Reaction spreading in systems with Anomalous Diffusion

Angelo VULPIANI

 $\begin{array}{ll} {\sf Dept.} \ \ {\sf of \ Physics, \ University \ of \ Rome \ "Sapienza", \ Italy} \\ &< {\sf angelo.vulpiani@roma1.infn.it} > \end{array}$

Yerevan, Sept. 2016

SUMMARY

- * Diffusion Processes
- * Standard Diffusion
- * Anomalous Diffusion:
- a) weak anomalous diffusion
- b) strong anomalous diffusion
- * Reaction- diffusion systems:
- a) front propagation in presence of sub/super diffusion
- b) reaction spreading on graphs

A special thank to DAVIDE VERGNI

Thanks to:

Marcus Abel, Ken Andersen
Federico Bianco, Guido Boffetta
Raffaella Burioni, Patrizia Castiglione
Fabio Cecconi, Massimo Cencini
Sergio Chibbaro, Giuseppe Forte
Rosaria Mancinelli, Andrea Mazzino
Paolo Muratore- Ginanneschi, Maurizio Serva

A (short) review paper

F. Cecconi, D. Vergni and A. Vulpiani Reaction Spreading in Systems With Anomalous Diffusion Math. Model. Nat. Phenom. 11, 107 (2016)

A diffusion (transport) process can be seen as:

* From a Lagrangian point of view:

A deterministic, or stochastic, rule for the time evolution $\mathbf{x}(0) \to \mathbf{x}(t) = \mathcal{S}^t \mathbf{x}(0)$, e.g.

A
$$x(t+1) = x(t) + w(t)$$
, $w(t) = random \ variable$

$$\mathbf{B}$$
 $x(t+1) = f(x(t))$, $f(x(t)) = chaotic map$

$$\mathbf{C} \quad rac{d\mathbf{x}}{dt} = \mathbf{u}(\mathbf{x},t) + \sqrt{2D_0}\eta \quad , \qquad \eta(t) = ext{white noise}$$

* From an Eulerian point of view:

A rule for the time evolution of the PdF $\rho(\mathbf{x},t)$, e.g. in the case \mathbf{C} , for the incompressible flow $\nabla \cdot \mathbf{u} = 0$, one has the advection-diffusion equation (Fokker-Planck eq.)

$$\frac{\partial \rho}{\partial t} + (\mathbf{u} \cdot \nabla)\rho = D_0 \Delta \rho .$$

The typical scenario: Standard Diffusion

At large scale and asymptotically in time, usually one has the so called **standard diffusion** i.e. a Fick's law holds (just for simplicity we consider the case < x >= 0)

$$\frac{\partial \Theta}{\partial t} = \sum_{i,j} \mathcal{D}_{ij} \frac{\partial^2 \Theta}{\partial x_i \partial x_j}$$

and a Gaussian behavior.

 Θ is the spatial coarse graining of ρ , and \mathcal{D}_{ij} is the effective (eddy) diffusion tensor, depending (often in a non trivial way) from D_0 and the field \mathbf{u} :

$$\Theta(\mathbf{x},t) \sim exp - rac{1}{4t} \sum_{i,j} x_i [\mathcal{D}^{-1}]_{ij} x_j$$
 $< x_i(t) x_i(t) > \simeq 2\mathcal{D}_{ii} t$.

QUESTIONS

- * Is the standard diffusion generic?
- * How violate the standard diffusion?
- A) For incompressible velocity field $\nabla \cdot \mathbf{u} = 0$, if $D_0 > 0$ one has standard diffusion if the infrared contribution of $\mathbf{u}(\mathbf{x})$ is not "too large" (Majda-Avellaneda), i.e.

$$\int \frac{|\mathbf{V}(\mathbf{k})|^2}{k^2} d\mathbf{k} < \infty \tag{1}$$

where V(k) is the Fourier transform of u(x).

B) Standard diffusion is present if the lagrangian correlations decay fast enough (Taylor), i.e.

$$\int_0^\infty < v_L(t)v_L(0) > dt < \infty \tag{2}$$

where $v_L(t) = dx(t)/dt$ is the lagrangian velocity.

