Stochastic and Analytic Methods in Mathematical Physics

X International Conference of Mathematical Physics in Armenia Yerevan, Armenia, September 4–11, 2016

Construction of Dynamical Semigroups by Regularisation à la Kato

Valentin A. ZAGREBNOV

Institut de Mathématiques de Marseille - AMU, France

Résumé

- 1. Dynamical Semigroups
- 2. Regularisation Theorem
- 3. Applications

This talk is based on a joint work with A.F.M.ter Elst (Auckland)

1. Dynamical Semigroups

- Let \mathcal{H} be a separable Hilbert space over \mathbb{C} and $\mathcal{L}(\mathcal{H})$ be the Banach space of bounded operators with the subspace $\mathfrak{C}_1 = \mathfrak{C}_1(\mathcal{H})$ of all trace-class operators. A bounded operator is positive $u \geq 0$, if $(u \, x, x)_{\mathcal{H}} \geq 0$ for all $x \in \mathcal{H}$.
- Let $\mathfrak{C}_1^+ = \{u \in \mathfrak{C}_1 : u \geq 0\}$. Then \mathfrak{C}_1^+ is a closed cone with the trace-norm $||u||_{\mathfrak{C}_1} = \mathrm{Tr}_{\mathcal{H}}(u)$, for all $u \in \mathfrak{C}_1^+$.
- Let $\mathfrak{C}_1^{\operatorname{sa}}$ be the Banach space over $\mathbb R$ of all self-adjoint operators of \mathfrak{C}_1 , with generating positive cone $\mathfrak{C}_1^+ \subset \mathfrak{C}_1^{\operatorname{sa}}$ on which the tracenorm is additive: $\|u+v\|_{\mathfrak{C}_1} = \|u\|_{\mathfrak{C}_1} + \|v\|_{\mathfrak{C}_1}$.

- Operator $A: \mathfrak{D}(A) \to \mathfrak{C}_1^{\operatorname{sa}}$ with $domain: \mathfrak{D}(A) \subset \mathfrak{C}_1^{\operatorname{sa}}$, is called **positivity preserving** if $Au \geq 0$ for all $u \in \mathfrak{D}(A)^+ := \{u \in \mathfrak{D}(A): u \geq 0\}$. A $semigroup \{S_t\}_{t\geq 0}$ on $\mathfrak{C}_1^{\operatorname{sa}}$ is called **positivity preserving** if the map $S_t: \mathfrak{C}_1^+ \to \mathfrak{C}_1^+$, for all $t \geq 0$.
- Let H be generator of the *positivity preserving* and **contraction** C_0 -semigroup $\{e^{-tH}\}_{t\geq 0}$ on $\mathfrak{C}_1^{\operatorname{sa}}$ (*Dynamical Semigroup*). Let $K\colon \mathfrak{D}(H)\to \mathfrak{C}_1^{\operatorname{sa}}$ be a **positivity preserving** operator such that

$$\operatorname{Tr}_{\mathcal{H}}(Ku) \leq \operatorname{Tr}_{\mathcal{H}}(Hu) , \ \forall u \in \mathfrak{D}(H)^{+}.$$

So, if the operator H is *positivity preserving*, then the operator K is H-bounded, but with the **relative bound** equals to **one**.

• Q: Whether operator (H - K), or its closed extension, is still generator of a C_0 -semigroup $\{T_t\}_{t\geq 0}$?

- **Kato** (1954) solved this perturbation problem when the operator H is a positivity preserving map. To this end he proposed a **regularisation** of the perturbation K by the one-parametric family $\{rK\}_{r\in[0,1)}$ and by taking finally the limit $r\uparrow 1$.
- Our aim was *twofold*: to consider a more general (*functional*) regularisation à la Kato and to *relax* the condition that the **operator** *H* is positivity preserving to the condition that *H* is **generator** of a positivity preserving semigroup. The last is indispensable for construction of the *Quantum Dynamical Semigroups*.
- In the latter case, according the Kossakowski–Lindblad–Davies Ansatz, these semigroups must be completely positive and trace-preserving maps: $\operatorname{Tr}_{\mathcal{H}}(T_t w) = \operatorname{Tr}_{\mathcal{H}}(w)$, $w \in \mathfrak{C}_1^{\operatorname{Sa}}$.

