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Introduction

My talk is based on the following article:

A. Connes and E. J. Woods, Hyperfinite von Neumann algebras
and Poisson boundaries of time dependent random walks, Pacific
J. Math. 137 (1989), no 2, 225-243.

It contains the statement of the two theorems which I am going to
describe:

1 the description of a state on a hyperfinite von Neumann
algebra (due to A. Connes);

2 the ergodic decomposition of a Markov measure via harmonic
functions (a classical result in J. Neveu 64).
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Mackey range

Cartan subalgebras

Definition (Vershik, Feldman-Moore)

An abelian subalgebra B of a von Neumann algebra A is called a
Cartan subalgebra if

1 B is a masa;

2 B is regular;

3 there exists a faithful normal conditional expectation
EB : A→ B.

Note that EB is unique.

The basic example is A = Mn(C) and B = Dn(C), the subalgebra
of diagonal matrices. The next theorem says that the general case
looks like this basic example.
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Feldman-Moore theorem

Theorem (Feldman-Moore 77)

Let B be a Cartan subalgebra of a von Neumann algebra A on a
separable Hilbert space. Then there exists a countable standard
measured equivalence relation R on (X , µ), a twist σ ∈ Z 2(R,T)
and an isomorphism of A onto W ∗(R, σ) carrying B onto the
diagonal subalgebra L∞(X , µ). The twisted relation (R, σ) is
unique up to isomorphism.

In our basic example, X = {1, . . . , n} and R = X × X (the twist σ
is trivial). The most general finite dimensional von Neumann
algebra is given by an arbitrary equivalence relation R on a finite
set X .
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Normal states on type I von Neumann algebras

The following result is well known:

Theorem (textbook)

Let ϕ be a normal state on B(H), where H is a Hilbert space.
Then there exists a Cartan subalgebra B such that ϕ = µ ◦ EB ,
where µ is the restriction of ϕ to B.

Indeed, ϕ = Tr(Ω.), where Ω is a positive trace-class operator.
The Cartan subalgebra B is determined by an orthonormal basis of
eigenvectors of Ω. The probability measure µ is given by the
eigenvalues of Ω.
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Normal states on hyperfinite von Neumann algebras 1

It may not be as well known that this result remains valid for any
hyperfinite von Neumann algebra.

Theorem (Connes 75, version 1)

Let ϕ be a faithful normal state on a hyperfinite von Neumann
algebra A. Then there exists a Cartan subalgebra B such that
ϕ = µ ◦ EB , where µ is the restriction of ϕ to B.

The proof proceeds in two steps.

1) First one shows the existence of an increasing sequence (An) of
f.d. subalgebras with weakly dense union such that each An is
globally invariant under the modular automorphism group σϕ of
the state ϕ.
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Nested Cartan subalgebras

2) Second one constructs a Cartan subalgebra Bn of An such that

ϕ|An
= ϕ|Bn

◦ EBn

and (An−1,Bn−1) ⊂ (An,Bn) in the sense that

Bn−1 ⊂ Bn

the normalizer of Bn−1 in An−1 is contained in the normalizer
of Bn in An.

Because of the invariance under the modular group, there exists an
expectation Fn : An → An−1 such that ϕ|An

= ϕ|An−1
◦ Fn.

Inclusions and expectations are conveniently described by Bratteli
diagrams.
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Bratteli diagram of an inclusions of f.d. C*-algebras

The following diagram represents an inclusion of (A1,B1) in
(A2,B2) where A1 = M2(C)⊕ C⊕M3(C),
B1 = D2(C)⊕ C⊕ D3(C) and
A2 = M8(C)⊕M3(C)⊕M3(C)⊕M5(C),
B2 = D8(C)⊕ D3(C)⊕ D3(C)⊕ D5(C).

2 1 3

Theorem (Bratteli 72)

These diagrams classify all inclusions of f.d. C*-algebras.
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path model of the inclusion

Xi is the set of paths xi ending at level i ; Ri is the set of pairs
(xi , x

′
i ) ending at the same vertex.

x1 x0
1

y y0

j(f )(yx1, y
′x ′1) =

{
f (x1, x

′
1) if y = y ′

0 if y 6= y ′
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Expectations of f.d. C*-algebras

The following diagram represents a faithful expectation
F : A2 → A1:

p1 p2 p3

p4 p5

where pi > 0 and p1 + p1 + p3 + p4 + p5 = 1.

Theorem

These diagrams classify all faithful expectations of f.d. C*-algebras.
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Construction of the Cartan subalgebra

Proof. One chooses a Cartan subalgebra B1 ⊂ A1. The problem is
to find a Cartan subalgebra B2 ⊂ A2 such that (A1,B1) ⊂ (A2,B2)
and making the following diagram commutative

A2
E2−−−−→ B2

F

y F|B2

y
A1

E1−−−−→ B1

which is always possible.
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path model of the expectation

This gives the following expression of the expectation.

x1 x0
1

y

F (g)(x1, x
′
1) =

∑
y

p(y)g(yx1, yx
′
1)

where the sum runs over all edges y emanating from the common
vertex r(x1) = r(x ′1).
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Normal states on hyperfinite von Neumann algebras 2

The Bratteli diagram description of the inclusions and the
expectations given above leads to an equivalent but more
picturesque description of a faithful normal state on a hyperfinite
von Neumann algebra.

Theorem (Connes 75, version 2)

Each faithful normal state on a hyperfinite von Neumann algebra
can be described as a random walk on a Bratteli diagram.

Let us explain this statement.
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Bratteli diagrams

Definition

A Bratteli diagram is a directed graph E ⇒ V where
V =

∐∞
n=0 V (n), E =

∐∞
n=1 E (n) and for each n ≥ 1,

s(E (n)) = V (n − 1) and r(E (n)) = V (n), where s(e) and r(e) are
respectively the source and the range of the edge e.
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Pascal triangle

We shall use the Pascal triangle as an illustration.
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Random Walk on a Bratteli diagram

Definition

Let E ⇒ V be a a Bratteli diagram.

A transition probability is a map p assigning to each vertex
v ∈ V a probability measure p(v) on the set of edges
Ev = s−1(v) emanating from v .

An initial probability measure is a probability measure ν0 on
the set of initial vertices V (0).

A random walk is a pair (p, ν0), where p is a transition
probability and ν0 is an initial probability measure.
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Transition probability on Pascal triangle

Let 0 < t < 1 and s = 1− t:

s t

s t s t

s t s t s t

s t s t s t s t

This is the simple random walk on Z.
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The NC probability space of a random walk

Let (p, ν0) be a random walk on a Bratteli diagram E ⇒ V . We
define:

X , called the path space, is the space of infinite paths
x = . . . x2x1

R is the tail equivalence relation on X : (x , y) ∈ R iff there is
N such that xn = yn for n > N.
µ = ν0p is the Markov measure on X constructed from
(p, ν0).

As we shall see, µ is quasi-invariant under R and Connes’ theorem
can be rephrased as

Theorem (Connes 75, version 2)

Let ϕ be a faithful normal state on a hyperfinite von Neumann
algebra A. Then there exists a random walk (p, ν0) on a Bratteli
diagram E ⇒ V such that (A, ϕ) is isomorphic to (W ∗(R), µ ◦ E ).
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The NC space of the simple random walk.

Let 0 < t < 1 and s = 1− t:

s t

s t s t

s t s t s t

s t s t s t s t

This random walk gives the hyperfinite factor of type II1 (for any
t): the Markov measure gives a trace.
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The RN derivative of a measured equivalence relation.

The invariants of the above von Neumann algebra A can be
computed through the faithful normal state ϕ. At the level of the
measured equivalence relation (X ,R, µ), the most significative

object is the Radon-Nikodým derivative Dµ = d(r∗µ)
d(s∗µ) .

Therefore, the first task is to compute this RN derivative in terms
of the random walk. We first give a definition.

Definition

Let G be a group. A map D : R → G is called a quasi-product
cocycle if there exist a map q : E → G , called a potential of D,
such that D(za, zb) = q(b)−1q(a) where
q(an . . . a2a1) = q(an) . . . q(a2)q(a1).
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The RN derivative of a random walk.

A crucial observation is that the RN derivative of a random walk
does not depend on the transition probability p but only on the
backward transition probability!

Theorem

The above RN derivative Dµ is the quasi-product cocycle defined
by the backward transition probability q : E → R∗+.

The following diagram illustrates the backward transition
probability:
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The backward transition probability.

E(n)

(V (n), ⌫n) (V (n� 1), ⌫n�1)

(r,qn) (s,pn)

The measures νn on V (n), constructed by induction, are the
one-dimensional distributions of the random walk (recall that the
initial one-dimensional distribution ν0 is given). The backward
transition probability corresponds to the disintegration along the
r -fibers of the lifted measure νn−1 ◦ pn on E (n):

νn−1 ◦ pn = νn ◦ qn
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One-dimensional distributions on the Pascal triangle

1

1-t t

(1� t)2 2t(1� t) t2

(1� t)3 3t(1� t)2 3t2(1� t) t3

(1� t)4 4t(1� t)3 6t2(1� t)2 4t3(1� t) t4
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Backward transition probability on the Pascal triangle

1 1

1 1
2

1
2 1

1 1
3

2
3

2
3

1
3 1

1 1
4

3
4

3
6

3
6

3
4

1
4 1

The backward transition probability does not depend on t.
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The Mackey range

It is known that the flow of weights of the von Neumann algebra
W ∗(R) is the Mackey range of the cocycle D : R → R∗+. Let us
recall its construction. One first defines the equivalence relation
R(D) on X × R∗+:

((x , s), (y , t)) ∈ R(D)⇔ (x , y) ∈ R and s = D(x , y)t

The Mackey range of the cocycle D is the standard quotient

Ω = (X × R∗+)//R(D)

(or space of ergodic components of µ×Haar with respect to
R(D)) defined by

L∞(Ω) = L∞(X × R∗+)R(D)

It is naturally an R∗+-space.
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Matrix-valued random walks

Since D is a quasi-product cocycle, the equivalence relation R(D)
is also given by a (Borel) Bratteli diagram. Therefore, our problem
is reduced to the computation of the ergodic components of a
Markov measure. Moreover, this procedure also works when R∗+ is
replaced by an arbitrary locally compact group G and the
quasi-product cocycle is defined by a labeling Φ : E → G .

Definition (Connes-Woods 1989)

A matrix-valued random walk on a group consists of:

A Bratteli diagram (V ,E );

a group G ;

a map Φ : E → G and

a random walk (p, ν0) on (V ,E ).
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Adams-Elliott-Giordano theorem

Theorem (Elliott-Giordano 93 and Adams-Elliott-Giordano 94)

Any amenable G-space is the Mackey range of a matrix-valued
random walk.

Remarks

1 This is a sort of converse to a well known result of Zimmer:
the action of an arbitrary locally compact group on a Poisson
boundary is amenable.

2 Even when the G -space is reduced to a point, the theorem is
not trivial.

3 Part of the joint project with T. Giordano is to extend the
theorem to the case when G is a groupoid and to give
applications.
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Borel Bratteli diagrams

Random walks on Bratteli diagrams are examples of
time-dependent Markov chains. In order to recover the general
theory of Markov chains, it suffices to introduce Borel Bratteli
diagrams.

Definition

A Borel graph is a graph E ⇒ V where the sets of edges E
and the set of vertices V are endowed with a Borel structure
and the source and range maps are Borel.

A Borel Bratteli diagram is a Bratteli diagram which is a Borel
graph.
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Transition probabilities

Markov chains are defined by a transition probability.

Definition

Let E ⇒ V be a Borel Bratteli diagram.

A transition probability p assigns to each v ∈ V (n − 1) a
probability measure pv on s−1(v) and the map v 7→ pv is
Borel.

A backward transition probability q assigns to each w ∈ V (n)
a probability measure qw on r−1(w) and the map w 7→ qw is
Borel.
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Going into the future and into the past

Starting from an initial measure ν0 on V (0), we can construct by
induction the the one-dimensional distributions νn on V (n) and the
backward transition probability q by the formula

νn−1 ◦ pn = νn ◦ qn

of the diagram

E(n)

(V (n), ⌫n) (V (n� 1), ⌫n�1)

(r,qn) (s,pn)

seen earlier.
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Ergodic decomposition

Recall that the Mackey range of a matrix-valued random walk is
the space of ergodic components of a Markov measure on the path
space of a Bratteli diagram.

We consider now the general problem: given a random walk
(p, ν0), where p is a transition probability and ν0 an initial measure
on a Borel Bratteli diagram, identify the space of ergodic
components of the associated Markov measure on the path space
under the tail equivalence relation.