Anomalous diffusion is, somehow, a pathology: it is necessary the violate the hypothesis for the validity of central limit theorem.

EXAMPLES OF ANOMALOUS DIFFUSION:

Ex 1: Longitudinal diffusion in a random shear (Matheron and de Marsily): $\mathbf{u}(\mathbf{x}) = (U(y), 0)$, where U(y) is a spatial random walk; it is possible to show that

$$< x(t)^2 > \sim t^{3/2} \;\; , \;\; \rho(x,t) \sim \frac{1}{t^{3/4}} \exp{-C \frac{x^4}{t^3}} \; .$$

Ex 2: Levy walk

$$x(t+1) = x(t) + v(t)$$

where v(t) is a random variable which can assume two values $\pm u_0$ for a duration T given by a random variable whose PdF is $\psi(T) \sim T^{-(\alpha+1)}$.

For $\alpha>2$, one has the usual standard diffusion, on the contrary if $\alpha\leq 2$ one has a superdiffusion:

$$< x^2(t) > \sim t^{2\nu}$$

where

$$\nu = 1 \; , \; \text{if} \; \; \alpha < 1 \; , \; \; \nu = \frac{\left(3 - \alpha\right)}{2} \; , \; \text{if} \; \; 1 < \alpha < 2 \; .$$

Ex 3: Lagrangian chaos in 2d

$$\frac{dx}{dt} = \frac{\partial \psi(x, y, t)}{\partial y} + \sqrt{2D_0} \, \eta_1 \, ,$$

$$\frac{dy}{dt} = -\frac{\partial \psi(x,y,t)}{\partial x} + \sqrt{2D_0} \, \eta_2 \ ,$$

where

$$\psi(x, y, t) = \psi_0 \sin\left(\frac{2\pi x}{L} + B\sin\omega t\right) \sin\left(\frac{2\pi y}{L}\right)$$

the term $B\cos\omega t$ represents the lateral oscillation of the rolls. For $B\neq 0$ one has chaos, generated by the mechanism of the homoclinic intersection.

The effective diffusion coefficient depends from D_0 and ω in a non trivial way.

Lagrangian chaos in 2d: \mathcal{D}_{11} vs ω (rescaled), $D_0/\psi_0=3\times 10^{-3}$ (dotted curve); $D_0/\psi_0=10^{-3}$ (broken curve); $D_0/\psi_0=4\times 10^{-4}$ (full curve).

Two different ways to have anomalous diffusion

- **I)** In the random shear flow the anomalous diffusion is due to the violation of (1) i.e. the infrared contributions are dominant.
- II) In the Levy walk, the "violation" of the central theorem is due to the non integrable long tail of the velocity-velocity correlation function which determines, for $\alpha < 2$ (superdiffusion):

$$< v_L(t)v_L(0) > \sim t^{-\beta}$$
, with $\beta < 1$.

The same mechanism is present, for $D_0 = 0$ and special values of ω , in the Lagrangian chaos in the oscillating rolls.

An example of anomalous diffusion

Lagrangian chaos in 2*d*: $< x^2(t) > vs t$, with $D_0 = 0$ and $\omega = 1.1$, the dashed line indicates $t^{1.3}$.

The result in the previous system is non an isolated case. Such kind of mechanism is rather common in low dimensional symplectic chaotic systems, e.g. in the standard map

$$\theta_{t+1} = \theta_t + J_t$$
, $J_{t+1} = J_t + K \sin(\theta_{t+1})$

for some peculiar values of K.

The long tail in the correlation function is due to the presence of (weakly unstable) ballistic trajectories.

SOME NATURAL QUESTIONS

* Does the value of the scaling exponent ν allow to determine the shape of $\rho(x,t)$?

* Is the scaling exponent ν (for $< x^2(t) >$) the unique relevant quantity?

