Quantum-classical point processes.

Suren Poghosyan, Hans Zessin

September 4, 2016
General situation

$(X, \mathcal{B}, \mathcal{B}_0)$ is a general phase space. $\mathfrak{X} = \mathcal{M}_f(X)$ denotes the collection of configurations in X, i.e. the finite point measures in X.

The point of departure is a complex measure L on \mathfrak{X} satisfying $L\{o\} = 0$. It is the generator of the main object

$$\mathcal{S}_L = \exp (L - L(1)\Delta o).$$

Here the right hand side is defined as $\exp K = \sum_{n=0}^{\infty} \frac{1}{n!} K^n$. \mathcal{S}_L is a complex measure which is normalized in the sense $\mathcal{S}_L 1 = 1$, and has the representation

$$(1) \quad \mathcal{S}_L = \frac{1}{\Xi} \exp L, \quad \Xi = \exp L 1.$$
We are only interested in the case where \mathcal{S}_L is a law, i.e. a probability P on X, i.e. a finite point process in X.

In typical situations a canonical procedure allows to extend these laws to processes with infinitely many particles.

Interpretation of \mathcal{S}_L According to (1) \mathcal{S}_L then realizes finite configurations of particles in X which are the result of finitely many independent superpositions of finite clusters (which are generated by L).

A special class of L: Quantum processes

We are given a *quantum interaction* κ, i.e. a Hermitean kernel κ of positive type (κ positive definit) together with $\tau > 0$ and
\(\varepsilon \in \{-1,+1\} \). We then consider the complex pseudomeasure

\[
\mathcal{L} \varphi = \sum_{m=1}^{\infty} \varepsilon^{m-1} z^m \int_{X^m} \varphi(\delta x_1 + \cdots + \delta x_m) \kappa(x_1, x_2) \kappa(x_2, x_3) \cdots \kappa(x_m, x_1) \, d x_1 \cdots d x_m.
\]

(2)

Here and in the sequel \(\lambda(dx) = dx \) denotes a locally finite reference measure in the phase space. Under general and natural additional integrability assumptions on \(\kappa \) one then can show for \(z \) small enough the existence of an infinitely extended point process \(P = \mathcal{S}_\mathcal{L} \) in \(X \), which is locally specified by the measures

\[

\varrho_k(dx_1 \cdots dx_k) = z^k \varphi_\varepsilon^\kappa(\delta x_1 + \cdots + \delta x_k) \, dx_1 \cdots dx_k.
\]

(3)

The density \(\varphi_\varepsilon^\kappa \) is the immanant of \((\kappa, \varepsilon) \); i.e. in the case \(\varepsilon = -1 \) the determinant \(\det(\kappa(x_i, x_j))_{i,j=1}^{k} \) and if \(\varepsilon = +1 \) the permanent of this matrix. This process \(P = \mathcal{S}_\mathcal{L} \) we call quantum process specified by \((\kappa, \varepsilon) \).
One can show that L is of first order, and thereby P satisfies the so-called \textit{cluster equation}

\begin{equation}
C_P = C_L \ast P,
\end{equation}

which in some sense replaces the DLR-equation in the case of classical systems. Here C_P denotes the \textit{Campbell measure of P} which contains the information of all moment measures of P. The operation \ast is some version of a convolution.

The cluster equation immediately implies that the intensity of P is

$$\nu^1_P(dx) = \nu^1_L(dx) = K_\kappa^\varepsilon(x,x). dx$$

Here

$$K_\kappa^\varepsilon = \sum_{m=1}^{\infty} \varepsilon^{m-1} z^m k^\ast m$$
is the so called \textit{correlation kernel for} κ.

Consider the factorial moment measures $\hat{\nu}_P^k$ of order $k \geq 2$ of P. They are defined by

$$\hat{\nu}_P^k f = \int_{\mathcal{M}^k(X)} \hat{\mu}^k(f) P(d\mu), \quad f \in \mathcal{K}(X).$$

Here

$$\hat{\mu}^k(dx_1 \ldots dx_k) = \mu(dx_1)(\mu - \delta x_1)(dx_2) \cdots \left(\mu - \sum_{j=1}^{k-1} \delta x_j\right)(dx_k).$$

One can show that they are dominated by λ^k:

(5) \quad $\hat{\nu}_P^k(dx_1 \ldots dx_k) = \varphi_{\kappa}^{K_\varepsilon}(\delta x_1 + \cdots + \delta x_k).dx_1 \ldots dx_k.$

The immanant appearing as a density is the correlation function of P. Equation (5) signifies that P is an immanantal process for
K^ε_κ, thus a permanental process if $\varepsilon = +1$ and a determinantal process if $\varepsilon = -1$.

To summarize:

Proposition 1 *Quantum processes specified by κ are immanental processes for the associated correlation kernel.*

A direct consequence of this basic result is for instance simplicity of determinantal processes.

