Classical and Quantum Localization in two and three dimensions

John Cardy

University of Oxford

Mathematics of Phase Transitions
Warwick, November 2009
This talk is about some mathematical results on physical models of particle transport in random media

- propagation in a random medium is often modelled by a network:
- medium represented by some fixed graph \mathcal{G} (initially closed)
 - for convenience the edges of \mathcal{G} are assumed *oriented*, and each node has exactly 2 incoming and 2 outgoing edges

- at each tick of the clock, the particle moves through a single node, from an edge e to a neighbouring edge e'
Classical version

- decompose each node at which \((e_1 \cup e_2) \rightarrow (e'_1 \cup e'_2)\) either into \((e_1 \rightarrow e'_1) \cup (e_2 \rightarrow e'_2)\) with probability \(p(e_1, e'_1) = p(e_2, e'_2)\); or into \((e_1 \rightarrow e'_2) \cup (e_2 \rightarrow e'_1)\) with probability \(p(e_1, e'_2) = p(e_2, e'_1) = 1 - p(e_1, e'_1)\)

- this decomposes \(\mathcal{G}\) into a union of cycles (closed loops), so we have a deterministic walk in a random medium

- equivalently, do not decompose \(\mathcal{G}\), but let the particle, the first time it reaches a given node along (say) edge \(e_1\), choose to exit via \(e'_j\) \((j = 1, 2)\) with probability \(p(e_1, e'_j)\)

- the next time it visits the node, it either approaches along \(e_1\) in which case it must exit the same way as it did before, or it approaches along \(e_2\), in which it must exit the other way

- this is a history-dependent random walk
Quantum version

- there is an N-dimensional vector space \mathcal{H}_e on each edge
- instead of real-valued probabilities $p(e, e')$ we have amplitudes $S(e', e)$, which are linear maps $\mathcal{H}_e \rightarrow \mathcal{H}_{e'}$ with $\sum_{e'} S^\dagger(e, e')S(e', e) = 1$
- in addition, the state vector of the particle can get rotated by a unitary operator $U_e : \mathcal{H}_e \rightarrow \mathcal{H}_e$ as it propagates along a given edge e
- the quantum amplitude for the particle to propagate from e_1 to e_2 is a linear map from $\mathcal{H}_{e_1} \rightarrow \mathcal{H}_{e_2}$ given by a sum over random walks (Feynman paths Γ), each weighted by a product of maps along the path $\Gamma = (e_1, e'_1, \ldots, e_2)$:

$$G(e_2, e_1) = \sum_{\Gamma} U_{e_2}^{1/2} \cdots U(e'_1)S(e'_1, e_1)U_{e_1}^{1/2}$$
a point conductance measurement corresponds to breaking open a subset \(\{ e \} \) of edges of \(\mathcal{G} \), \(e \rightarrow (e_{\text{in}}, e_{\text{out}}) \), choosing a pair of these \((e_{\text{in},1}, e_{\text{out},2}) \) and computing

\[
\text{Tr } G(e_{\text{in},1}, e_{\text{out},2})^\dagger G(e_{\text{out},2}, e_{\text{in},1})
\]

the off-diagonal terms between the paths contributing to \(G^\dagger \) and \(G \) produce quantum interference effects

in principle the amplitudes \(S(e', e) \) and \(U_e \) are fixed, but we may view these as drawn from some random ensemble

- e.g. we can choose the \(U_e \) to be independent random matrices drawn from the invariant measure on \(\text{SU}(N) \)

self-averaging: in the thermodynamic limit \(\vert \mathcal{G} \vert \rightarrow \infty \) many physically interesting quantities are almost surely equal to their mean values
for the case $N = 1$ the U_e are pure phases $e^{i\phi_e}$ and $S(e, e')$ are complex numbers, but actually this is harder than the case $N = 2$, where we have the

