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Effective models of condensation
Particle models:

I Condensation in particle systems: a macroscopic fraction of
the particles in a microscopic fraction of state space.

I This means: the value of a suitable ’observable’ is the same
for a macroscopic fraction of the particles

I Example: BEC, the observable is energy;
I Example: Selection-mutation models, the observable is fitness.
I Proving existence of condensation is very hard.

Effective models:
I Model the dynamics of the relevant quantity directly as a

differential or integral equation.
I Condensation in the effective model means that smooth initial

conditions converge weakly to measures with a dirac at the
relevant place.

I Dynamical condensation is known for a few models.
I We will be interested in the shape of the function (on the

right scale) as it approaches a Delta peak.
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Kingmans model of selection and mutation

pn(dx): fitness distribution of a population. Fitness x ∈ [0, 1].
Effective equation:

pn+1(dx) = (1− β)
x

wn
pn(dx) + βr(dx)

with wn :=
∫ 1

0 xpn(dx) (mean fitness)
0 < β < 1 (mutation rate)
r(dx) = mutant distribution.

Abstract form:
pn+1 = B[pn]pn + C

[Kingman 1978]: if γ = 1− β
∫ 1

0
r(dx)
1−x > 0, then condensation of

size γ occurs at x = 1, as t→∞.

[Dereich, Mörters 2013]: If r( (1− h, 1) ) ∼ hα, then

lim
n→∞

pn( (1− x/n, 1) ) =
γ

Γ(α)

∫ x

0
yα−1 e−y dy.

Gamma distribution
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A model for Bosons in a bath of Fermions
Ft(k) = density of bosons at energy k > 0.
Effective equation:

∂tFt(k) =

∫ ∞
0

b(k, y)
(
Ft(y)(k2+Ft(k)) e−k−Ft(k)(y2+Ft(y))e−y

)
dy

with b > 0.

Abstract form: ∂tFt(k) = B[Ft](k)Ft(k) + C[Ft](k).

[Escobedo, Mischler 99, 01]: If

m :=

∫ ∞
0

F0(k) dk > m0 :=

∫ ∞
0

k2

ek − 1
dk,

then convergence of strength m−m0 at k = 0 occurs as t→∞.

[Escobedo, Mischler, Velazquez 03]: For b = 1, the scale on which the
condensate emerges is 1/t, and the shape is a Gamma distribution.

Parameter of the Gamma-Distribution may depend on initial
condition, explicit representation formula for b = 1, formal
asymptotic expansions otherwise.
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A model for Bosons in a heat bath
pt(k) = energy distribution of Bosons, Ĉ = Fourier transform of
the heat bath correlation function, A(z) = Ĉ(z)( eβz − 1).
F (x) = cx1/2. Effective equation:

∂tpt(x) =

∫ ∞
0

A(y − x)pt(x)pt(y) dy

−
∫ ∞

0
Ĉ(y − x)F (y) pt(x) dy +

∫ ∞
0

Ĉ(x− y)pt(y)F (x) dy.

Abstract form: ∂tpt(x) = B[pt](x)pt(x) + C[pt](x).

[Buffet, de Smedt, Pulé 84]: If

m :=

∫ ∞
0

p0(x) dx > m0 :=

∫ ∞
0

F (x)

eβx − 1
,

then the condensation of strength m−m0 occurs at x = 0 as
t→∞.

No previous result about the shape of the emerging condensate.
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The Boltzmann-Nordheim equation

ft(k) = energy distribution of weakly interacting bosons.
Effective equation: complicated; but it has the

Abstract form: ∂tft(k) = B[ft](k)ft(k) + C[ft].

[Escobedo, Velazquez 2015]: Equation blows up in finite time.

Nothing about the shape of the condensate is known. This
equation is much more singular that the previous ones!
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An abstract point of view

Let (pt)t > 0, pt ∈ L1([0,∞)), solve the equation

∂pt(x) = A[pt](x) = B[pt](x)pt(x) + C[pt](x)

for t > 0 with initial condition p0 ∈ L1([0,∞]).

A,B,C : {κδ0 + f dx : κ > 0, f ∈ L1(R+)} → C(R+).

and we write pt instead of 0δ0 + ptdx.

We say that (pt) exhibits condensation at x = 0 as t→∞ if

ρ0 := lim
ε→0

lim inf
t→∞

∫ ε

0
pt(x) dx > 0.

ρ0 is then called the mass of the condensate.

We say that convergence to condensation is regular, with bulk
q ∈ L1, if

∀c > 0 : lim
t→∞

∫ ∞
c
|pt(x)− q(x)| = 0.
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Main result: assumptions

∂pt(x) = A[pt](x) = B[pt](x)pt(x) + C[pt](x)

Assumption A1: Assume that
B : {κδ0 + f dx : κ > 0, f ∈ L1(R+)} → C1(R+), and that there
is q ∈ L1, α > 0, c > 0, κ > 0 with

B[κδ0 + qdx](0) = 0, ∂xB[κδ0 + qdx](0) < 0,

lim
x→0

x−αC[κδ0 + qdx](x) = c.

Assumption A2: Assume that for any sequence (pn) ⊂ L1 with

pn dx→ κδ0 +q dx weakly, and lim
n→∞

∫ ∞
c
|pn(x)−q(x)| dx = 0,

we have

lim
n→∞

‖B[pn]−B[q]‖C1([0,δ]) = 0, lim
n→∞

‖C[pn]−C[q]‖C([0,δ]) = 0.
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Main result: statements

B[κδ0 + qdx](0) = 0, ∂xB[κδ0 + qdx](0) < 0,

lim
x→0

x−αC[κδ0 + qdx](x) = c.

Assume (pt) solves ∂tpt = A[pt] and condensates regularly to
κδ0 + qdx. Assume further that

p0(x) ∼ xα0 near x = 0,

with α0 > 0. Then

lim
t→∞

1

t
pt(x/t) = c1 e−γ∞(0)x

(
1{α 6 α0}x

αc2 + 1{α0 6 α}x
α0η(0)

)
.

The values of c1, c2 and γ∞(0) are known explicitly (see below).
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Application to Kingmans model

Kingmans Model (in continuous time):

pn+1(dx) = (1− β)
x

w[pn]
pn(dx) + βr(dx)

replaced by

∂tpt(dx) =
(

(1− β)
x

w[pt]
− 1
)
pt(dx) + βr(dx)

with w[p] =
∫ 1

0 xp(dx). Stationary solution:

q(dx) = β
r(dx)

1− x
+
(

1− β
∫ 1

0

r(dx)

1− x

)
δ1(dx).

We have

w[q] = 1− β, so B[q](x) = x− 1, C[q] = βr(dx).

Putting y = 1− x brings this into our form (condensation at zero),
and our theorem applies!

V. Betz (Darmstadt) The shape of the emerging condensate



Application to the EMV-model

∂tFt(k) =

∫ ∞
0

b(k, y)
(
Ft(y)(k2+Ft(k)) e−k−Ft(k)(y2+Ft(y))e−y

)
dy

so

B[F ](k) =

∫ ∞
0

b(k, y) e−y
(
F (y)( ek−y − 1)− y2

)
dy,

and

C[F ](k) = k2 e−k
∫ ∞

0
b(k, y)F (y) dy.

With q(k) = k2

ek −1
dk + κδ0 we find

∂kB[q](0) = −2

∫ ∞
0

b(0, y)
y2

ey − 1
dy − 2κb(0, 0) < 0.

So the conditions apply, for (A2) it is enough that b ∈ C1
b .
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The BSP model

∂tpt(x) = B[pt](x)pt(x) + C[pt](x) with

B[p](x) =

∫ ∞
0

A(y − x)p(y) dy −
∫ ∞

0
Ĉ(y − x)F (y) dy,

C(x) = F (x)

∫ ∞
0

Ĉ(x− y)p(y) dy.