In the standard diffusion one has $\nu=1/2$ and a gaussian feature:

$$\Theta(x,t) \sim rac{1}{t^{1/2}} \exp{-C \Big(rac{x}{t^{1/2}}\Big)^2} \; ,$$
 $<|x(t)|^q> \sim t^{q/2}$

Naively, in the case of anomalous diffusion, one could guess the simplest generalization:

$$\Theta(x,t) \sim \frac{1}{t^{\nu}} F_{\nu} \left(\frac{x}{t^{\nu}}\right) , \qquad (3)$$

$$<|x(t)|^{q} > \sim t^{q\nu}$$

where $F_{\nu}()$ is a suitable function, in the Gaussain case $F_{1/2}(z) = exp - Cz^2$.

The above scenario is called **weak anomalous diffusion**: the exponent ν is sufficient to describe the scaling features, and the PdF has a scaling shape.

The existence of anomalous scaling in fully developed turbulence (and other phenomena) suggests that a more complex scenario can appear, namely

$$<|x(t)|^q>\sim t^{q\nu(q)}$$

where $\nu(q)$ is not constant.

In such a case called **strong anomalous diffusion** the PdF cannot have a scaling structure as in (3).

Are there non trivial examples of strong anomalous diffusion?

A first example: Lagrangian Chaos in Rayleigh-Benard convection; for $D_0=0$ for some values of ω , one has $\nu(q)\neq const$.

An example of strong anomalous diffusion

Lagrangian chaos in 2d, $D_0=0$ and $\omega=1.1$: $\nu(q)$ vs q, the dashed line corresponds to 0.65q, the dotted line corresponds to q-1.04 (Castiglione et al 1999).

The Lagrangian Chaos in Rayleigh-Benard convection is not an isolated case of strong anomalous diffusion (Pikovsky, Artuso, Cristadoro, Klages et al.)

Other examples:

- * 1d intermittent maps
- * Standard Map
- * Levy walks

In particular it is rather common the following shape:

$$q
u(q) \simeq q
u(0)$$
 , for $q < q^*$,

$$q
u(q) \simeq q - const.$$
, for $q > q^*$.

In some stochastic processes it is possible to derive, the above shape:

In presence of strong anomalous diffusion there is not a scaling structure of the PdF (Castiglione et al)

Lagrangian chaos in 2d, $D_0=0$ and $\omega=1.1$: rescaled PdF: $p(x/t^{\nu(0)})$ vs $x/t^{\nu(0)}$ for three different times (500, 1000, 2000).

Even in presence of standard diffusion, i.e. $< x^2(t) > \sim t$, the scenario can be not trivial (Forte et al)

For instance in the Levy walk with $\alpha > 2$ one has $\nu(2) = 1/2$, but the PdF does not rescale and $\nu(q) \neq 1/2$ for large values of q

Levy walk, $\alpha = 2.2$, rescaled PdF: $p(x/t^{\nu(2)})$ vs $x/t^{\nu(2)}$ for different times.

A NON ACADEMIC PROBLEM

RELATIVE DISPERSION IN TURBULENCE

The classical result of Richardson in the inertial range

$$< R^{2}(t) > \sim t^{3}$$

where $R(t) = |\mathbf{x}_1(t) - \mathbf{x}_2(t)|$. Now, a posteriori, this result is nothing but a simple consequence of the Kolmogorov scaling $\delta \nu(\ell) \sim \ell^{1/3}$.

What about the effect of intermittency for the relative diffusion? Two possible scenarios:

* Weak anomalous diffusion:

$$< R^{p}(t) > \sim t^{\frac{3}{2}p}$$
;

* Strong anomalous diffusion:

$$< R^p(t) > \sim t^{\alpha(p)}$$

with $\alpha(p) \neq \frac{3}{2}p$.

From the multifractal model one has a prediction for $\alpha(p)$ in terms of D(h) (Boffetta et al):

$$\alpha(p) = \inf_{h} \left[\frac{p+3-D(h)}{1-h} \right]. \tag{4}$$

It is remarkable that, even in presence of intermittency, the Richardson scaling $\alpha(2)=3$ is exact; the (4) has been checked in synthetic turbulence, where the velocity field is random process with the proper statio-temporal statistical features (Boffetta et al) and in direct numerical simulation of the NS equations (Boffetta and Sokolov).

ANOMALOUS DIFFUSION and FRONT PROPAGATION

The simplest reaction-diffusion problem (FKPP 1937): a system with standard diffusion and a reactive terms

$$\frac{\partial \theta}{\partial t} = D_0 \frac{\partial^2}{\partial x^2} \theta + \frac{1}{\tau} f(\theta) , \qquad (5)$$

asymptotically one has a front propagation:

$$\theta(x,t) = F(x - v_f t)$$

where $F(-\infty) = 1$, $F(\infty) = 0$ and, if f'' < 0, the front speed is

$$v_f = 2\sqrt{D_0 f'(0)/\tau}$$
.

$$\theta(x,t) \sim exp\Big[-\frac{(x-X_F(t))}{\zeta}\Big]$$

$$X_f(t) \simeq v_f t$$
, $\zeta = 8\sqrt{D_0 \tau/f'(0)}$

What happen in presence of anomalous diffusion?

For instance we can replace the (5) with

$$\frac{\partial \theta}{\partial t} = \mathcal{L}\theta + \frac{1}{\tau}f(\theta)$$

where \mathcal{L} is linear operator such that, in absence of the reaction term, the diffusion is anomalous.

For the relative diffusion according to Richardson one has

$$\mathcal{L}\theta = \frac{1}{r^{d-1}} \frac{\partial}{\partial r} \Big(K(r) r^{d-1} \frac{\partial}{\partial r} \theta \Big) \ , \ K(r) \propto r^{4/3} \ .$$

There is class of systems where, in spite of the presence of the anomalous diffusion, the front propagation is always standard i.e. $X_F(t) \simeq v_f t$ with a finite v_f , and $\zeta = const$.

For instance if $\nu \neq 1/2$ and the PfD has the shape (which holds for the random shear and the random walk on a comb lattice):

$$ho(x,t) \sim rac{1}{t^{
u}} \exp{-C\left(rac{x}{t^{
u}}
ight)^{rac{1}{1-
u}}}$$

the front propagation is standard (Mancinelli et al).

On the other hand, there are cases where the front propagation can be non standard, i.e.

$$\theta(x,t) \sim exp\Big[-rac{(x-X_F(t))}{\zeta(t)}\Big]$$

with

$$X_F(t) \sim t^{\gamma}$$
, $\zeta(t) \sim t^{\delta}$ with $\delta = \gamma - 1$.

For instance in the Richardson reaction- diffusion equation one has

$$\gamma = 3$$
 , $\delta = 2$.

Front propagation in the Richardson reaction-diffusion equation: $X_F(t)$ vs t, in the insect $\zeta(t)$ vs t, the lines indicate the predictions $X_F(t) \sim t^3$, and $\zeta(t) \sim t^2$.

A simple argument

For the front propagation in presence of anomalous diffusion

* In absence of the reactive term

$$\rho(x,t) \sim exp - C\left(\frac{x}{t^{\nu}}\right)^{\alpha}$$

* In presence of the reactive term, at large x, $\theta(x,t) \ll 1$:

$$\theta(x,t) \sim exp\Big[-C\Big(\frac{x}{t^{\nu}}\Big)^{\alpha}+\frac{t}{\tau}\Big]$$

* The front position $X_F(t)$ is determined by the relation

$$-C\left(\frac{X_F}{t^{\nu}}\right)^{\alpha} + \frac{t}{\tau} = 0 \qquad \Longrightarrow \qquad$$

$$X_F(t) \sim t^{\delta} \quad , \quad \delta = \nu + \frac{1}{\alpha}$$

* If $\alpha = 1/(1-\nu)$ one has $\delta = 1$ even if $\nu \neq 1/2$

Sublinear front propagation in systems with subdiffusion (Serva et al 2016)

In order to have a sublinear front propagation it is necessary to have a P(x, t) with very weak tails.

