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Filtrations in measure theory
We discuss mainly commutative case
1. A filtration is the decreasing sequence of the sigma-fields of
measurable sets of the space (X, u):

T=RAo DA DAs....

The sigma field g = 2.

Each sigma-field canonically corresponds to the measurable
partition of the space (X, u): each elements of sigma-field 2l are
the sets which are consist with the blocks of that partition. So
filtration uniquely mod 0 generates the decreasing sequence of
the measurable partitions {&,}:

o =& > ...; & — — — partition on the separate points.

Another type of description of the filtration as decreasing sequence
of subalgebras of functions (or, equivalently — sequence of the
operators of mathematical expectation on sigma-fields 2; ):

L®(X,p) D L(Xey, ptgy) ... or Id> Pe > P, ...
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Filtrations arise

e in statistical physics, as filtrations of families of configurations
coinciding outside some volume;

e in the theory of random processes (stationary or not), as the
sequences of “pasts” (or "futures”); — so called "tail filtration”
e in the theory of dynamical systems, as filtrations generated by
orbits of periodic approximations of group actions;

e in the theory of C*-algebras and combinatorics, as tail filtrations
of the path spaces of equipped N-graded locally finite graphs
(Bratteli diagrams). The space of paths T(I') is the same as
Markov compact(not stationary in general) and we can use
terminology of the theory of Markov processes.

Many problems about filtrations have appeared in ergodic theory,
(decreasing sequences of measurable partitions = filtrations of of
sigma-fields in the standard measure space), theory of stochastic
processes (martingale theory), boundaries (Martin, exit,
Poisson-Furstenberg etc.), theory of approximation of the group
actions; VWB-Ornstein criteria etc.
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Two strategy in the theory of stochastic processes:
Kolmogorov (K), and Dynkin=Dobrushin (D=D)

K — ordinary- transition probability, or direct filtrations) D=D —
cotransition probability, or (inverse) filtrations

Cotransition probabilities = conditional measure of the filtrations;
Bratteli diagrams with the systems of cotransition probabilities
called equipped diagram (do not confuse with Bratteli-Vershik
diagram).

The cotransition probability is a cocycle on the equivalence
relation: B(x,y) = Zgg;g In Markov case /3 depends on the last
joint coordinate of x and y.
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Two problems

1) Measure-theoretical posing of problem.

To decompose given Markov measure onto ergodic components of
filtrations or to find Poisson-Boundary of the given process
(Harmonic analysis)

2) Topological posing of the problem.

To find the ABSOLUTE (Entrance-Exit boundaries) the set
(simplex) of all probability measures on the standard Borel space
with given filtration — systems of cotransition probabilities.

This is the central problem in many areas (representation theory,
dynamical systems, asymptotic combinatorics etc.)

More general problem -the same for ergodic equivalence relations.
Smooth and non-smooth cases; Poulsen and Bauer simplecies.
(Standarndess).



Example: Absolute of the Random Walk on the free groups

Difference with Poisson-Furstenberg boundary EXAMPLE:
Absolute of free group (with A.Malyutin)
(on the blackboard)
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Locally - finite filtrations

L-f filtration is a filtration which has for all n finitely many of the
types of conditional measures. Example of I-f filtration is tail
filtration for a markov chain with finite number of state spaces for
all n (depending on n).

Theorem

Each I-f filtration is isomorphic to the tail filtration for a markov
chain with finite number of state spaces.

Examples. Random walk in random environment.
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New philosophy of the problem. Standarndness

Example of nonsmooth case (Graph of ordered or unordered pairs)
The role of locality!
STANDARDNESS AND HIGHEST 0-1 LAWS
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Tail filtrations on the space of paths of equipped Bratteli
diagram of AF-algebras

We consider the filtrations (decreasing sequences) of commutative
subalgebras of measurable functions and filtration of subalgebras of
AF-algebras.

Let A is an AF-algebra and I =[], I, its Bratteli diagram
(N-graded locally finite graph) I, is n — th (finite) level of graph T.
Consider the space T(I') of paths of graph I'. It is a Cantor
(topological) space (inverse limit of finite spaces) with tail
equivalence relation 7(I') and with tail filtration 2(,,n > 0 in
the space of continuous functions C(T(I"))

If we choose a trace x (central measure on A) then we obtain a
filtration of the past of Markov measure with maximal entropy.
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Tail filtration of AF-algebras and its commutative

counterpart

The general notion of filtrations means a sequence (decreasing in
our case of subalgebras, or sigma-fields.

Now define tail filtration of algebra A — {A,}, corresponding
to the diagram I:

A=AgD A1 DA D ...

