Splitting characterizations of point processes

Mathias Rafler, TU Berlin

joint work with Hans Zessin and Benjamin Nehring

Yerevan, September 10, 2016
Warm-up for splitting

Direct problem

N balls

- compute $\mathcal{L}(N_q, N_q^*)$
- compute $\mathcal{L}(N_q^*|N_q) =: \Upsilon(N_q, \cdot)$
Warm-up for splitting
Direct problem

- compute $\mathcal{L}(N_q, N_q^*)$
- compute $\mathcal{L}(N_q^*|N_q) =: \gamma(N_q, \cdot)$
Warm-up for splitting

Direct problem

- compute $\mathcal{L}(N_q, N_q^*)$
- compute $\mathcal{L}(N_q^*|N_q) = \Upsilon(N_q, \cdot)$
Warm-up for splitting
Indirect problem

Now $\mathcal{L}(N)$ unknown

N_q balls
Warm-up for splitting

Indirect problem

Now $\mathcal{L}(N)$ unknown

$\gamma(N_q, \cdot)$

N_q balls

$\mathcal{L}(N_q^* | N_q) = \gamma(N_q, \cdot)$
Warm-up for splitting
Indirect problem

Now $\mathcal{L}(N)$ unknown

$\gamma(N_q, \cdot)$

N_q balls

$\mathcal{L}(N_q^*|N_q) = \gamma(N_q, \cdot)$

Which N satisfy the splitting equation

$Ef(N_q, N_q^*) = E\left[E[f(N_q, N_q^*)|N_q] \right] = \int\int f(k, l)\gamma(k, d\ell)\mathbb{P}_q(d\ell)$
Warm-up for splitting
Indirect problem

Now $\mathcal{L}(N)$ unknown

$\Upsilon(N_q, \cdot)$

Which N satisfy the (dependent) convolution equation

$$\mathbb{E}g(N) = \mathbb{E} \left[\mathbb{E}[g(N_q + N_q^*)|N_q] \right] = \int \int g(k + l) \Upsilon(k, dl) \mathbb{P}_q(dk)$$
N_q is observed, conditional law of N_q^* is . . .

Example 1 \(\Upsilon(k, \cdot) = \text{Poi}(1 - q); \)
then \(N \sim \text{Poi}(1) \) and this is the only choice!

Example 2 \(\Upsilon(k, \cdot) = \text{Bin} \left(n - k, \frac{p(1-q)}{1-pq} \right); \)
then \(N \sim \text{Bin}(n, p) \)

Example 3 \(\Upsilon(k, \cdot) = \text{NegBin} \left(n + k, p(1 - q) \right); \)
then \(N \sim \text{NegBin}(n, p) \)
N_q is observed, conditional law of N_q^* is...

Example 1 $\gamma(k, \cdot) = \text{Poi}(1 - q)$; then $N \sim \text{Poi}(1)$ and this is the only choice!

Example 2 $\gamma(k, \cdot) = \text{Bin} \left(n - k, \frac{p(1-q)}{1-pq} \right)$; then $N \sim \text{Bin}(n, p)$

Example 3 $\gamma(k, \cdot) = \text{NegBin} \left(n + k, p(1 - q) \right)$; then $N \sim \text{NegBin}(n, p)$
N_q is observed, conditional law of N_q^* is...

Example 1 \(\Upsilon(k, \cdot) = \text{Poi}(1 - q); \)
then \(N \sim \text{Poi}(1) \) and this is the only choice!

Example 2 \(\Upsilon(k, \cdot) = \text{Bin} \left(n - k, \frac{p(1-q)}{1-pq} \right); \)
then \(N \sim \text{Bin}(n, p) \)

Example 3 \(\Upsilon(k, \cdot) = \text{NegBin} \left(n + k, p(1 - q) \right); \)
then \(N \sim \text{NegBin}(n, p) \)
N_q is observed, conditional law of N_q^* is . . .

Example 1 $\Upsilon(k, \cdot) = \text{Poi}(1 - q)$; then $N \sim \text{Poi}(1)$ and this is the only choice!

Example 2 $\Upsilon(k, \cdot) = \text{Bin} \left(n - k, \frac{p(1-q)}{1-pq} \right)$; then $N \sim \text{Bin}(n, p)$

Example 3 $\Upsilon(k, \cdot) = \text{NegBin} \left(n + k, p(1 - q) \right)$; then $N \sim \text{NegBin}(n, p)$
Warm-up for splitting

Examples

N_q is observed, conditional law of N_q^* is...

Example 1 $\Upsilon(k, \cdot) = \text{Poi}(1 - q)$;
then $N \sim \text{Poi}(1)$ and this is the only choice!

Example 2 $\Upsilon(k, \cdot) = \text{Bin}\left(n - k, \frac{p(1-q)}{1-pq}\right)$;
then $N \sim \text{Bin}(n, p)$

Example 3 $\Upsilon(k, \cdot) = \text{NegBin}\left(n + k, p(1 - q)\right)$;
then $N \sim \text{NegBin}(n, p)$
Integration by parts formula

\(N \) satisfies IBPF for some function \(\pi : \mathbb{N}_0 \rightarrow \mathbb{R}_+ \), if for bounded \(f \),
\[
E[Nf(N)] = E[\pi(N)f(N + 1)].
\]

Problem
Given \(\pi \), what is the distribution of \(N \)?

Examples

1. \(\pi(k) = 1 \) for all \(k \in \mathbb{N}_0 \), then \(N \sim \text{Poi}(1) \)
2. \(\pi(k) = z(n - k) \) for \(k = 0, 1, \ldots, n \), then \(N \sim \text{Bin} \left(n, \frac{z}{1+z} \right) \);
3. \(\pi(k) = z(n + k) \) for \(k \in \mathbb{N}_0 \), then \(N \sim \text{NegBin}(n, z) \)
Integration by parts formula

N satisfies IBPF for some function $\pi : \mathbb{N}_0 \rightarrow \mathbb{R}_+$, if for bounded f, $E[Nf(N)] = E[\pi(N)f(N + 1)]$.

Problem

Given π, what is the distribution of N?

Examples

1. $\pi(k) = 1$ for all $k \in \mathbb{N}_0$, then $N \sim \text{Poi}(1)$
2. $\pi(k) = z(n - k)$ for $k = 0, 1, \ldots, n$, then $N \sim \text{Bin} \left(n, \frac{z}{1+z}\right)$;
3. $\pi(k) = z(n + k)$ for $k \in \mathbb{N}_0$, then $N \sim \text{NegBin}(n, z)$.
Integration by parts
Distributions

Integration by parts formula

N satisfies IBPF for some function $\pi : \mathbb{N}_0 \to \mathbb{R}_+$, if for bounded f, $E[Nf(N)] = E[\pi(N)f(N + 1)]$.

How to determine the law of N?

1. choose $f = 1\{k\}$, then $kP(N = k) = \pi(k)P(N = k - 1)$, $k = 1, 2, \ldots$

2. $P(N = k) = \frac{\pi(k) \cdots \pi(1)}{k!} P(N = 0)$

3. $P(N = k) = \exp(-\pi) \frac{\pi[k]}{k!}$
Integration by parts formula

N satisfies IBPF for some function $\pi : \mathbb{N}_0 \to \mathbb{R}_+$, if for bounded f, $E[Nf(N)] = E[\pi(N)f(N + 1)]$.

How to determine the law of N?

1. choose $f = 1_{\{k\}}$, then $kP(N = k) = \pi(k)P(N = k - 1)$, $k = 1, 2, \ldots$

2. $P(N = k) = \frac{\pi(k) \cdots \pi(1)}{k!} P(N = 0)$

3. $P(N = k) = \exp(-\pi) \frac{\pi[k]}{k!}$
Splitting and integration by parts

Connection

q-Splitting kernel
If N satisfies IBPF(π), then $\Upsilon(k, \cdot)$ satisfies IBPF($((1 - q)\pi(k + \cdot))$).

N_q
N_q satisfies an IBPF. If N satisfies IBPF(π), then that function is the “average” $q \sum_j \pi(k + j) \Upsilon(k, j)$.

Equivalent statements

1. N satisfies IBPF(π)
2. N satisfies the splitting equation
3. N satisfies the (dependent) convolution equation
Splitting and integration by parts

Connection

q-Splitting kernel
If N satisfies $\text{IBPF}(\pi)$, then $\gamma(k, \cdot)$ satisfies $\text{IBPF}((1 - q)\pi(k + \cdot))$.

N_q

N_q satisfies an IBPF. If N satisfies $\text{IBPF}(\pi)$, then that function is the “average” $q \sum_j \pi(k + j)\gamma(k,j)$.

Equivalent statements

1. N satisfies $\text{IBPF}(\pi)$
2. N satisfies the splitting equation
3. N satisfies the (dependent) convolution equation
Point processes

A point process is a random point measure (r.v. \(N \) is now \(\{N_\Lambda\}_\Lambda \)).
Point processes

A point process is a random point measure (r.v. N is now $\{N_\Lambda\}_\Lambda$).

Poisson process

- $N_\Lambda \sim \text{Poi}(m(\Lambda))$
- given N_Λ, points are distributed iid
- $\Lambda \cap \Lambda' = \emptyset$, then N_Λ and $N_{\Lambda'}$ independent
Spatial picture

Point processes

A point process is a random point measure (r.v. N is now $\{N_\Lambda\}_\Lambda$).

Gibbs process

- defined locally by
 $$G(\cdot | \hat{\mathcal{F}}_\Lambda)(\mu) := \frac{e^{-\mathcal{V}(\cdot | \mu^\Lambda)}}{Z_{\Lambda, \mu}} P_\Lambda$$
- existence? uniqueness?
Point processes

A point process is a random point measure (r.v. N is now $\{N_\Lambda\}_\Lambda$).

Gibbs process

Nguyen, Zessin 79

DLR equations equivalent to IBPF

\[
\int \int h(x, \mu) \mu(dx) G(d\mu) \\
= \int \int h(x, \mu + \delta_x) e^{-V(x, \mu)} m(dx) G(d\mu)
\]
Point processes

A point process is a random point measure \((r.v. \, N \text{ is now } \{N_\Lambda\}_\Lambda)\).

Papangelou process

replace \(e^{-V(\cdot, \mu)} \, d\mu\) by \(\pi(\mu, \cdot)\)

\[
\int \int h(x, \mu) \mu(dx) P(d\mu) = \int \int h(x, \mu + \delta x) \pi(\mu, dx) P(d\mu)
\]
Point processes

A point process is a random point measure (r.v. N is now $\{N_\Lambda\}_\Lambda$).

Papangelou process, examples

- $\pi(\mu, \cdot) = m$
- $\pi(\mu, \cdot) = z(m - \mu)$
- $\pi(\mu, \cdot) = z(m + \mu)$

Each N_Λ satisfies an IBPF.
\textbf{Spatial picture}
\textit{Point processes}

\textbf{q-splittings and thinnings}

- choose colour for each “ball” independently, e.g. blue with probability q
- joint law of \textcolor{red}{red} and \textcolor{blue}{blue} point configurations is q-splitting S^q
- marginals are thinnings
- conditional law of \textcolor{red}{red} point configuration given \textcolor{blue}{blue} point configuration is splitting kernel
Examples

1. Poisson process P_m:
 \[P^q = P_{qm}, \quad S^q = P_{qm} \otimes P_{(1-q)m} \]

2. Difference process $D_{z,m}$:
 \[D^q_{z,m} = D_{\frac{qz}{1+(1-q)z},m}, \]
 \[\Upsilon(\nu, \cdot) = D_{(1-q)z,m-\nu} \]

3. Sum process $S_{z,m}$:
 \[S^q_{z,m} = S_{\frac{qz}{1-(1-q)z},m}, \]
 \[\Upsilon(\nu, \cdot) = S_{(1-q)z,m+\nu} \]
Spatial picture
Properties of Splittings and Thinnings

Splitting kernel \((1)\) Karr; \((2)\) Nehring, R, Zessin\)

1. If \(P\) is finite, then \(\Upsilon(\nu, \cdot) \sim (1 - q)^N P^I_\nu\).
2. If \(P\) satisfies IBPF for \(\pi\), then \(\Upsilon(\nu, \cdot)\) satisfies IBPF for \((1 - q)\pi(\nu + \cdot, \cdot)\).

Thinnings \((Nehring, R, Zessin)\)

If \(P\) satisfies IBPF for \(\pi\), then also \(P^q\) does for \(q \int \pi(\mu + \nu, \cdot) \Upsilon(\mu, d\nu)\).
Spatial picture
Properties of Splittings and Thinnings

Splitting kernel \((1)\) Karr; \((2)\) Nehring, R, Zessin\)

1. If \(P\) is finite, then \(\Upsilon(\nu, \cdot) \sim (1 - q)^N P^\nu\).
2. If \(P\) satisfies IBPF for \(\pi\), then \(\Upsilon(\nu, \cdot)\) satisfies IBPF for \((1 - q)\pi(\nu + \cdot, \cdot)\).

Thinnings \((\text{Nehring, R, Zessin})\)

If \(P\) satisfies IBPF for \(\pi\), then also \(P^q\) does for
\[q \int \pi(\mu + \nu, \cdot) \Upsilon(\mu, d\nu).\]
Characterization (Nehring, R, Zessin)

The following statements are equivalent

1. P solves IBPF for π;
2. P satisfies the splitting equation

$$S_P(h) = \int\int h(\mu, \nu) \Upsilon(\mu, d\nu) P^q(d\mu)$$

3. P satisfies the (dependent) convolution equation

$$P(\phi) = \int\int \phi(\mu + \nu) \Upsilon(\mu, d\nu) P^q(d\mu)$$
Uniqueness of solutions of splitting and convolution equation

Uniqueness of solutions of IBPF implies uniqueness for splitting and convolution equation.