2. Regularisation Theorem

- **Definition:** Let $(K_{\alpha})_{\alpha \in J}$ be a **net** such that $K_{\alpha} \colon \mathfrak{D}(H) \to \mathfrak{C}_{1}^{\mathsf{sa}}$ for all $\alpha \in J$. We call the family $\{K_{\alpha}\}_{\alpha \in J}$ a **regularisation** of the operator K if the following *four* conditions are valid:
- K_{α} is positivity preserving for all $\alpha \in J$.
- For all $\alpha \in J$ there exist $a_{\alpha} \in [0, \infty)$ and $b_{\alpha} \in [0, 1)$ such that

$$\operatorname{Tr}_{\mathcal{H}}(K_{\alpha}u) \leq a_{\alpha} \operatorname{Tr}_{\mathcal{H}}(u) + b_{\alpha} \operatorname{Tr}_{\mathcal{H}}(Hu)$$

for all $u \in \mathfrak{D}(H)^+$.

- $K_{\alpha} \leq K_{\beta} \leq K$ for all $\alpha, \beta \in J$ with $\alpha \leq \beta$.
- $\lim_{\alpha} ((K_{\alpha}u)x, x)_{\mathcal{H}} = ((Ku)x, x)_{\mathcal{H}}$ for all $u \in \mathfrak{D}(H)^+$ and $x \in \mathcal{H}$.
- Let J = [0,1) and $K_r = rK$ for $r \in J$ $(a_{\alpha} = 0, b_{\alpha} = r)$. If $\text{Tr}_{\mathcal{H}}(Ku) \leq \text{Tr}_{\mathcal{H}}(Hu)$, $\forall u \in \mathfrak{D}(H)^+$, and if H is positivity preserving, then $\{K_r\}_{r \in J}$ is the one-parameter **Kato regularisation** of the operator K.

X International Conference, 4-11 September 2016

• Theorem 1: Let H be the generator of a **positivity preserving** contraction C_0 -semigroup on $\mathfrak{C}_1^{\operatorname{Sa}}$. Let $K \colon \mathfrak{D}(H) \to \mathfrak{C}_1^{\operatorname{Sa}}$ be a positivity preserving operator and suppose that

$$\operatorname{Tr}_{\mathcal{H}}(Ku) \leq \operatorname{Tr}_{\mathcal{H}}(Hu)$$

for all $u \in \mathfrak{D}(H)^+$. Let $\{K_{\alpha}\}_{{\alpha} \in J}$ be a **regularisation** of K. Set $L_{\alpha} = H - K_{\alpha}$ for all ${\alpha} \in J$. Then:

(a) For all $\alpha \in J$ the operator L_{α} is the generator of a positivity preserving contraction C_0 -semigroup $\{T_t^{\alpha} := e^{-tL_{\alpha}}\}_{t\geq 0}$ on $\mathfrak{C}_1^{\operatorname{sa}}$. (b) If t>0, then $\lim_{\alpha} T_t^{\alpha} u$ exists on $\mathfrak{C}_1^{\operatorname{sa}}$ for all $u\in\mathfrak{C}_1^{\operatorname{sa}}$.

For all t>0 we define $T_t\colon \mathfrak{C}_1^{\operatorname{Sa}}\to \mathfrak{C}_1^{\operatorname{Sa}}$ by $T_tu=\lim_{\alpha}T_t^{\alpha}u$. (c) $\{T_t:=e^{-tL}\}_{t>0}$ is a positivity preserving contraction C_0 semigroup on $\mathfrak{C}_1^{\operatorname{Sa}}$ for which the generator $L=(H-K)^{\sim}$ is a closed extension of the operator (H-K), $\operatorname{dom}(H-K)=\operatorname{dom}(H)$.

