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The dilute Bose gas in 3d

We consider N bosons enclosed in a cubic box A of side length L, described by
N 3
Hy= =308 + Yicicien V(i — %), pa* <1

Long-standing goals: for N — oo and p = N/|A| fixed
> prove the occurrence of condensation
> ground state energy and the low lying excitation spectrum

Expected: Bogoliubov theory, Lee-Huang-Yang formula
lim yo oo E—,\’}’ = 4mpa [1 + %(p:f)l/z + o(pa3)1/2]

p=const.

Results: condensation: hard-core bosons at half filling [Dyson-Lieb-Simon, ‘78]
ground state energy at leading order [Dyson‘57], [Lieb-Yngvason, 98]
LHY for high density regime [Giuliani-Seiringer ‘09]
2" order upper bound [Erdés-Schlein-Yau,'08], [Yau-Yin, ‘13]
RG [Benfatto ‘94], [Balaban-Feldman-Knérrer-Trubowitz ‘08-'16]

Open: condensation? 2" order in other regimes? spectrum?
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Introduction & Main Results

Strategy of the proof

Mean field regime and Bogoliubov theory

N bosons in A

Bose gases and Bogoliubov theory
The Gross-Pitaevsl
Results

[0; 1]*3, periodic boundary conditions, mean field regime
= % ot
peEN*

Z V(r)a aprdgdpdgr A. = 277°
p q,reN*
Bogoliubov approximation has been proved to be valid [Seiringer ‘11]
> Condensation with rate of convergence: 1 — (0,7 ¢0) < CN ™!
> Ground state energy at second order
EV = % —3 Zpe/\j [p* + &V (p)

> Bogoliubov spectrum of elementary excitations

|pl* + 2x|p2V(p)] + o(1)
Spens Mo/ 1PI + 26p2V(p) + 0(1), np €N

[Derezinski-Napiorkovski '14], [Pizzo ‘15]

Further results: [Grech-Seiringer '13], [Lewin-Nam-Serfaty-Solovey ‘14]
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The Gross-Pitaevskii regime

Strong and short range interactions among atoms in BEC experiments can be
modelled by the Gross-Pitaevskii potential:

N

Hi® =Y (= By + Vea(x)) + > NV (N(xi — x)))

i=1 i<j

> If V(x) has scattering length ao,
then NV?V/(Nx) has scattering length 2 = a9/
» dilute regime pa’ = N 2

» correlations among the particles play a crucial role
to understand both statical and dynamical properties of the system

[m] [ = =
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Gross-Pitaevskii regime: ground state properties

N bosons in A = [0; 1]*3, periodic boundary conditions

* 1 P * *
HE = 3" pPaja, + T > V(r/N)apray-,apaq

pEN* p,q,rEN*

From [Lieb-Seiringer-Yngvason, ‘00] the ground state energy of Hy" at leading

order is
Eny = 4magN + O(N)

From [Lieb-Seiringer, ‘02] the one particle reduced density fy,(\,l) associated to

the ground state of HS® is such that in trace norm

(1)
W oo |00) (ol

where po(x) =1 for all x € A.
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Gross-Pitaevskii regime: ground state properties

N bosons in A = [0; 1]*3, periodic boundary conditions

* 1 P * *
HE = 3" pPaja, + T > V(r/N)apray-,apaq

pEN* p,q,rEN*

From [Lieb-Seiringer-Yngvason, ‘00] the ground state energy of Hy" at leading

order is
En = 4magN + o(N) 8rap = [dx f(x)V(x)

From [Lieb-Seiringer, ‘02] the one particle reduced density fy,(\,l) associated to

the ground state of HS® is such that in trace norm

(1)
W oo |00) (ol

where po(x) =1 for all x € A.
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Gross-Pitaevskii regime: ground state properties

N bosons in A = [0; 1]*3, periodic boundary conditions

* 1 P * *
HE = 3" pPaja, + T > V(r/N)apray-,apaq

pEN* p,q,rEN*

From [Lieb-Seiringer-Yngvason, ‘00] the ground state energy of Hy" at leading

order is
En = 4maoN + o(N) Next order?
Low energy states?

From [Lieb-Seiringer, ‘02] the one particle reduced density fy,(\,l) associated to

the ground state of HS® is such that in trace norm

’Yl(vl) _/V_—) [00) (ol Strong BEC bounds?
— 00

where po(x) =1 for all x € A.
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Condensation in the Gross-Pitaevskii regime

N bosons in A = [0; 1]*3, periodic boundary conditions

* R P * *
HE = 3" pPaja, + o > V(r/N)apy,a5-,apag

pEN* p,q,reN*

[Boccato-Brennecke-C.-Schlein ‘17] Let V € L3(R®) be non-negative, spherically
symmetric and compactly supported and suppose x > 0 to be small enough. Let
¥y € L2(AV) be a sequence with ||1n|| =1 and

<1/JN, HN'¢N> < 4magN + K

for some K > 0. Let 'y,(\,l) the one-particle reduced density associated with ¥y.
Then there exists C > 0 such that

N(L = (%0, '%0)) < C(K +1)
with po(x) =1 for all x € A.

Remark. The theorem applies to the g.s. & all states with excitation energy < N
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Spectral properties for singular potentials

Hﬁ_ Z P ap pap + N Z (r/N )ap+r g—rdpdq B € (0;1)

pEN* p,q,reN*
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Spectral properties for singular potentials
Hy= > PPajapt o > V(o/N")ah a5 apag B (01)
pEN* p,q,reN*
[Boccato-Brennecke-C.-Schlein ‘17] Let 0 < 8 < 1 and suppose k > 0 small enough.

The ground state energy of H,(V*B) is

B _ 2 % = K2 \72(0)
Ep = 4may(N —1) — 5 > PP+ KV(0) = \/Ip|* + 26p?V(0) — g | o
pe/\f; P
where A% = 2773\ {0} and

B
8may,

with mg € N the largest integer with mg < 1/(1 — 8) + min(1/2,3/(1 — 5)).
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Spectral properties for singular potentials

Hy= > PPajapt o > V(o/N")ah a5 apag B (01)

peEN* P,q,rEN*

[Boccato-Brennecke-C.-Schlein ‘17] Let 0 < 8 < 1 and suppose k > 0 small enough.

The ground state energy of H,(V*B) is

B _ 2 % = K2 \72(0)
Ep = 4may(N —1) — 5 > PP+ KV(0) = \/Ip|* + 26p?V(0) — g | o
pe/\f; P
where A% = 2773\ {0} and

=kV
8ray= kV/(0) — 2N >
pENT

K2V2(p/NF)
2p?

B (_qymem U m—1 G _ p. B .
+Z( 1) Z V(pléNB)[H V((ps 2PJ+1)/N ]V(pm/Nﬁ)

@)™ e P j=1 i

with mg € N the largest integer with mg < 1/(1 — 8) + min(1/2,3/(1 — 5)).

m=2
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Spectral properties for singular potentials

Hy= > PPajapt o > V(o/N")ah a5 apag B (01)

peEN* P,q,rEN*
[Boccato-Brennecke-C.-Schlein ‘17] Let 0 < 8 < 1 and suppose k > 0 small enough.

The ground state energy of H,(V*B) is

Ep = 4may(N —1) — 5 > {pz + kV(0) — \/|p[* + 2kp2V(0) — %} +o(1)

peAi
where A% = 2773\ {0} and 87r5ﬁ —
2172 B - Iy N
grafi= kV(0) — = SO EVB/NT)  LG0) — 3 wV(p/N) ()
2N A 2p? e
pENT PENL

B (_qymem U m—1 G _ p. B .
+Z( 1) Z V(pléNB)[H V((ps 2PJ+1)/N ]V(pm/Nﬁ)

@)™ e P j=1 i

with mg € N the largest integer with mg < 1/(1 — 8) + min(1/2,3/(1 — 5)).

m=2
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Spectral properties for singular potentials

Hy= > PPajapt o > V(o/N")ah a5 apag B (01)

peEN* P,q,rEN*
[Boccato-Brennecke-C.-Schlein ‘17] Let 0 < 8 < 1 and suppose k > 0 small enough.

The ground state energy of H,(f) is

Ep = 4may(N —1) — 5 > {pz + kV(0) — \/|p[* + 2kp2V(0) — %} +o(1)

peAi
where A% = 2773\ {0} and 87r5ﬁ —
2172 B - Iy N
grafi= kV(0) — = SO EVB/NT)  LG0) — 3 wV(p/N) ()
2N A 2p? e
pENT PENL

B (_qymem U m—1 G _ p. B .
+Z( 1) Z V(PléNB)[H V((ps 2PJ+1)/N ]V(pm/Nﬁ)

@)™ e P j=1 i

with mg € N the largest integer with mg < 1/(1 — 8) + min(1/2,3/(1 — 5)).