Theorem. The mean point conductance $\text{Tr} \, G(e_{in}, e_{out})^\dagger G(e_{out}, e_{in})$ is given by the probability that there exists an open path from e_{in} to e_{out} in the classical model with $p(e, e') = (1/N) \text{Tr} \, S(e, e')^\dagger S(e', e)$. The proof is either graph-theoretic (Beamond, Chalker, JC 2002) or using a supersymmetric formalism (JC 2005) but in both case depends on a special properties of the invariant measure on SU(2) matrices:

$$\int U^p \, dU = \begin{cases}
1 & p = 0 \\
-\frac{1}{2} & p = 2 \\
0 & \text{otherwise}
\end{cases}$$
the interesting cases are when \mathcal{G} is a regular lattice in \mathbb{R}^d, in the limit when $|\mathcal{G}| \to \infty$:

- if the loops in the decomposition of \mathcal{G} are a.s. of finite length as $|\mathcal{G}| \to \infty$, the states in the corresponding problem are all localized.

- on the other hand, if there is a finite probability of escape to infinity in the classical problem, the quantum states are extended.

- since classical problems are easier than quantum ones, studying the former may tell us something about the latter.

- the physics literature suggests that

 - for $d = 2$ states are usually localised except in special cases where an extra symmetry holds, and in $d = 3$ there can be a transition from localized to extended states

 - in the extended phase, there should be diffusive behaviour, that is the classical paths should scale to Brownian motion

 - at the transition in $d = 3$, and in the special cases in $d = 2$, one expects power laws in, for example, the distribution of loop lengths
A 2d special case: the L-lattice

- decompose each node according to

 - each decomposition of G corresponds to a bond percolation configuration on a \mathbb{Z}^2 lattice
 - the loops are the external and internal hulls of percolation clusters
 - if $p \neq p_c = \frac{1}{2}$ almost all the loops are finite as $|G| \to \infty$
 - at $p = \frac{1}{2}$ there is a power-law distribution of loop lengths
 - corresponding quantum problem is the SU(2) version of the network model for the integer quantum Hall plateau transition (Chalker, Coddington 1988); the connection to bond percolation was first realised by Gruzberg et al. 1999.
A more generic case: the Manhattan lattice

- For $p > \frac{1}{2}$ all loops are trapped in finite voids within percolation clusters and are therefore finite.
- In fact, analytic RG calculations and simulations suggest that loops are always finite as long as $p > 0$ (Beamond, Owczarek, JC 2003), consistent with the idea that generically all states are localized in $d = 2$, but there is no proof (Sidoravicius et al. have a proof for a variant of this model.)
Three dimensions

- how to build a regular lattice in \mathbb{R}^3 with coordination number 4 and cubic symmetry:

- start with the faces of \mathbb{Z}^3
add the faces of \((\mathbf{Z} + \frac{1}{2})^3\):
\(\mathcal{G} \) is the intersection of the two sets of faces
bond percolation on one sublattice of \mathbb{Z}^3 (an fcc lattice) decomposes the faces of $(\mathbb{Z} + \frac{1}{2})^3$ into hulls $\{H\}$: closed oriented surfaces which separate the clusters from the dual clusters
similarly, bond percolation on one sublattice of \((\mathbb{Z} + \frac{1}{2})^3\) has hulls \(\{H'\}\) composed of faces of \(\mathbb{Z}^3\)

\(\{H\} \cap \{H'\}\) gives a decomposition of \(\mathcal{G}\)
these paths are therefore a.s. finite if \(p < p_c^{\text{fcc}} \approx 0.12 \)

this problem has a symmetry under \(p \to 1 - p \); simulations suggest that \(p = \frac{1}{2} \) is in the extended phase, but no proof

in the Manhattan version of this problem, paths are localised for \(p > 1 - p_c^{\text{fcc}} \), and we expect them to be asymptotically like random walks for small \(p \), but no proof yet
Summary

- random decompositions of graphs into the union of cycles give rise to interesting models of both classical and quantum localisation

Some references: