High temperature regime in spatial random permutations

Lorenzo Taggi, TU Darmstadt (Joint work with Volker Betz, TU Darmstadt)

Definition: Nearest neighbor SRP with forced long cycle

Set $\Lambda_L = [0, L]^d \cap \mathbb{Z}^d$ and fix two sites $z^1, z^2 \in \Lambda_L$

■ Forced open cycle between z^1 and z^2

$$\mathcal{S}_{\Lambda_L}^{z^1 o z^2} = \text{set of bijections}$$

 $\pi: \Lambda_L \setminus \{z^1\} \to \Lambda_L \setminus \{z^2\}$ with the constraint that $\pi(x) = x$ or $\pi(x) \sim x$ for all $x \in \Lambda_L$.

■ Gibbs measure depending on $\alpha \in [0, \infty)$

$$\mathbb{P}_{\Lambda}(\{\pi\}) = \frac{1}{Z(\Lambda)} \exp\Big(-\alpha \sum_{x \in \Lambda} |\pi(x) - x|\Big),$$

Actual settings

1. forced open cycle between opposite sides.

 z_1 = centre of the boundary side of the box,

$$\mathcal{S}_{\Lambda_L} = \sum_{z^2 \in \text{ opp. side to } z^1} \mathcal{S}_{\Lambda_L}^{z^1 o z^2}$$

2. *only cycles*, namely nearest-neighbours permutations $\pi : \Lambda \to \Lambda$.

Difficulties and results

Difficulties and challenges

- 1. no classical spin system (bijections introduce constraints)
- 2. energy of the open cycle much smaller than the energy of the system
- 3. no comparison between the law of π and the law of π conditional on some local features.
- Results There exists $\alpha_c < \infty$ such that for all $\alpha > \alpha_c$,
 - 1. No long cycles exist
 - 2. Exponential decay of correlations
 - 3. Orstein-Zernike behaviour for the forced open cycle

in any dimension of \mathbb{Z}^d .

Orstein-Zernike method

Orstein-Zernike method

Define a proper function on the sample space $f(\pi) = \{(r_1, \xi_1), (r_2, \xi_2), \dots (r_N, \xi_N)\}$, such that

■ Markov process $(r_i, \xi_i) \rightarrow (r_{i+1}, \xi_{i+1})$,

$$P(r_{i+1}, \xi_{i+1} \mid (r_1, \xi_1), \dots (r_i, \xi_i)) = Q_L(r_{i+1}, \xi_{i+1}, r_i, \xi_i)$$

■ Regeneration surfaces are defined to be symmetric under a reflection with respect to $r_{i,2}$. This implies that

$$E[(r_{i+1}-r_i)\cdot\mathbf{e}_2\mid r_i,\xi_i]=0.$$

for any r_i , ξ_i .

■ We prove that,

$$P(|r_{i+1}-r_i| > D\log(L) \mid r_i, \xi_i) \leqslant C \exp\{-\sqrt{D} c\}$$

with C and c independent on ξ_i and positive.

Orstein-Zernike method

Define a proper function on the sample space $f(\pi) = \{(r_1, \xi_1), (r_2, \xi_2), \dots (r_N, \xi_N)\}$, such that

■ Markov process $(r_i, \xi_i) \rightarrow (r_{i+1}, \xi_{i+1})$,

$$P(r_{i+1}, \xi_{i+1} \mid (r_1, \xi_1), \dots (r_i, \xi_i)) = Q_L(r_{i+1}, \xi_{i+1}, r_i, \xi_i)$$

Regeneration surfaces are defined to be symmetric under a reflection with respect to $r_{i,2}$. This implies that

$$E[(r_{i+1}-r_i)\cdot\mathbf{e}_2\mid r_i,\xi_i]=0.$$

for any r_i , ξ_i .

■ We prove that,

$$P(|r_{i+1}-r_i| > D\log(L) \mid r_i, \xi_i) \leqslant C \exp\{-\sqrt{D} c\}$$

with C and c independent on ξ_i and positive.

We define a set of indep. r.v. $(\sigma_A)_{A\subset\mathbb{Z}^d}$, where σ_A is distributed like \mathbb{P}_A .

■ Step 1:

- 1. choose a site x_1 on the vertical line
- 2. sample σ_{Λ} and keep only the cycle intersecting x_1 , γ_1
- 3. define $B_1 = \Lambda \setminus \gamma_1$
- 4. define the "non matching set" \mathcal{N}_1

- 1. choose a site x_2 of the non-matching set \mathcal{N}_1
- 2. sample σ_{B_1} but keep only the cycle intersecting x_2 , γ_2
- 3. define $B_2 = B_1 \setminus \gamma_2$
- 4. define the "non matching set" \mathcal{N}_2

We define a set of indep. r.v. $(\sigma_A)_{A\subset\mathbb{Z}^d}$, where σ_A is distributed like \mathbb{P}_A .

