) rather than H().



Torus T? of fluxes ¢ = (¢1, P2)

Assumption: Family H() has uniform gap (in L and in ¢). Let
P(0) be the (rank-1) GS projection of H(6).

Fact 1: Hall Conductance = Berry curvature

Hall conductance of H = H(¢) is given by (lim; o (-) of )

k(0) =1iTr P[o1P,P],  0; = 0y,

| A

Fact 2: Integral of Berry curvature = Chern number

1
— | d?0 k() is an integer
2w T2

To conclude that Hall conductance is quantized, it hence suffices
to show that x(¢) is constant in ¢, as L — oo:

“To remove averaging assumption’

This is what | will mainly explain.



Result and comments

Theorem: k(¢) constant

0 sup[(6) — n(¢)| = O(L~) hence d(x(¢),2nZ) = O(L~).
@ If TL limit exists: lim; Tr(PLA) exists for any local A, then
(1/27) lim; k(@) exists and is integer.

@ Setup: Spin systems, finite rangle, locally conserved charges
@y with integer spectrum. = straightforward definition of
fluxes, potentials. ...

@ Lattice fermions also OK by forthcoming work of
Nachtergaele-Sims-Young.

o Gap assumption for weakly interacting fermions: proof by
fermionic cluster expansion (Salmhofer, in preparation)

@ Gap assumption in general. Perhaps intuitive argument that
gap at ¢ = 0, then gap at ¢ # 0.



Preliminaries on locality

@ Local Generator of evolution in 6 (Bruno's talk)
0P =—ilKi,P], i=1,2
K; can be chosen as (quasi-)local Hamiltonians, unlike
i[P, 0;P]

@ Local perturbations perturb locally K; acts only where the
perturbing field a is nonzero.

© Recast k using PK:P =0
k=1iTrP[01P,0P] = Tr PG,  with G = i[Ky, K2]

E
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Same applies for generators K; implementing the twist-antiwists.
@ There are local Hamiltonians K;

oiP = —i[K,-, P], i=1,2
e Now i[K1, Kz] = G = Gyt + Gia + Gat + Gaa

.Gta .Gaa
Ko
.Gtt .Gat
L/2 L/2

e But, twist-antitwist are pure gauge = each of the quantities
A= P, K;, G is given by

A(p) = VhA(0)Vy, for some gauge 6 = 6(¢)
Since Vjy acts locally and G is sum of distant terms, also

Git(p) = VoG (0) Vy (up to O(L™°))



Locally, Twist = Twist-Antitwist

Generators Kj, K; depend locally on the H, H, so

K = R,- in the pink box

Generators K;, K; generate the P, P, so also

Tr(PO) = Tr(PO) for O in the pink box



Locally, Twist = Twist-Antitwist

Generators Kj, K; depend locally on the H, H, so

K = R,- in the pink box

A ~

Generators K;, K; generate the P, P, so also
Tr(PO) = Tr(PO) for O in the pink box
Now we are done:
k=TrPG="Tr FN’Gtt = Tr PGy

Since PGy depends on ¢ unitarily, its trace is ¢-independent,
hence so is k E]



Comment on gap assumption

By unitary gauge trafo “spread vector potentials over full volume

— — — —
— — — —
B — — — —
B — — — —
N
N sup |a(z)| = |¢| sup |a(x)| ~ [¢[/L
T xT
supp of a

a has full supp

- l ‘

In this way, for any flux ¢, H(¢) — H is Hamiltonian with local
small terms = Stability of gap?
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In this way, for any flux ¢, H(¢) — H is Hamiltonian with local
small terms = Stability of gap?

Anyhow, Hastings-Michalakis need gap assumption only for small
¢. More reason for this to hold than for any ¢?