X International Conference, 4-11 September 2016

- Theorem 2: Let L' be another closed extension of the operator (H-K), dom(H-K)=dom(H), such that L' generates a C_0 -semigroup $\{T'_t\}_{t\geq 0}$. Then $T'_t\geq T_t$ for all t>0.
- Remark: Similarly to the Kato one-parameter r-regularisation, the semigroup $\{T_t\}_{t\geq 0}$ constructed in Theorem 1 by the functional regularisation $\{K_\alpha\}_{\alpha\in J}$ is called minimal.
- Theorem 3: If in addition to conditions of Theorem 1, one supposes that

$$\operatorname{Tr}_{\mathcal{H}}(Hu - Ku) = 0 , \forall u \in \operatorname{dom}(H) ,$$

and that $\mathfrak{D}(H)$ is a *core* for the generator L. Then the positivity preserving contraction C_0 -semigroup $\{T_t = e^{-tL}\}_{t\geq 0}$ is **trace-preserving**: $\mathrm{Tr}_{\mathcal{H}}(T_tw) = \mathrm{Tr}_{\mathcal{H}}(w), \ w \in \mathfrak{C}_1^{\mathrm{Sa}}$.

3. Application: Open Quantum Oscillator

• Let b and b^* be the boson annihilation and creation operators defined in the Fock space $\mathcal{H} = \mathfrak{F}$ generated by a cyclic vector Ω . The **isolated** system is a quantum oscillator:

$$h = E b^* b$$
 , $E > 0$.

Open system à la Kossakowski-Lindblad-Davies

Formal non-Hamiltonian evolution of density matrix $\rho(t) \in \mathfrak{C}_1^{sa}$:

$$\partial_t \rho(t) = -L\rho(t) , L = H - K ,$$

$$H\rho = i [h, \rho] + \frac{1}{2} \Big[(\sigma_- b^* b + \sigma_+ b b^*) \rho + \rho (\sigma_- b^* b + \sigma_+ b b^*) \Big],$$

 $K \rho = \sigma_- b \rho b^* + \sigma_+ b^* \rho b$, pumping – leaking rates: $\sigma_{\pm} \ge 0$.

Photon-number cut-off regilarisation

- 1. Since in L:=H-K the operator K has **relative bound** one with respect to H, we consider a **regularisation** generated by the family of *projections* $\{P_N\}_{N\in\mathbb{N}}$, where for all $N\in\mathbb{N}$ the projection $P_N\colon \mathfrak{F}\to\mathfrak{F}_N$.
- 2. The number of bosons in the subspace \mathfrak{F}_N is **bounded**: for $\psi \in \mathfrak{F}$ one has $b^*b(P_N\psi) \leq N\|\psi\|_{\mathfrak{F}}^2$. $\mathfrak{F}_N \subset \mathfrak{F}_{N+k}$ for all $k \in \mathbb{N}$ and $\lim_{N \to \infty} P_N \psi = \psi$ for all $\psi \in \mathfrak{F}$ verifying the conditions of regularisation in **Definition**.
- 3. For all $N \in \mathbb{N}$ define the **particle number cut-off** regularisation $K_N \in \mathcal{L}(\mathfrak{C}_1^{sa})$ of the operator K by

$$K_N \rho := \sigma_- (b^* P_N)^* \rho (b^* P_N) + \sigma_+ (b P_N)^* \rho (b P_N)$$

• Theorem 4:

If the parameters σ_{\pm} satisfy the condition $\sigma_{+} < \sigma_{-}$, then:

- (i) Domain dom(H) is a *core* for the generator
- $M = \lim_{N \to \infty} (H K_N)$ of a semigroup $\{T_t\}_{t>0}$.
- (ii) M is a closed extension of L.
- (iii) The semigroup $\{T_t\}_{t>0}$ is minimal and trace-preserving.

THANK YOU!