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SUMMARY

* Diffusion Processes

* Standard Diffusion

* Anomalous Diffusion:
a) weak anomalous diffusion
b) strong anomalous diffusion

* Reaction- diffusion systems:
a) front propagation in presence of sub/super diffusion
b) reaction spreading on graphs
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A diffusion (transport) process can be seen as:

* From a Lagrangian point of view:
A deterministic, or stochastic, rule for the time evolution
x(0)→ x(t) = Stx(0), e.g.

A x(t + 1) = x(t) + w(t) , w(t) = random variable

B x(t + 1) = f (x(t)) , f (x(t)) = chaotic map

C
dx

dt
= u(x, t) +

√
2D0η , η(t) = white noise

* From an Eulerian point of view:
A rule for the time evolution of the PdF ρ(x, t), e.g. in the case C,
for the incompressible flow ∇ · u = 0, one has the advection-
diffusion equation (Fokker-Planck eq.)

∂ρ

∂t
+ (u · ∇)ρ = D0∆ρ .
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The typical scenario: Standard Diffusion

At large scale and asymptotically in time, usually one has the so
called standard diffusion i.e. a Fick’s law holds (just for simplicity
we consider the case < x >= 0)

∂Θ

∂t
=
∑
i ,j

Dij
∂2Θ

∂xi∂xj

and a Gaussian behavior.

Θ is the spatial coarse graining of ρ, and Dij is the effective (eddy)
diffusion tensor, depending (often in a non trivial way) from D0

and the field u:

Θ(x, t) ∼ exp − 1

4t

∑
i ,j

xi [D−1]ijxj

< xi (t)xj(t) >' 2Dij t .
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QUESTIONS

* Is the standard diffusion generic?

* How violate the standard diffusion?

A) For incompressible velocity field ∇ · u = 0, if D0 > 0 one has
standard diffusion if the infrared contribution of u(x) is not “too
large” (Majda-Avellaneda), i.e.∫

|V(k)|2

k2
dk <∞ (1)

where V(k) is the Fourier transform of u(x).
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B) Standard diffusion is present if the lagrangian correlations decay
fast enough (Taylor), i.e.∫ ∞

0
< vL(t)vL(0) > dt <∞ (2)

where vL(t) = dx(t)/dt is the lagrangian velocity.

Anomalous diffusion is, somehow, a pathology: it is necessary
the violate the hypothesis for the validity of central limit theorem.

EXAMPLES OF ANOMALOUS DIFFUSION:
Ex 1: Longitudinal diffusion in a random shear (Matheron and de
Marsily): u(x) = (U(y), 0), where U(y) is a spatial random walk;
it is possible to show that

< x(t)2 >∼ t3/2 , ρ(x , t) ∼ 1

t3/4
exp − C

x4

t3
.
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Ex 2: Levy walk
x(t + 1) = x(t) + v(t)

where v(t) is a random variable which can assume two values ±u0

for a duration T given by a random variable whose PdF is
ψ(T ) ∼ T−(α+1).

For α > 2, one has the usual standard diffusion, on the contrary if
α ≤ 2 one has a superdiffusion:

< x2(t) >∼ t2ν

where

ν = 1 , if α < 1 , ν =
(3− α)

2
, if 1 < α < 2 .
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Ex 3: Lagrangian chaos in 2d

dx

dt
=
∂ψ(x , y , t)

∂y
+
√

2D0 η1 ,

dy

dt
= −∂ψ(x , y , t)

∂x
+
√

2D0 η2 ,

where

ψ(x , y , t) = ψ0 sin
(2πx

L
+ B sinωt

)
sin
(2πy

L

)
the term B cosωt represents the lateral oscillation of the rolls.
For B 6= 0 one has chaos, generated by the mechanism of the
homoclinic intersection.
The effective diffusion coefficient depends from D0 and ω in a non
trivial way.