■ Step 1:

- 1. choose a site x_1 on the vertical line
- 2. sample σ_{Λ} and keep only the cycle intersecting x_1 , γ_1
- 3. define $B_1 = \Lambda \setminus \gamma_1$
- 4. define the "non matching set" \mathcal{N}_1

- 1. choose a site x_2 of the non-matching set \mathcal{N}_1
- 2. sample σ_{B_1} but keep only the cycle intersecting x_2 , γ_2
- 3. define $B_2 = B_1 \setminus \gamma_2$
- 4. define the "non matching set" \mathcal{N}_2

We define a set of indep. r.v. $(\sigma_A)_{A\subset\mathbb{Z}^d}$, where σ_A is distributed like \mathbb{P}_A .

■ Step 1:

- 1. choose a site x_1 on the vertical line
- 2. sample σ_{Λ} and keep only the cycle intersecting x_1 , γ_1
- 3. define $B_1 = \Lambda \setminus \gamma_1$
- 4. define the "non matching set" \mathcal{N}_1

- 1. choose a site x_2 of the non-matching set \mathcal{N}_1
- 2. sample σ_{B_1} but keep only the cycle intersecting x_2 , γ_2
- 3. define $B_2 = B_1 \setminus \gamma_2$
- 4. define the "non matching set" \mathcal{N}_2

We define a set of indep. r.v. $(\sigma_A)_{A\subset\mathbb{Z}^d}$, where σ_A is distributed like \mathbb{P}_A .

■ Step 1:

- 1. choose a site x_1 on the vertical line
- 2. sample σ_{Λ} and keep only the cycle intersecting x_1 , γ_1
- 3. define $B_1 = \Lambda \setminus \gamma_1$
- 4. define the "non matching set" \mathcal{N}_1

- 1. choose a site x_2 of the non-matching set \mathcal{N}_1
- 2. sample σ_{B_1} but keep only the cycle intersecting x_2 , γ_2
- 3. define $B_2 = B_1 \setminus \gamma_2$
- 4. define the "non matching set" \mathcal{N}_2

We define a set of indep. r.v. $(\sigma_A)_{A\subset\mathbb{Z}^d}$, where σ_A is distributed like \mathbb{P}_A .

■ Step 1:

- 1. choose a site x_1 on the vertical line
- 2. sample σ_{Λ} and keep only the cycle intersecting x_1 , γ_1
- 3. define $B_1 = \Lambda \setminus \gamma_1$
- 4. define the "non matching set" \mathcal{N}_1

- 1. choose a site x_2 of the non-matching set \mathcal{N}_1
- 2. sample σ_{B_1} but keep only the cycle intersecting x_2 , γ_2
- 3. define $B_2 = B_1 \setminus \gamma_2$
- 4. define the "non matching set" \mathcal{N}_2

We define a set of indep. r.v. $(\sigma_A)_{A\subset\mathbb{Z}^d}$, where σ_A is distributed like \mathbb{P}_A .

■ Step 1:

- 1. choose a site x_1 on the vertical line
- 2. sample σ_{Λ} and keep only the cycle intersecting x_1 , γ_1
- 3. define $B_1 = \Lambda \setminus \gamma_1$
- 4. define the "non matching set" \mathcal{N}_1

- 1. choose a site x_2 of the non-matching set \mathcal{N}_1
- 2. sample σ_{B_1} but keep only the cycle intersecting x_2 , γ_2
- 3. define $B_2 = B_1 \setminus \gamma_2$
- 4. define the "non matching set" \mathcal{N}_2

■ Step *i*:

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

■ Step *i*:

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

■ Step *i*:

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

■ Step *i*:

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

We have the first cluster. We start again from a new site on the vertical line.

■ Step *i*:

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

■ Step *i*:

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

■ Step *i*:

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

■ Step *i*:

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

■ Step *i*:

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

Step i:

- 1. choose a site x_i of the non-matching set \mathcal{N}_i
- 2. sample $\sigma_{B_{i-1}}$ and keep only the cycle intersecting x_i , γ_i
- 3. define $B_i = B_{i-1} \setminus \gamma_i$
- 4. define the "non matching set" \mathcal{N}_i

Last step: We sample $\sigma_{\rm \Lambda\backslash clusters}.$

Lemma

If we put together the cycles that we kept at any step, we have a permutation which is distributed like \mathbb{P}_Λ

The procedure defines a stochastic process \mathcal{N}_1 , \mathcal{N}_2 , \mathcal{N}_3 , ...

Proposition There exists $\alpha_c < \infty$ such that $\forall \alpha > \alpha_c$ the following holds. Namely, conditional on any realization of the procedure up to the step i, we have that $\forall n \in \mathbb{N}$,

$$P(|\gamma_{i+1}| > n \mid x_0, \sigma_{\Lambda}, \dots x_i, \sigma_{B_i})$$

 $\leq C \exp\{-cn\},$

where $c(\alpha)$, $C(\alpha) > 0$, $|\gamma_{i+1}|$ cardinality of γ_{i+1} .

Theorem Let $(W_x)_{x \in \text{ vert line}}$ be a sequence of i.i.d. rand. var. distributed like the total population of a Galton-Watson process. Then, $\forall n \in \mathbb{N}$,

 $\mathbb{P}_{\Lambda}(\text{ max distance from vert. line } > n)$ $\leq P(\exists x \in \text{ vert. line } : W^{\times} > n)$

Open problems

1. convergence to Brownian motion under diffusive scaling?

2. understanding regime of small α

3. monotonicity with respect to $\boldsymbol{\alpha}$