Subdiffusion in a process with memory, an anxious walker

$$x(t+1) = x(t) + \sigma(t)$$
 $\sigma(t) = signx(t)$ with probability $= w(x,t)$ $\sigma(t) = -signx(t)$ with probability $= 1 - w(x,t)$

$$w(x,t) = \frac{1}{2 + \left(\frac{|x|}{t^{\lambda}}\right)^{\eta}}$$

- * If $|x| \ll t^{\lambda}$ we have the usual random walk
- * If $\eta \to \infty$ we have the usual random walk

It is possible to show that

$$< x(t)^2 > \sim t^{2\nu}$$
 , $\nu = min\left[\frac{1}{2}, \frac{\lambda \eta}{1+\eta}\right]$.

In addition in the bulk (i.e $|x|/t^{\nu}$ not too large) one has

$$ho(x,t) \sim rac{1}{t^
u} exp - C \Big(rac{|x|}{t^
u}\Big)^{\eta+1} \; .$$

PdF for $Q(z,t)=t^{\nu}\rho(x,t)$ vs $z=x/t^{\nu}$ the line indicates the prediction

$$ho(x,t) \sim rac{1}{t^
u} exp - C \Big(rac{|x|}{t^
u}\Big)^{\eta+1}$$

Anomalous scaling at different η , from top to bottom $\eta=10.0,5.0,2.0,1.0,0.5,0.2$ and 0.1. In the inset ν vs η with the prediction

$$\nu = \min\Bigl[\frac{1}{2}, \frac{\lambda\eta}{1+\eta}\Bigr]\,.$$

Therefore it seems that

$$\delta = \frac{1 + \lambda \eta}{1 + \eta}$$

- * The previous results are not enough for the asymptotic front behaviour but only for a transient which can be very long.
- * Since the jump probability on the right (left) if x > 0 (< 0) goes to zero for $|x| > O(t^{\lambda})$, the true asymptotic behaviour is

$$x_F(t) \sim t^{\lambda}$$

on the other hand there is a transient

$$extstyle extstyle ext$$

 $X_F(t)$ vs t, with $\lambda=0.55,~\tau=1$ at different η , from bottom to top $\eta=10.0,5.0,2.0,1.0,0.5,0.2$ and 0.1. In the inset, for $\eta=1.0$, the preasymptotic behviour $X_F(t)\sim t^{\delta^*}$ and the asymptotic behaviour $X_F(t)\sim t^{\lambda}$.

Diffusion on a graph

Graphs in a nutshell:

A graph is a set of nodes 1, 2, 3,, N and links $\{A_{ij}\}$ among the nodes: $A_{ij} = 1$, if a link is present otherwise $A_{ij} = 0$.

Diffusion on a graph

$$*$$
 discrete time $p_i(t+1) = \sum_j P_{j o i} \, p_j(t)$

* continuous time
$$\frac{dp_i}{dt} = w \sum_{ij} D_{ij} p_j$$

where $P_{j \to i} > 0$ if $A_{ij} = 1$ (e.g. $P_{j \to i} = \frac{A_{ij}}{n_j}$); $D_{ij} = A_{ij} - n_i \delta_{ij}$ is the Laplacian on the graph, and $n_j = \sum_k A_{kj}$ is number of links of the node j.

3 different dimensions:

- * Fractal dimension d_f : Number of nodes in a ball of radius $\ell \sim \ell^{d_f}$
- * Spectral dimension d_s : Prob(return after a time t) $\sim t^{-d_s/2}$
- * Connectivity dimension d_l : Number of different nodes touched by all the walks of t steps $\sim t^{d_l}$

Usually one has an anomalous (sub) diffusion

$$< x^{2}(t) > \sim t^{d_{s}/d_{f}} , d_{s}/d_{f} \leq 1$$

Reaction-diffusion on a graph

$$\frac{d\theta_i}{dt} = w \sum_{ij} D_{ij}\theta_j + \frac{1}{\tau} f(\theta_i)$$

Consider an initial $\{\theta_i\}$ which is zero apart in a small set of nodes. On a regular lattice (e.g. square) with dimension D=1,2 or 3:

$$M(t) = rac{1}{N} \sum_{i=1}^{N} heta_i(t) \sim t^D$$
.