With q(dx) = F (x)
eβx−1

+ κδ0 we find

∂xB[q](0) = −βĈ(−y)q(y) dy − κβĈ(0) < 0,

showing (A1). For (A2), we need Ĉ ∈ C1.
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Proof part 1: reformulation of assumptions

∂pt(x) = A[pt](x) = B[pt](x)pt(x) + C[pt](x)

Assume that pt ∈ L1 solves this equation, and condenses regularly
to q + κδ0. Then with

bt(x) = B[pt](x), ct(x) = C[pt](x)

we have

(B1): limt→∞ bt(0) = 0.
(B2): γt(x) := − 1

x(bt(x)− bt(0)) (with x > 0) is continuous at
x = 0, and and that there exists a continuos, strictly positive
function γ∞ : [0, δ]→ R+ such that

lim
t→∞

sup
x∈[0,δ]

|γt(x)− γ∞(x)| = 0.

(B3): There exists a continuos function c∞ with c∞(0) > 0 and

lim
t→∞

sup
x∈[0,δ]

|ct(x)− c∞(x)| = 0.
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Proof part 1: variation of constant

∂tpt = btpt + ct, p0(x) = xα0η(x)

Variation of constants gives:

pt(x) =

∫ t

0

Wt

Ws
xαcs(x) e−(t−s)xγ̄s,t(x) ds+Wt e−txγ̄0,t(x) p0(x),

where

Ws = e
∫ s
0 bu(0) du , γ̄s,t(x) =

{
1
t−s
∫ t
s γr(x) dr if t > s

γt(x) if t = s.

For fixed s, we have γ̄s,t(x)→ γ∞(x) as t→∞. Let
β = min{α, α0}.

Assume that for Qt(β) := W−1
t (t+ 1)1+β, Q∞ := limt→∞Qt(β)

exists and is finite. Then

lim
t→∞

1

t
pt(

x

t
) =

e−γ∞(0)x

Q∞

(
1{β=α}x

α

∫ ∞
0

Qs(β)

(s+ 1)β
cs(0) ds+1{β=α0}x

α0η(0)
)
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Proof part 3: convergence of Qt

Qt = e−
∫ t
0 bu(0) du (t+ 1)1+β.

Theorem: if (pt) exhibits condensation, then Qt converges.

Proof: Put µt(ε) =
∫ ε

0 pt(x) dx. Then by the solution formula,

Qt(β)µε(t) =

∫ t

0
ds

∫ ε

0
dx (t+ 1)1+βxαcs(x)

Qs(β)

(s+ 1)1+β
e−(t−s)xγ̄s,t(x)

+

∫ ε

0
dx (t+ 1)1+β e−txγ̄0,t(x) xα0η(x) (∗)

For fixed K > 0, with Mt = maxs 6 tQs, we have

Qtµε(t) 6 C1(K)MK + C2K
−βMt + C3(K)ε1+αMt.

Picking first K large enough and then ε(t) so that µε(t) > c but
ε(t)→ 0 we can show that (Mt) is bounded. Using (∗) again we
can then show convergence.
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Conclusions, Observations, Open questions

I We gave a general criterion for ’universal Gamma shape’ of
the condensate if condensation occurs as t→∞.

I We can specify when the initial condition dominates the
shape, and when the inhomogeniety C does.

I We know no relevant models with condensation at infinity
where the criterion fails.

I p 7→ B[p] was linear (EMV, BSP) or almost trivial
(Kingman). What about stronger nonlinearities?

I But our theory does not apply to convergence at finite time
(Boltzmann-Nordheim!),

I This cannot be repaired by a rescaling of time, as this leads to
a non-autonomous system.

I Obvious question: what is the relevant shape in this case?
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