An - Z @ ]-)\(u) ® An,m

uerl,

where

and algebras A, , are uniquely defined from the decompositions:
Vn=0,1...:

A=) D M) (©) @ An

uerl,

and A(u) is dimension of u = number of paths form () to u. The
filtration {A,} is the sequences of the commutants.
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Concrete examples of (dyadic) filtrations

1)Bernoulii (tensor product)

2)Random walk (RS);(V,Hoffmann-Rudolf,Parry, etc.)
3)Action of ) Z, Entropy of filtration.

4)Graph of Ordered and Unordered pairs.
(Corresponding Bratteli diagrams, Tower of measures.
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Main example: dyadic AF-algebras
Consider the main partial case, so called dyadic filtrations. In
measure-theoretic case was studied from the end of 60-th. Dyadic
filtration. For AF-algebras:
Definition A filtration {A,} of AF-algebra A called dyadic if
N, An = {constl} and for all n € N:

A = My (C) ®An Vn € N, and ﬂA,, = {const} (x)

If a Bratteli diagram I generates a dyadic filtration then for each
uerl, Mu)=2"

Example: The standard dyadic filtration of AF-algebra is a dyadic
filtration which is isomorphic to the filtration of infinite tensor
product: A = @7° Ma(C) = (Mp(C))®> :

{An}no: An=(QQMA(C),n=1,....
k=n

(Dyadic filtration of AF-algebra (when exists) is an analogue of the
notion of countable tensor product of algebra M>(C))
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General problem about filtrations

Suppose we have two filtrations § and §’

Finite isomorphism: the isomorphism of all finite fragments of it;
Problem: What are the conditions which we must add the finite
isomorphism in order to obtain true isomorphism.

We will consider filtrations either in a standard separable Borel
space, as the filtration of the “pasts” of a discrete time random
process {{,}, —n € N, in the space of realizations of this
process, more generally — as a filtration in the standard separable
measure space (Lebesgue space);

or

as the tail filtration in the path space T(I') of an equipped graded
graph I;

more generally — filtration in the Cantor space (without measure).
The filtration called "discrete” if the conditional filtration
{Ai/Ap; i =0,1,...n— 1} over sigma-field A, for all n are
filtration (hierarchy) of the finite space with measure.
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Limit invariants: Kolmogorov 0-1 Law

Let &,, n < 0 sequence of random variables. The sigma-algebra
Ap =<< €k, k < —n >> - sigma-algebra of the past:

Ag DA DAs. ..,

this is tail filtration of the process £,,n < 0,

Kolmogorov "0 — 1" Law: if £,, n < 0, is Bernoulli process then
N, An = N (trivial sigma-field).

Filtration in the measure space called ergodic, or regular, or
Kolmogorov, or has zero-one-law — if (W is trivial sigma-field):

(2% =,
n

is trivial sigma-fields.
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Bernoulli filtration in commutative case

Definition

Homogeneous standard filtrations of the measure space is a
filtration which is isomorphic in measure theoretic sense to
Bernoulli filtration (or filtration of product type) with arbitrary
components: filtration on the space [[;”(rn, my,), where r, is
finite space with r, € N\ 0 points, and my a uniform measure on
r,. Dyadic filtration: r, =2

We will give a general definition of standard filtration later.
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Homogeneous and semi-homogeneous filtrations -traces,
"central measures” on the space opaths

Filtration called homogeneous if for each n almost all elements of
the partition &, are finite measure- space with the uniform
conditional measure, and number of point are the same for given n.
Filtration called semi-homogeneous if conditional measure of
almost all elements of partition &, is uniform.

Homogeneous filtration whose number of points in one elements of
partition &, equal to r” called r-adic filtration (dyadic for r = 2).
Each discrete ergodic filtration correctly define an ergodic
equivalence relation: two points x, y belongs to the same class if
there exists such n that they belongs to the same element of
partition &,.

A concrete discrete filtration called Markov filtration if is the past
of a one-sided Markov chain with discrete time, with finite list of
transition probabilities and arbitrary state space. Each discrete
filtration can be realized as Markov one.
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Criteria of the standardness for dyadic filtrations

Consider the ergodic dyadic filtration &, (in the form of measurable
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points acts on each block C : |C| = 2" of partition &,,1,... and
consequently acts on the functions on C.

Let n = {Bji, By, ... Bk} -an arbitrary finite measurable partition of
[0, 1] with k blocks. On each block C € &, define a function

fn: C—k:f(c)=1i€k:c= CnNB;. Denote the orbit of action
of the group D, on the vectors {f,(¢)}cec as Orb,(C). Finally
define on the set of orbits of the group D, the metric ry,:

ra(O1, O2) = mingeco, yeo, Pn(X,y), where p, is Hamming metric
on the vectors with value in k

Criteria of standardness Dyadic filtration {£,} is Bernoulli (or
product-type or standard) iff V finite measurable partition 7

n

lim / ra(Orbp(C), Orb(C'))dCC’ = 0.
[0,1]x[0,1]
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Criteria of standardness, continuation

It is natural to fix a trace of algebra and discuss about the image
of AF-algebra in the corresponding /l; representation. It is possible
to have different answer for different traces.