This corresponds to a linear growth of the "radius"

Numerical simulations on several graphs show

$$M(t) \sim t^{d_l}$$

 $M(t)\tau$ vs t on a T fractal graph, with w=0.5, $d_l=\ln 3/\ln 2\simeq 1.585$ and $d_s=2\ln 3/\ln 5\simeq 1.365$ (Burioni et al).

 $M(t)/\alpha$ vs t ($\alpha=1/\tau$) on a square percolating cluster ($p=p_c\simeq 0.595$), $d_l\simeq 1.67$ (Bianco et al).

An argument

 $S_n(t)$ is the number of distinct sites visited by n independent random walkers, starting from the site 0, after t steps

$$S_n(t) = \sum_{j=0}^{N} (1 - C_{0j}(t)^n)$$

where $C_{0j}(t)$ is the probability that a walker starting from site 0 has not visited site j at time t. When the number of walkers is large $(n \to \infty)$, $C_{0j}(t)^n$ tends to zero if site j has a nonzero probability of being reached in t steps. In this limit, $S_n(t)$ represents all the sites which have nonzero probability of being visited by step t and, $S_n(t) \sim t^{d_l}$. This is precisely the regime observed in the reaction spreading.

Summary

- * Long time velocity correlations can induce anomalous diffusion: $< x^2(t) > \sim t^{2\nu}$ with $\nu > 1/2$.
- * In the strong anomalous diffusion the exponent ν is not enough to describe the statistical features: $<|x(t)|^q>\sim t^{q\nu(q)}$ with $\nu(q)\neq const.$
- * In the reaction/diffusion problem, the presence of the anomalous diffusion has non trivial consequences.

Depending on the system one can have different scenarios:

- a) anomalous diffusion and standard front propagation;
- b) anomalous diffusion and anomalous front propagation.
- * In order to have a sublinear front propagation, i.e. $X_F \sim t^{\delta}$ with $\delta < 1$, it is necessary to have $\rho(x,t)$ with very weak tails (much smaller than those in a Gaussian PdF).

Some References

- * K.Andersen, P. Castiglione, A. Mazzino and A. Vulpiani, Eur. J. Phys. B **18**, 447 (2000);
- * R. Artuso and G. Cristadoro, Phys. Rev. Lett. **90**, 244101 (2003);
- * F. Bianco, S. Chibbaro, D. Vergni and A. Vulpiani, Phys. Rev. E 87, 062811 (2013);
- * G. Boffetta, A.Celani A. Crisanti and A. Vulpiani, Phys. Rev. E 60, 6734 (1999);
- * G. Boffetta and I.M. Sokolov, Phys. Rev. Lett. **88**, 094501 (2002);
- * R. Burioni, S. Chibbaro, D. Vergni and A. Vulpiani, Phys. Rev. E **86**, 055101(R) (2012);

- * P. Castiglione, A. Mazzino, P. Muratore-Ginanneschi and A. Vulpiani, Physica D **134**, 75 (1999);
- * F. Cecconi, D. Vergni and A Vulpiani, Math. Model. Nat. Phen. 11, 107 (2016)
- * G. Forte, F. Cecconi and A.Vulpiani, Eur. J. Phys. B **87**, 102 (2014);
- * R.Klages, G.Radons and I.M.Sokolov (Editors) *Anomalous Transport* (Wiley-VCH, 2008);
- * R. Mancinelli, D. Vergni and A. Vulpiani, Physica D **185**, 175 (2003).
- * A. Pikovsky, Phys. Rev. A 43, 3146 (1991).
- * M. Serva, D. Vergni and A. Vulpiani, Phys. Rev. E **94**, 012141 (2016)