α-condensability (Ambartzumian)

P is α-condensable if there exists Q such that $Q^{1/\alpha} = P$.

- if P solves IBPF for σ, condensability “reduces” to solving

$$\sigma(\nu, \cdot) = q \int \pi(\nu + \mu, \cdot) \Upsilon(\nu, d\mu)$$
Uniqueness of solutions of splitting and convolution equation

Uniqueness of solutions of IBPF implies uniqueness for splitting and convolution equation.

α-condensability (Ambartzumian)

P is α-condensable if there exists Q such that $Q^{1/\alpha} = P$.

- if P solves IBPF for σ, condensability “reduces” to solving

 $\sigma(\nu, \cdot) = q \int \pi(\nu + \mu, \cdot) \Upsilon(\nu, d\mu)$
Spatial picture

Consequences

Spatial birth processes

Let P solve IBPF for π, $(N_q)_q$ (point measure valued) process such that transition kernel

$$p_{q,q'}(\mu, \cdot) = \Upsilon_{q,q'}(\mu, \cdot)$$

solves an IBPF for $(q' - q) \int \pi(\mu + \kappa, \cdot) \Upsilon'(\mu, d\kappa)$.

- law of N_q is P^q
- $q \mapsto N_q$ increasing

Cox processes and condensability

P is a Cox process iff $q \mapsto N^q$ extends to \mathbb{R}_+.

- (otherwise only on $[0, T]$ for some $T \geq 1$)
- exit space of pure birth process given by mixtures of Poisson pure birth
Spatial picture
Consequences

Spatial birth processes
Let P solve IBPF for π, $(N_q)_q$ (point measure valued) process such that transition kernel

$$p_{q,q'}(\mu, \cdot) = \Upsilon_{q,q'}(\mu, \cdot)$$

solves an IBPF for $(q' - q) \int \pi(\mu + \kappa, \cdot) \Upsilon^{q'}(\mu, d\kappa)$.

• law of N_q is P^q
• $q \mapsto N_q$ increasing

Cox processes and condensability
P is a Cox process iff $q \mapsto N^q$ extends to \mathbb{R}_+.
• (otherwise only on $[0, T]$ for some $T \geq 1$)
• exit space of pure birth process given by mixtures of Poisson pure birth
Further examples

log-Gauss Cox process

(Coles, Jones 91; Møller, Syversveen, Waagepetersen 98)

\(P \sim \text{IGC}(\mu, c) \) if \(P \) is a Cox process driven by \(e^Y \), where \(Y \) is Gaussian with mean \(\mu \) and covariance \(c \).

Reduced Palm measures of log-Gauss Cox processes

(Cœurjolly, Møller, Waagepetersen 15)

If \(P \sim \text{IGC}(\mu, c) \), then its reduced Palm measure \(P^l_\nu \) for a simple and finite point measure \(\nu \) is log-Gauss Cox with parameters

\[
\mu + \int c_x \cdot \nu(dx), \quad c.
\]
Further examples

log-Gauss Cox process

Thinning
If $P \sim \text{lgGC}(\mu, c)$, then its q-thinning is log-Gauss Cox $P \sim (\mu + \ln q, c)$.

Splitting
If $P \sim \text{lgGC}(\mu, c)$ a finite process, then its q-splitting kernel is

$$\gamma(\nu, \cdot) = \frac{(1 - q)^n}{Z_\nu} P^!_\nu,$$

i.e. is log-Gauss Cox process with parameters

$$\mu + \int c_x \cdot \nu(dx) + \ln(1 - q), \quad c.$$
Further examples

Gauss Poisson process

Gauss-Poisson process (Newman 70; Milne, Westcott 72; Macchi 72)

$P \sim GP(\lambda, H)$ if P has Laplace transform

$$L(f) = \exp \left(- \int 1 - e^{-f(x)} \lambda(dx) + \frac{1}{2} \iint [1 - e^{-f(x)}][1 - e^{-f(y)}] H(dx, dy) \right).$$

Thinning (Milne, Westcott 72)

If $P \sim GP(\lambda, H)$, then its q-thinning is Gauss Poisson

$P \sim GP(q\lambda, q^2 H)$.
• described point processes in three different ways: DLR equations, Integration by parts, Splittings/dependent convolutions

• derived properties of Papangelou processes and their splittings and thinnings
• described point processes in three different ways: DLR equations, Integration by parts, Splittings/dependent convolutions

• derived properties of Papangelou processes and their splittings and thinnings