Angelo VULPIANI Reaction spreading in systems with Anomalous Diffusion



Lagrangian chaos in 2d : D11 vs ω (rescaled), D0/ψ0 = 3× 10−3

(dotted curve); D0/ψ0 = 10−3 (broken curve); D0/ψ0 = 4× 10−4

(full curve).
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Two different ways to have anomalous diffusion

I) In the random shear flow the anomalous diffusion is due to the
violation of (1) i.e. the infrared contributions are dominant.

II) In the Levy walk, the ”violation” of the central theorem is due
to the non integrable long tail of the velocity-velocity correlation
function which determines, for α < 2 (superdiffusion):

< vL(t)vL(0) >∼ t−β , with β < 1 .

The same mechanism is present, for D0 = 0 and special values of
ω, in the Lagrangian chaos in the oscillating rolls.
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An example of anomalous diffusion

Lagrangian chaos in 2d : < x2(t) > vs t, with D0 = 0 and ω = 1.1,
the dashed line indicates t1.3.
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The result in the previous system is non an isolated case.
Such kind of mechanism is rather common in low dimensional
symplectic chaotic systems, e.g. in the standard map

θt+1 = θt + Jt , Jt+1 = Jt + K sin(θt+1)

for some peculiar values of K .

The long tail in the correlation function is due to the presence of
(weakly unstable) ballistic trajectories.
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SOME NATURAL QUESTIONS

* Does the value of the scaling exponent ν allow to determine the
shape of ρ(x , t)?

* Is the scaling exponent ν (for < x2(t) >) the unique relevant
quantity?

In the standard diffusion one has ν = 1/2 and a gaussian feature:

Θ(x , t) ∼ 1

t1/2
exp − C

( x

t1/2

)2
,

< |x(t)|q >∼ tq/2
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Naively, in the case of anomalous diffusion, one could guess the
simplest generalization:

Θ(x , t) ∼ 1

tν
Fν
( x

tν

)
, (3)

< |x(t)|q >∼ tqν

where Fν( ) is a suitable function, in the Gaussain case
F1/2(z) = exp − Cz2.

The above scenario is called weak anomalous diffusion:
the exponent ν is sufficient to describe the scaling features, and
the PdF has a scaling shape.
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The existence of anomalous scaling in fully developed turbulence
(and other phenomena) suggests that a more complex scenario can
appear, namely

< |x(t)|q >∼ tqν(q)

where ν(q) is not constant.
In such a case called strong anomalous diffusion the PdF cannot
have a scaling structure as in (3).

Are there non trivial examples of strong anomalous diffusion?

A first example: Lagrangian Chaos in Rayleigh-Benard convection;
for D0 = 0 for some values of ω, one has ν(q) 6= const.
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An example of strong anomalous diffusion

Lagrangian chaos in 2d , D0 = 0 and ω = 1.1: ν(q) vs q, the
dashed line corresponds to 0.65q, the dotted line corresponds to
q − 1.04 (Castiglione et al 1999).
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The Lagrangian Chaos in Rayleigh-Benard convection is not an
isolated case of strong anomalous diffusion (Pikovsky, Artuso,
Cristadoro, Klages et al.)

Other examples:
* 1d intermittent maps
* Standard Map
* Levy walks

In particular it is rather common the following shape:

qν(q) ' qν(0) , for q < q∗ ,

qν(q) ' q − const. , for q > q∗ .

In some stochastic processes it is possible to derive, the above
shape:
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In presence of strong anomalous diffusion there is not a scaling
structure of the PdF (Castiglione et al)

Lagrangian chaos in 2d , D0 = 0 and ω = 1.1: rescaled PdF:
p(x/tν(0)) vs x/tν(0) for three different times (500, 1000, 2000).

Angelo VULPIANI Reaction spreading in systems with Anomalous Diffusion



Even in presence of standard diffusion, i.e. < x2(t) >∼ t,
the scenario can be not trivial (Forte et al)

For instance in the Levy walk with α > 2 one has ν(2) = 1/2, but
the PdF does not rescale and ν(q) 6= 1/2 for large values of q
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Levy walk, α = 2.2, rescaled PdF: p(x/tν(2)) vs x/tν(2) for
different times.
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A NON ACADEMIC PROBLEM

RELATIVE DISPERSION IN TURBULENCE

The classical result of Richardson in the inertial range

< R2(t) >∼ t3

where R(t) = |x1(t)− x2(t)|. Now, a posteriori, this result is
nothing but a simple consequence of the Kolmogorov scaling
δv(`) ∼ `1/3.