AFC*-algebra is standard if for any indecomposable trace
corresponding tail filtration of the paths is standard.

To describe standard AFC*-algebras.

Criteria for homogeneous for general homogeneous
filtrations, iteration of Kantorovich metric (intrinsic metric)
It is make sense in the case of AF-algebras to distinguish weak and
strong standardness: weak means that in all //; factor
representations the image of algebra is standard in the sense which
is described below.
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Two filtrations {A,}22, and {2},}5°; called finitely isomorphic if
for each N the finite fragments for n=0,1...N of its are
metrically isomorphic.(For each n there exists mp automorphism
T, for each k < n T2, = A, }.

The sets of all conditional measures of almost all elements of the

all partitions £,,n = 1,... are invariants of the finite isomorphism.
Are there other invariants of ergodic filtrations besides the finite
invariants?

The problem of classification of discrete Markov filtrations in the
category of measure spaces or in other categories is deep and quite
topical.
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What does it mean standardness

We define a class of ergodic filtrations — Standard Filtrations.
Definition. A filtration {2} of the measure space called standard
if is any quotient filtration over partition & : {24,/&} which is
finitely isomorphic to it is isomorphic.

This class has the following properties:

Theorem 1)two standard ergodic filtrations are isomorphic iff they
are finitely isomorphic; e.g. the standard ergodic filtration has no
metric invariants except finite.

2)each ergodic filtration is finitely isomorphic to a standard
filtrations.

Theorem So the class of all ergodic filtration is a fibre bundle over
set of standard filtrations.

Standardness is generalization of independence (”eventually
independence” ).
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We formulate the criteria in terms of past of Markov processes
{Xh,n <0}

Theorem(standard criteria). The Markov chain

{xn,n < 0,x, € Xp} (X, is the state space at moment N and it
could be depend on n) the filtration of the past of it called standard
if Ve >0,IN € N Vn< —Nand A, C X,Prob(A) > 1 — e with
the following property

E,,, x Dist(Prob(.|x,), Prob(.|x})) < €, xn, X, € X,

where Dist is a Kantorovich-like metric between conditional
measures Prob(.|x,) as a measures "on the trees of the future’
(see below).

Theorem(V — 71) The standard dyadic (more generally,
homogeneous) filtration is isomorphic to Bernoulli filtration (=the
filtration of the past of the classical Bernoulli scheme).
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Comments

The condition in the definition asserts the convergence in
probability of the conditional measures in the very strong (unform)
metric which take care about hierarchy of the future of the
trajectories. This is further strengthen of the martingale theorem
which asserts the simple convergence of conditional structures and
took place for all ergodic filtrations.

Criteria:

lim/x/xpn(x,y)du(X)du(yFO

The convergence in the condition is a strong generalization of
weak convergence of empirical (conditional) distributions to the
unconditional distribution.

There is no limit distribution but there are very strong
concentration of the many dimensional distributions up to coupling
which preserve the hierarchy of conditional measures.



Criteria of Standardness in term of Markov processes



Criteria of Standardness in term of Markov processes

Let X space of the trajectories of the Markov process (n < 0), &,
-is n-th partition of X of the filtration



Criteria of Standardness in term of Markov processes

Let X space of the trajectories of the Markov process (n < 0), &,
-is n-th partition of X of the filtration Define a sequence of
semi=metrics as follows: pg = p, and

Pri1(x,y) = ko, (), p €0y

where C(x), C(y) — elements of &, which contain x, y, and k, is
revised Kantorovich metric for measures on the tree which was
defined before.



Criteria of Standardness in term of Markov processes

Let X space of the trajectories of the Markov process (n < 0), &,

-is n-th partition of X of the filtration Define a sequence of

semi=metrics as follows: gy = p, and
Pri1(x,y) = ko (1), u )

where C(x), C(y) — elements of &, which contain x, y, and k, is

revised Kantorovich metric for measures on the tree which was
defined before.

Definition
A filtration {2, }nen is called standard if

im [ [ ey duy) = 0 (1)

n—oo

for any initial metric p.
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What does it mean NON-standardness and " highest 0-1

Laws"
EVANESCENT (or VIRTUALLY) measure metric spaces and
Gromov-V. invariants of m-m-spaces.
Theorem on classification of the measure-metric spaces.
7 = (X, u, p) admissible metric-measure space.
Consider a map

F (X, 1) = Mxo(Ry),

where
F({xn}n) = {p(xi, %) }ikin, ik =1...

Then random matrix

Fi(u™>) = Dt
(" matrix distribution”) is the complete invariant of the triple 7 w.r.
to measure preserving isometry. The map 7 — —— > D, is

continuous in the right sense. What happened if there is a
sequence of m — m spaces which does not converge?
Virtual matrix distributions.