Examples

Example 1 Quantum Pólya processes. (cf. Bach and Zessin[?], (2017))
We consider the realm of early quantum mechanics: X is an infinite discrete space and λ a point measure on X which is bounded in the sense that $\sup_y \lambda(y) < \infty$. The quantum interaction is the kernel

$$\kappa(x, y) = 1_{\{0\}}(x - y), \quad x, y \in X.$$

Its cluster measure is

$$L \varphi = \sum_{m=1}^{\infty} \varepsilon^{m-1} z^m \sum_{x \in X} \varphi(m\delta_x) \lambda(x)^m.$$

The corresponding point process in X exists for $z < 1$ small enough and is called the Pólya process. Its correlation kernel is

$$K_\kappa^{\varepsilon} = \frac{z}{1 - \varepsilon z} \kappa;$$

and its correlation function is

$$(x_1, \ldots, x_k) \mapsto \left(\frac{z}{1 - \varepsilon z}\right)^k \varphi_\kappa^{\varepsilon}(\delta x_1 + \cdots + \delta x_k).$$
The particle number ζ_B in a finite subset B of X has the distribution

$$P(\zeta_B = k) = (1 - \varepsilon z)^{\lambda(B)z^k} \frac{\lambda(B)^{\varepsilon[k]}}{k!},$$

where $a^{\varepsilon[k]} = a(a+1\varepsilon)(a+2\varepsilon)\cdots(a+(k-1)\varepsilon)$. If $\varepsilon = +1$ this law is negative binomial and otherwise binomial for the parameters $(\lambda(B), \frac{1-z}{z})$.

Example 2 Ideal Bosons and Fermions. (cf. Ginibre[?], JMP 6 (1965))

$X = \mathbb{R}^d$ with Lebesgue’s measure λ. Ginibre isolated the quantum interaction

$$\kappa(x, y) = \frac{1}{w^d} \exp \left(-\frac{|x - y|^2}{2\beta}\right), \quad x, y \in X.$$
\(\beta \) is the inverse temperature, \(w = \sqrt{2\pi\beta} \) the thermal wave length. For \(z < 1 \) the associated point process exists and is called the ideal Bose gas if \(\varepsilon = +1 \), otherwise the ideal Fermi gas.

Example 3 Quantum renewal processes. (cf. Macchi [?])

\(X = \mathbb{R} \) with Lebesgue measure \(\lambda \). Macchi considered the quantum interaction

\[
\kappa(x, y) = \exp\left(-\frac{|x - y|}{\alpha}\right), \quad \alpha > 0.
\]

The associated process is a Quantum renewal process. Again these are immanantal processes with a correlation kernel having the same form as \(\kappa \).

Example 4 Quantum Ginibre processes. (Ginibre[?], JMP 6 (1965))
$X = \mathbb{C}$ with $\lambda(dx) = \exp(-|x|^2)\frac{1}{\pi} \, dx$ the standard Gaussian measure on \mathbb{C}. Ginibre considered the \mathbb{C}–valued exponential kernel

$$\kappa(x, y) = \exp x\bar{y}, \quad x, y \in \mathbb{C}.$$

Note that all other examples until now are real-valued and thereby also classical pair interactions. The associated process \mathcal{G} built on the exponential kernel exists for all $0 < z < 1$ and is an immanantal process with correlation kernel

$$K = \frac{z}{1 - \varepsilon z} \kappa.$$

\mathcal{G} is the Quantum Ginibre process. Its intensity measure is

$$\nu^{\mathcal{G}}_1(dx) = \frac{z}{1 - \varepsilon z} \frac{1}{\pi} \, dx.$$

Some implications of Quantum interactions
Consider again a Quantum process $P = \mathcal{G}_L$ in $X = \mathbb{R}^d$ with Lebesgue’s measure λ. By Proposition 1 we know already that P is an immanantal process. Thus we know in principle all correlation functions.

P is invariant under Euclidean motions, we then say that P is stationary, if L has this property. In all our examples one can show that L is stationary so that the associated Quantum process has this property too. Moreover, in all examples the Quantum process is mixing, in particular ergodic. This implies an ergodic behaviour for a large class of additive functionals of the process; in particular laws of large numbers for the particle density of quantum processes. Finally, all examples are mixing in the sense of Brillinger, so that even central limit theorems for a large class of additive functionals hold true.
A problem. In the case of classical systems the immanant is replaced by the Boltzmann factor $\exp -E_\phi(\delta x_1 + \cdots + \delta x_k)$ for a given classical potential ϕ. The first three quantum interactions from above are also classical stable potentials (by an observation in Ruelle’s book); and one can construct for them Gibbs processes by another procedure than we used to obtain the Quantum processes.

Question. What is the difference between a Quantum and a Gibbs process for a given interaction?

Modification. For the exponential interaction the modulus is a classical stable potential. What is the difference between the Quantum process for the exponential interaction and the Gibbs process for its modulus?
Acknowledgement. We are grateful to Prof. Odile Macchi for illuminating discussions.
References