What about the effect of intermittency for the relative diffusion?
Two possible scenarios:

* Weak anomalous diffusion:

< Rp(t) >∼ t
3
2
p ;
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* Strong anomalous diffusion:

< Rp(t) >∼ tα(p)

with α(p) 6= 3
2p.

From the multifractal model one has a prediction for α(p) in terms
of D(h) (Boffetta et al):

α(p) = inf
h

[p + 3− D(h)

1− h

]
. (4)

It is remarkable that, even in presence of intermittency, the
Richardson scaling α(2) = 3 is exact; the (4) has been checked in
synthetic turbulence, where the velocity field is random process
with the proper statio-temporal statistical features (Boffetta et al)
and in direct numerical simulation of the NS equations (Boffetta
and Sokolov).
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ANOMALOUS DIFFUSION and FRONT PROPAGATION

The simplest reaction-diffusion problem (FKPP 1937):
a system with standard diffusion and a reactive terms

∂θ

∂t
= D0

∂2

∂x2
θ +

1

τ
f (θ) , (5)

asymptotically one has a front propagation:

θ(x , t) = F (x − vf t)

where F (−∞) = 1, F (∞) = 0 and, if f
′′
< 0, the front speed is

vf = 2
√

D0f
′(0)/τ .
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θ(x , t) ∼ exp
[
− (x − XF (t))

ζ

]
Xf (t) ' vf t , ζ = 8

√
D0τ/f

′(0)

What happen in presence of anomalous diffusion?

For instance we can replace the (5) with

∂θ

∂t
= Lθ +

1

τ
f (θ)

where L is linear operator such that, in absence of the reaction
term, the diffusion is anomalous.
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For the relative diffusion according to Richardson one has

Lθ =
1

rd−1

∂

∂r

(
K (r)rd−1 ∂

∂r
θ
)
, K (r) ∝ r4/3 .

There is class of systems where, in spite of the presence of
the anomalous diffusion, the front propagation is always
standard i.e. XF (t) ' vf t with a finite vf , and ζ = const.

For instance if ν 6= 1/2 and the PfD has the shape (which holds
for the random shear and the random walk on a comb lattice):

ρ(x , t) ∼ 1

tν
exp − C

( x

tν

) 1
1−ν

the front propagation is standard (Mancinelli et al).
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On the other hand, there are cases where the front propagation
can be non standard, i.e.

θ(x , t) ∼ exp
[
− (x − XF (t))

ζ(t)

]
with

XF (t) ∼ tγ , ζ(t) ∼ tδ with δ = γ − 1 .

For instance in the Richardson reaction- diffusion equation one has

γ = 3 , δ = 2 .
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Front propagation in the Richardson reaction-diffusion equation:
XF (t) vs t, in the insect ζ(t) vs t, the lines indicate the predictions
XF (t) ∼ t3, and ζ(t) ∼ t2.
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A simple argument

For the front propagation in presence of anomalous diffusion
* In absence of the reactive term

ρ(x , t) ∼ exp − C
( x

tν

)α
* In presence of the reactive term, at large x , θ(x , t)� 1:

θ(x , t) ∼ exp
[
− C

( x

tν

)α
+

t

τ

]
* The front position XF (t) is determined by the relation

−C
(XF

tν

)α
+

t

τ
= 0 =⇒

XF (t) ∼ tδ , δ = ν +
1

α

* If α = 1/(1− ν) one has δ = 1 even if ν 6= 1/2

Angelo VULPIANI Reaction spreading in systems with Anomalous Diffusion



Sublinear front propagation in systems with subdiffusion
(Serva et al 2016)

In order to have a sublinear front propagation it is necessary to
have a P(x , t) with very weak tails.