Moreover, the spectrum of H,(Vﬁ) - Eﬁ below ( consists of

m=2

ZpeAj np\/1pI* + 26p2V(0) + o(1), with n, € N
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Orthogonal excitations [Lewin-Nam-Serfaty-Solovej ‘12]

* R 9 * *
HE = Z plajap + T Z V(r/N%)a},,a5_,apaq B €[0,1]
pPEN* P,q,reN*
For n € L2(AV) and o € L3(A)
QN-1

wNzaow?N+a1®s<po + ...+ an-1Qs v+ an,

where o € L*(N)®¥ and o; L ¢o.
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E
Orthogonal excitations [Lewin-Nam-Serfaty-Solovej ‘12]

Excitations and Fock space
Ground state el

HE =

peEN*

n Hamiltonian and condensation

nd spectrum

p ayap + 2N Z V(r/N%)a},,a5_ apag
p,q,reN*
For n € L2(AV) and o € L3(A)

YN = a0y

Belo,1]

+061®s§0

SN—1
where a; € L2(A)® and o L o

+..

+an—1 ®s wo + an,
Unitary map Uy, : L2(AY) — .7'1% = EBN L3 oo (A"

1/’N — Uﬂl’owl\l - {aO, Qi,

)

...,an,0,0
The map U, factors out the condensate described by the one particle orbital
o and return all fluctuations that are orthogonal to it
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Orthogonal excitations [Lewin-Nam-Serfaty-Solovej ‘12]

HE = Z prasa, + 2N Z V(r/N? )apirag—rapaq B €[0,1]

pEN* p,q,reN*

For n € L2(AV) and o € L3(A)

ON- 1+...+05N—1®s<p0+aN7

P = a0 pf" + a1 ®s 0
where a; € L*(A)® and o L .
Unitary map U, : L2(AV) — .7-1% =@, 13, (N
Yy — Upoon = {0, a1, ..., an,0,0,...}

The map U, factors out the condensate described by the one particle orbital
o and return all fluctuations that are orthogonal to it.

In the homogeneous case wo(x) = 1 for all x € A, hence U : L2(R®V) — F="
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Orthogonal excitations [Lewin-Nam-Serfaty-Solovej ‘12]

2 _* *
Hy= Y Paa+o0 > V(r/N)ah e a3 Beo,1]
pEN* p,q,reN*
For n € L2(AV) and o € L3(A)

ON- 1+...+05N—1®s<p0+aN7

Y = a0 p§N + a1 ®s f
where a; € L*(A)® and o L .
Unitary map U, : L2(AV) — .7-1% =@, 13, (N Ny = Z apap
peN:
Yy — Upoon = {0, a1, ..., an,0,0,...} |
The map U, factors out the condensate described by the one particle orbital
o and return all fluctuations that are orthogonal to it.

In the homogeneous case wo(x) = 1 for all x € A, hence U : L2(R®V) — F="
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d condensation

ctrum

The excitation Hamiltonian

Conjugation with U remind (555, U*
c-number substitution in . N . . « /TN
Bogoliubov approximation Uapaq U apdq Ua,a U =2, S

=N-N; Uaa, U =+/N—-N;a,

Spectral properties of Bose gases interacting through singular potentials
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The excitation Hamiltonian

Conjugation with U remind (555, U*
c-number substitution in . N . . N © NN
Bogoliubov approximation Uapag U" = 2,2 UaoU” =32 R

We define £, = UH U - 7= 72V

N-1 o KV(0 .
Lh = W,ﬁ\/(o)(/\/ ~ Ny 2/5/ )/\/'+(N — Ny + pEEA* p’asa,
+

+ 3 KkV(p/N) [byb, — %a;ap]—l—g > V(p/N®) [byb=, + byb_p]

PENT pPENT

+LN Z V(P/NB) (D513 paq + 2ga—pbpq]

P,qENY :p+q#0

K R o
"o Z V(r/N%)aps agapaqsr

P,QENY ,rEN*ir#—p,—q

o (w1 =

Spectral properties of Bose gases interacting through singular potentials
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The excitation Hamiltonian