Definition

The tail boundary of a random walk on a Bratteli diagram is
defined as the space of ergodic components of the Markov
measure.
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q-measures

Given a Borel Bratteli diagram (V ,E ), we define the space X of
infinite paths. More generally, define for all n the space X|n of
infinite paths starting at level n. We have a sequence of quotient
maps

X
π1−→ X|1

π2−→ X|2
π3−→ . . .

πn−→ X|n
πn+1−−−→ . . .

A backward transition probability q defines an inductive system of
expectations

B(X )
q1−→ B(X|1)

q2−→ . . .
qn−→ B(X|n)

qn+1−−→

Definition

A q-measure is a measure on X which factors through all
expectations qn . . . q2q1.
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Markov measures and q-measures

The key of the identification of the tail boundary is the following
observation.

Theorem

For a bounded measure µ on X with one-dimensional distributions
νn, the following conditions are equivalent:

1 µ is a q-measure

2 µ is the Markov measure of a random walk (p, ν0) where p
and q are related by νn−1 ◦ pn = νn ◦ qn.

It is important for the sequel to note that the sequence (νn) is
q-harmonic, i.e. νn−1 = s∗(νn ◦ qn) and that µ can be
reconstructed from q and (νn) (as well as from p and ν0).
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Bounded harmonic sequences

Definition

Let (p, ν0) be a random walk. A bounded harmonic sequence is a
sequence (hn) where hn ∈ L∞(V (n), νn), hn−1 = pn(hn ◦ r) and
sup ‖hn‖∞ <∞. These sequences form a Banach space H(p, ν0),
which is the projective limit of

L∞(V (0), ν0)
p1←− L∞(V (1), ν1)

p2←− . . . pn←− L∞(V (n), νn)
pn+1←−− . . .

where the maps are the expectations defined by the transition
probability p.
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Identification of the tail boundary

This gives the ergodic decomposition of a Markov measure under
tail equivalence:

Theorem (Neveu 1964)

Let (p, ν0) be a random walk. We denote by X its infinite path
space and by R the tail equivalence relation and by µ the Markov
measure. There is a natural isomorphism between the Banach
spaces L∞(X , µ)R and H(p, ν0).

It suffices to specialize the bijection given earlier between
q-measures µ′ and q-harmonic sequences (ν ′n) to

µ′ = f µ ⇔ (ν ′n = hnνn)

where (νn) its one-dimensional distributions, f ∈ L∞(X , µ)R and
(hn) ∈ H(p, ν0).
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Further Developments

Let me conclude by mentioning three developments.

1 Extension of the Connes-Woods construction to an arbitrary
Markov chain.

2 Matrix-valued random walks on a groupoid and extension of
the Adams-Elliott-Giordano’s theorem.

3 Random walks on P-graphs, where P is an arbitrary
semigroup rather than the semigroup of integers.



Hyperfinite von Neumann Algebras
Markov Chains

Further Developments

Further Developments

Let me conclude by mentioning three developments.

1 Extension of the Connes-Woods construction to an arbitrary
Markov chain.

2 Matrix-valued random walks on a groupoid and extension of
the Adams-Elliott-Giordano’s theorem.

3 Random walks on P-graphs, where P is an arbitrary
semigroup rather than the semigroup of integers.



Hyperfinite von Neumann Algebras
Markov Chains

Further Developments

Further Developments

Let me conclude by mentioning three developments.

1 Extension of the Connes-Woods construction to an arbitrary
Markov chain.

2 Matrix-valued random walks on a groupoid and extension of
the Adams-Elliott-Giordano’s theorem.

3 Random walks on P-graphs, where P is an arbitrary
semigroup rather than the semigroup of integers.



Hyperfinite von Neumann Algebras
Markov Chains

Further Developments

Further Developments

Let me conclude by mentioning three developments.

1 Extension of the Connes-Woods construction to an arbitrary
Markov chain.

2 Matrix-valued random walks on a groupoid and extension of
the Adams-Elliott-Giordano’s theorem.

3 Random walks on P-graphs, where P is an arbitrary
semigroup rather than the semigroup of integers.



Hyperfinite von Neumann Algebras
Markov Chains

Further Developments

The End

Thank you for your attention!
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