Subdiffusion in a process with memory, an anxious walker

x(t + 1) = x(t) + σ(t)

σ(t) = signx(t) with probability = w(x , t)

σ(t) = −signx(t) with probability = 1− w(x , t)

w(x , t) =
1

2 +
(
|x |
tλ

)η
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* If |x | � tλ we have the usual random walk
* If η →∞ we have the usual random walk

It is possible to show that

< x(t)2 >∼ t2ν , ν = min
[1

2
,
λη

1 + η

]
.

In addition in the bulk (i.e |x |/tν not too large) one has

ρ(x , t) ∼ 1

tν
exp − C

( |x |
tν

)η+1
.
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Therefore it seems that

δ =
1 + λη

1 + η

* The previous results are not enough for the asymptotic front
behaviour but only for a transient which can be very long.
* Since the jump probability on the right (left) if x > 0 (< 0) goes
to zero for |x | > O(tλ), the true asymptotic behaviour is

xF (t) ∼ tλ

on the other hand there is a transient

xF (t) ∼ tδ
∗
with δ∗ =

1 + λη

1 + η
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Diffusion on a graph

Graphs in a nutshell:
A graph is a set of nodes 1, 2, 3, ....,N and links {Aij} among the
nodes: Aij = 1, if a link is present otherwise Aij = 0.

Diffusion on a graph

∗ discrete time pi (t + 1) =
∑
j

Pj→i pj(t)

∗ continuous time
dpi
dt

= w
∑
ij

Dijpj

where Pj→i > 0 if Aij = 1 (e.g. Pj→i =
Aij

nj
);

Dij = Aij − niδij is the Laplacian on the graph,
and nj =

∑
k Akj is number of links of the node j .
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3 different dimensions:

* Fractal dimension df :
Number of nodes in a ball of radius ` ∼ `df

* Spectral dimension ds : Prob( return after a time t) ∼ t−ds/2

* Connectivity dimension dl :
Number of different nodes touched by all the walks of t steps ∼ tdl

Usually one has an anomalous (sub) diffusion

< x2(t) >∼ tds/df , ds/df ≤ 1
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Reaction-diffusion on a graph

dθi
dt

= w
∑
ij

Dijθj +
1

τ
f (θi )

Consider an initial {θi} which is zero apart in a small set of nodes.
On a regular lattice (e.g. square) with dimension D = 1, 2 or 3:

M(t) =
1

N

N∑
i=1

θi (t) ∼ tD .

This corresponds to a linear growth of the ”radius”

Numerical simulations on several graphs show

M(t) ∼ tdl
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M(t)τ vs t on a T fractal graph, with w = 0.5,
dl = ln 3/ ln 2 ' 1.585 and ds = 2 ln 3/ ln 5 ' 1.365 (Burioni et al).
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An argument

Sn(t) is the number of distinct sites visited by n independent
random walkers, starting from the site 0, after t steps

Sn(t) =
N∑
j=0

(1− C0j(t)n)

where C0j(t) is the probability that a walker starting from site 0
has not visited site j at time t. When the number of walkers is
large (n→∞), C0j(t)n tends to zero if site j has a nonzero
probability of being reached in t steps. In this limit, Sn(t)
represents all the sites which have nonzero probability of being
visited by step t and, Sn(t) ∼ tdl . This is precisely the regime
observed in the reaction spreading.
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Summary

* Long time velocity correlations can induce anomalous diffusion:
< x2(t) >∼ t2ν with ν > 1/2.

* In the strong anomalous diffusion the exponent ν is not enough
to describe the statistical features: < |x(t)|q >∼ tqν(q) with
ν(q) 6= const.

* In the reaction/diffusion problem, the presence of the anomalous
diffusion has non trivial consequences.
Depending on the system one can have different scenarios:
a) anomalous diffusion and standard front propagation;
b) anomalous diffusion and anomalous front propagation.

* In order to have a sublinear front propagation, i.e. XF ∼ tδ with
δ < 1, it is necessary to have ρ(x , t) with very weak tails (much
smaller than those in a Gaussian PdF).
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