Conjugation with U remind Uagan U =N~ N. Uaja, U =/N—N,a,

c-number substitution in . . . . N . -
Bogoliubov approximation Uapaq U" =352 Uapa U =2, VN =N,

We define £, — UH U - 7" — 7=

N-1 o xV(0) .
E%: SN HV(O)(N—N+)+WN+(N—N+)+ Z pzapap
pPENT
'Y 5 * K 'Y Kk
+ KV(P/NB) [bpbP - %apap]"'g Z V(p/Nﬁ) [bpb—P + be*P]
PENT pPENT

K
t—= Z V(P/NB) (D513 paq + 2ga—pbpq]
P,qENY :p+q#0

K R o
"o Z V(r/N%)aps agapaqsr

P,QENY ,rEN*ir#—p,—q

Remark. In the mean-field regime the expected value of cubic and quartic terms
vanishes, as N — co when we consider low energy states.
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and
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Ground

Correlation structure Hy =Y pen PPa3ap + 25 5 p g rens V(1/NP)a),  a%_ apaq

For 3 > 0 some of the quartic terms in Lh=u Hﬁ U™ are now important in
the limit N — oo

Not surprising: the difference between the energy of a factorized state and the
real ground state energy is of the order N

(9,£5,0) = (U, MU Q) = (@§ V") = =090 5 4ty

o =
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Correlation structure Hy =Y pen PPa3ap + 25 5 p g rens V(1/NP)a),  a%_ apaq

For 3 > 0 some of the quartic terms in £ = U Hﬁ, U™ are now important in
the limit N — oo

Not surprising: the difference between the energy of a factorized state and the
real ground state energy is of the order N°

(Q,£5Q) = (UQ, HAU Q) = (p@NHEpEN) = W=DVO) 5, 4750 N
States with small energy in the Gross-Pitaevskii limit and in the intermediate

regimes 0 < 8 < 1 are characterized by a correlation structure, which we model
by the solution of the Neumann problem

( — A+ ke V(Nﬁx)) fruo(x) = Aw.efwe(x)
on the ball |x| < ¢ < 1/2, with

fue(x) =1 and O fve(x) =0 for |x| = £
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Generalized Bogoliubov transformation

Inspired by the dynamics [Brennecke-Schlein ‘17] we describe correlations in }‘fN

using
1 . gk <N <N
T =exp [ 5 Z np(bpbfp - be—P)] IR = IR
pEAi
. — K
with np=—N(1—fne)(p) (ﬁp ~ ? > z l32|77p|2 = HQN'B)

pGAi

and modified creation and annihilation operators

e« [N=N N-N
i

Remark. We can interpret b, as an operator exciting a particle from the conden-

sate to its orthogonal complement while b, annihilates an excitation back into
the condensate: G *

U'byU=a,— U b,U=—

P Plqu P qu

ap
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Bounds on the modified excitation Hamiltonian

where

Define Gy = T " UHyU'T 7" — 7", then

Gn = dmaoN + Hy + En
Hy =D Paa + 5y

PENT

N
p,gENT

V(r/N)api agapagsr
reN*:r#—p—q
and &y such that for every 6 > 0, there exists C > 0 such that

+En < OHn + Ch(N +1)
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Bounds on the modified excitation Hamiltonian

Ground

Define Gy = T UHyU'T - F=" — 7= then
where

Gn

=A4ragN + Hy + En
- X Raiar +
E/\*

2N

>

p,qEN
ren*

(r/N)apiragapag:r
T
r#£—p—gq
and &y such that for every 6 > 0, there exists C > 0 such that
Hence, for sufficiently small k > 0

+Ey < 0Hn + Cr(N +1)

sHy — C < Gy —dmagN < C(HN + 1)
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Bounds on the modified excitation Hamiltonian

Ground

Define Gy = T UHyU'T - F=" — 7= then
where

Gn
(27T)2N+

=A4ragN + Hy + En
- X Raiar +
E/\*

2N

>

p,qEN
ren*

(r/N)apiragapag:r
T
r#£—p—gq
and &y such that for every 6 > 0, there exists C > 0 such that
Hence, for sufficiently small k > 0

+Ey < 0Hn + Cr(N +1)

cN, —C<IHy - C< Gy —4dmaN < C(Hny+1)
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Bounds on the modified excitation Hamiltonian

an and condensation
and spectrum

Define Gy = T UHyU'T - F=" — 7= then
where

Gn
(27r)2./\/

=A4ragN + Hy + En
- X Raiar +
E/\*

2N

>

p,gEN’
ren*®

(r/N)ap:ragapag:r
T
r#—p—q
and &y such that for every 6 > 0, there exists C > 0 such that
Hence, for sufficiently small k > 0

+Ey < 0Hn + Cr(N +1)

cN, —C< 1'HN—C< Gn — 4magN <C(HN+ )

Spectral properties of Bose gases interacting through singular potentials

Lower bound: states with small excitation energy have a small expectation for
the N operator and therefore they exhibit complete condensation
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Proof of condensation

Perspectives

Consider 1y € L2(AY) :

d condensation

Gy = T*UHyU*T
<¢N, HN1/1N> < 4magN + K

cN, = C<iHn—C< Gy—4maN < C(Hn+1)

Spectral properties of Bose gases interacting through singular potentials
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Strategy of the proof Excitation Hamiltonian and condensation
Perspectives Ground s

Proof of condensation Gy = T*UHyU*T

Consider ¢y € L3(AV): (¢, Hypw) < draoN + K

Let &y = T* Uy the excitation vector associated to ¢y

(&n, (G — AmaoN) En)

cN, = C<iHn—C< Gy—4maN < C(Hn+1)

Spectral properties of Bose gases interacting through singular potentials S. Cenatiempo Quantissima Il - August 21, 2017



Introduction & Main Results ani
Strategy of the proof Excitation Hamiltonian and condensation
Perspectives Ground s

Proof of condensation Gy = T*UHyU*T

Consider ¢y € L3(AV): (¢, Hypw) < draoN + K

Let &y = T* Uy the excitation vector associated to ¢y

(&, (Gn — 4maoN) én) & (o, (Hy — 4maoN) oon) Tk (%)

cN, = C<iHn—C< Gy—4maN < C(Hn+1)
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Proof of condensation

Perspectives

Excitations and

Excitation Hamiltonian a

a

Consider 1y € L2(AY) :

Ground state energy and spectrum

nd condensation

Gy = T*UHyU*T
<’¢N, HN1/)N> < 4mraN + K
Let &y = T* Uy the excitation vector associated to ¢y

(En, N — Cen) < (&n, (Gn — 4maoN) én) & (e, (Hy — 4maoN) oow) K (%)

CN+—C§%'HN—C§ Gy — 4magN < C(HN-I—l)
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Introduction & Main Results
Proof of condensation

Strategy of the proof

Excita
Perspectives

and a
Excitation Hamiltonian a
Ground state e

Consider 1y € L2(AY) :

nd condensation
and spectrum

On = T"UHNU*T
(¥n, Hyvn) < draoN + K
Let &y = T* Uy the excitation vector associated to

Since

0, 7 0

(6ny N — CEn) < (En, (Gn — dmao V) En) S (w, (Hi — dmaoN) gn) < K (%)
N(L =

)) =N — (¥n, agaotn) =Y (g, U NG Ut

Spectral properties of Bose gases interacting through singular potentials
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Strategy of the proof

Ex
Perspectives

Proof of condensation

Ground s

condensation

Gy = TH*UHNyU*T
Consider 1y € L2(AY)

<’¢N, HN1/)N> < 4mraN + K
Let &y = T* Uy the excitation vector associated to ¢y

<£N,CN+ — C§N> < <§N7 gn — 47T30N)§N> d: <1/JN,(H/\/ — 47TaoN 'l/}N> < K
Since

(*)
N(1 = (o, 7y w0)) =

and

(w35 20t) =Y (o, U N Ui

(o, U N Ut LT (0, T9A Tew) < Clew, (V- 1 1)én) < C(K+1)
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Introduction & Main Results E
Strategy of the proof condensation
Perspectives and spectrum

Proof of condensation Gy = T*UHyU*T

Consider ¢y € L3(AV): (¢, Hypw) < draoN + K

Let &y = T* Uy the excitation vector associated to ¢y
HP
(&n, e — Cén) < (&n, (G — 47T30N)§N> = <1/1N,( v AraoN) ) < K (%)

Since

N(L — (g0, 75 90)) = N — (vow, &g aotpw) *“E= (won, U* Ny Utbw)

and

(o, U N Ut LT (0, T9A Tew) < Clew, (V- 1 1)én) < C(K+1)

we obtain
N(1 = (0,7 0)) < C(K +1)

o (w1 =
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Introduction & Main Results

Strategy of the proof
Condensation in the ground state

Perspectives

Ground s

an
Excitation Hamiltonian and condensation

For any &y € ]-'fN we can consider ¢y = U* Téy € L2(R3V).
We pick Q = {1,0,0,....} € F=". Hence

Eg = <wgs, Hszg5> < <U* TQ, HyU” TQ>
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Excitati
Ground

For any &y € ]-'fN we can consider ¢y = U* Téy € L2(R3V).
We pick Q = {1,0,0,....} € F=". Hence

Eg = <wgs, Hszg5> < <U* TQ, HyU” TQ>

=(Q, (T"UHyU'T) Q)

9N
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Strategy of the proof
Condensation in the ground state

Perspectives

Excitations and

Excitation Hamiltonian a

a

Ground state energy and spectrum

nd condensation

For any &y € ffN we can consider ¢y = U* Téy € L2(R3V).
We pick Q = {1,0,0,....} € F=". Hence

Eg = <wgs, Hszg5> < <U* TQ, HyU” TQ>

=(Q, (T"UHyU'T) Q)

9N

<AraN + C{Q, (K+ Vv +1) Q)
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Excitation Hamiltonian a

a

Ground state energy and spectrum

nd condensation

For any &y € ffN we can consider ¢y = U* Téy € L2(R3V).
We pick Q = {1,0,0,....} € F=". Hence

Eg = <wgs, Hszg5> < <U* TQ, HyU” TQ>

=(Q, (T"UHyU'T) Q)

9N

<AraN + C{Q, (K+ Vv +1) Q)
<4masN + C
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Introduction & Main Results

Strategy of the proof
Condensation in the ground state

Perspectives

Excitations and Fock
Excitation Hamiltonian a
Ground state energy

condensation
spectrum

For any &y € ffN we can consider ¢y = U* Téy € L2(R3V).
We pick Q = {1,0,0,....} € F=". Hence

Eg = <1/;gs, HN¢gs> < <U* TQ, HyU” TQ>

= <Q, (T"UHNU™T) Q>
9N

<4magN + C{Q, (K+ Yy +1) Q)
S 47raoN + C
Hence the one-particle reduced density ~

(1)

N

associated with 1) is such that
1 c
1— (0,73 w0) < N
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Introduction & Main Results
Strategy of the proof

Exci
Perspectives
Let H,

Ground state energy and spectrum for 5 < 1
6 _

Excitation Hmuhumm

dc
2
2 pens P apap

Ground state energy and spectrum

densation

K
2N Zp,q,rEA*

Gy =

T*UHRU'T : FEV —

(r/N")ay,a;,apaq and consider
+

FeN
Then G, = dma N+ Hy + &y with +& < 6H, + Cr(N, + 1)
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Introduction & Main Results
Strategy of the proof

Perspectives

Ground state energy and spectrum for 5 < 1
8

nd

Let Hy = > ca- P 3pap

Ground state energy and spectrum

ndensation
K
2N Zp,q,rél\*

Gy =

T*UHRU'T : FEV —

(r/N")ay,a;,apaq and consider
<N
- Fy
Then G, = dma N+ Hy + &y with +& < 6H, + Cr(N, + 1)

(én, Nién) < C

v <
Step 1. Low energy states can be written as ¥y = U™ T¢y with
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Introduction & Main Results
Strategy of the proof

Perspectives

Ground state energy and spectrum for 5 < 1
8

and Fock
ation Hamiltonian

Let Hy = > ca- P 3pap

ar
Ground state energy and spec

ﬁ ZP,CIJE/\*

Gy =

T*UHRU'T : FEV —

(r/N")ap,,a;_,apaq and consider
+

FeN
Then G, = dma N+ Hy + &y with +& < 6H, + Cr(N, + 1)

N>
Step 1. Low energy states can be written as ¢y = U* T¢y with
(én, Nién) < C
Step 2. Excitations associated to low energy states also satisfy

(n, Wi +1)(Hy + 1)én) < C
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Introduction & Main Results
Strategy of the proof

Perspectives

Ground state energy and spectrum for 5 < 1

ns and Fock space

ation Hamiltonian and condensation
Ground state energy and spectrum

Gn=TUHyU'T: Fi" —

2 V% :
Let Hy = D pens P apap 35 >, o ens V(r/N®)a}, a5 ,apaq and consider
+

FN
Then Gj = 4nayN +Hpy + &y with +Ey < 5H) + Cr(Ny +1)

Step 1. Low energy states can be written as ¢y = U* T¢y with
<€N7N+£N> S C
Step 2. Excitations associated to low energy states also satisfy

(€, (N4 +1)(Hpy + 1)én) < C

Step 3. Using 2. one can show that for 8 < 1 all terms in Qﬁ that are not
constant or quadratic vanishes on low energy states as N — oo.
Gy =Ch+ Qb +65

with

Spectral properties of Bose gases interacting through singular potentials
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Introduction & Main Results xcitations and Fock space
Strategy of the proof Ex n Hamiltonian and condensation
Perspectives Ground state energy and spectrum

Ground state energy and spectrum for 5 < 1

Let Hy = D pen plaja, + £ > pareht V(r/NB)a;Ha;_,apaq and consider
Gy =T UHyU' T : F" — 75"
Then Gj = 4nayN +Hpy + &y with +Ey < 5H) + Cr(Ny +1)

Step 1. Low energy states can be written as ¢y = U* T¢y with
(&n, Nabn) < C
Step 2. Excitations associated to low energy states also satisfy
(n, Wi +1)(Hy + 1)én) < C

Step 3. Using 2. one can show that for 8 < 1 all terms in Qﬁ that are not
constant or quadratic vanishes on low energy states as N — oo.

Gy =Chn+Qn+0dy with +dy < CN™“(N} +1)(Hpy +1)

Step 4. Diagonalization of the quadratic operator Q’Z
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Introduction & Main Results

Strategy of the proof

Excitations and

Excitation Hamiltonia
Cy =

Perspectives
Quadratic Hamiltonian and diagonalization

and condensation
Ground state energy and spectrum
~
Z(N - 1)k V/(0)

We have G, = C,, + Q) + 0, where +d, < CN~“(N, +1)(H, +1),

pEAi

qEAi

+ 37 [P sinh, + KV (o/w)(sinhn, + sinhn, coshn) + 25 S V(=9 )]
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Introduction & Main Results
Strategy of the proof

E
Perspectives

n Hamiltol

X densation
Ground state energy and spectrum
Quadratic Hamiltonian and diagonalization

We have G, = C,, + Q) + 0, where +d, < CN~“(N, +1)(H, +1),
o= %(N —1)x7(0)

+ > [ sinhp + £ V(#/n7)(sinh, + sinhn, coshn,) + 55 > V((=9)/n# )npmg]
pENT qeENT

and Q) = Spens [Fobpbo + 5 Go( byb™, + bpbp)] with

Fp= p*(sinh’), 4 cosh’),) + HV(P/NB)(sinhnp + cosh,)?

Gp= 2p” sinh, coshry, + 1V (/w?)(sinhn, + coshn,)® + & S V(le-a/us)n,

qeENT
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Introduction & Main Results
Strategy of the proof

Perspectives

n Han

v cendleresiiey)
Ground state energy and spectrum
Quadratic Hamiltonian and diagonalization

We have G, = C,, + Q) + 0, where +d, < CN~“(N, +1)(H, +1),
o= %(N —1)x7(0)

pEAi

+ > [pPsinhn, + £ V(¢/n?)(sinhnp + sinhn, coshn) + 5 > V((0=a)/n9)mg]
qEAi

and Q= 3 cp. [Fobpbp + 5 G byb™, + byb—p )] with

Fo= p*(sinh®y, 4 cosh®y,) + kV/(#/n#)(sinh, + coshr,)?

transformation

Gp= 2p° sinhn, coshn, + HV(D/NB)(Sinh’f]p + cosh,)® + = z \7((P—q)/NB)'r]q
qeENT
The operator Qf, may be diagonalized using a second generalized Bogoliubov

S=exp[} ZPG/\i 7p(by b~ , — byb_p)], tanh(27,) = -7
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Introduction & Main Results
Strategy of the proof

Perspectives

n Han

v cendleresiiey)
Ground state energy and spectrum
Quadratic Hamiltonian and diagonalization

We have G, = C,, + Q) + 0, where +d, < CN~“(N, +1)(H, +1),
o= %(N —1)x7(0)

pEAi

+ Z [p? sinh®, + 1V (p/n#)(sinh®n, -+ sinh, coshn,) + 5K Z V((p=a)/n%)1pma]
qEAi
and Q) = Spens [Fobpbo + 5 Go( byb™, + bpbp)] with

Fp= p*(sinh’), 4 cosh’),) + HV(P/NB)(sinhnp + coshnp)® ~ p°

transformation

Gp= 2p° sinhn, coshn, + HV(D/NB)(Sinh’f]p + cosh,)® + = z \7((P—q)/NB)'r]q ~
qeENT
The operator Qf, may be diagonalized using a second generalized Bogoliubov

1
p?
S=exp[} ZPG/\i 7p(bpb*, — bpb_p)], tanh(27,) = —

2P

Fp

|7p| = [p|*
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Introduction & Main Results

Strategy of the proof
Diagonal excitation Hamiltonian

Exci ns and F
Excitation Hamiltonian an ndensation
Perspectives Ground state energy and spectrum

B _ cxpB . <N <N

Let My, =5°GyS: 7" — 7=V, then
B _ EB 4 2.7 *
My = Ey + Zpe/\i Ip|* + 2|p|PkV(0)azap + pw.s
with

and

By = an(N ~ )35+ 3 Syene [~ 07— 57(0) +y/Ipl* + 20pisT(0) + *

pn,s < CNTO(NG + 1) (Mo + 1).

v2(0)
2p2
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Introduction & Main Results
Strategy of the proof
Diagonal excitation Hamiltonian

Perspectives

with

Ground state energy and spectrum

and condensation

Let M, = S"G,S: 7" — 7" then
B _ EB
My = Ey+2>cns

and

Ipl* + 2|pPrV (0)apap + s

w2
2

(0)]
2

By = 4n(N = 1)a + 3 X pens | = P2 = £V(0) + \/Ipl* + 2/pl2kV(0) +
We compare the eigenvalues of M?
with those of the quadratic operator

png < CNTO(NG + 1) (Hiy + 1)

D= Zpe/\*
showing that below an energy ¢

ES (i.e. the eigenvalues of HY

- E)

~
4 2
Ip|* + 2|p|*k V(0)ag ap
[A
Spectral properties of Bose gases interacting through singular potentials
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Introduction & Main Results

Strategy of the proof

Perspectives

Perspectives
Extension to the Gross-Pitaevskii regime

Excitation spectrum in the GP regime

quadratic part:

For 8 < 1, on low energy states, Qﬁ =T UH,€ U T is dominated by its
Gy =Chn+ Q4+ &y with

+EF < CNTH(Ny + 1)(Hey +1)
For 8 =1 instead 9,1\3, contains cubic and quartic contributions of order one.
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Introduction & Main Results
Strategy of the proof
Perspectives

Excitation spectrum in the GP regime

Perspectives

Extension to the Gross-Pitaevskii regime

For 5 < 1, on low energy states, g,‘; =T UHﬁ U* T is dominated by its
quadratic part:

Gy =Chn+Qn+En with +&8 < CN™*(N. +1)(Hy+1)

For 8 =1 instead g,@ contains cubic and quartic contributions of order one.

» Key fact: quasi-free states can only approximate the ground
state of a dilute Bose gas up to an error of order one
[Erdés-Schlein-Yau, ‘08], [Napiorkowski-Reuvers-Solovej ‘15]

> Challenge: HS" must be conjugated with more complicate maps;
in fact an upper bound compatible with the Lee-Huang-Yang
prediction has been obtained by using a trial state containing
quadratic and cubic correlations [Yau-Yin, '13]
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Introduction & Main Results
Strategy of the proof
Perspectives

ctrum in the GP regime

Perspectives

Perspectives

> Proof of condensation in the Gross-Pitaevskii regime without
the smallness assumption on k > 0

» Extend the results to non-translation-invariant bosonic
systems trapped by confining external fields

» Ground state energy and excitation spectrum in the
Gross-Pitaevskii regime

> Validity of Bogoliubov theory for dilute Bose gases in the
thermodynamic limit

[m] [ = =
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