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Introduction

Given © C R" open and bounded with boundary I', let A} be the
symmetric, not positive, operator in L2(R") defined by

Af = A|CS,,,(R™\T). We are interested in determining the whole
family of its self-adjoint extensions, characterize them by boundary
conditions on I, express their resolvents in term of the resolvent

(—A + z)71 of the self-adjoint, free Laplacian
A H*(R") C L2(R") — L2(R™)

and study the scattering system {A, A}, where A belongs to a
large sub-family of extensions of Af.

Let X C T relatively open. Then

T C AT = ACT,,(R\T) = (A%)" C (A7)

comp

Thus A could be a self-adjoint realizations of the Laplacian with
boundary conditions supported only on .



Trace maps and boundary-layer operators

Given Q C R" open and bounded with smooth boundary I, we
adopt the notation Qiy = Q, Qex = R™\Q. H(R"), H5(Qin),
H*(Qex), H°(I') s € R, denote the usual scales of Sobolev-Hilbert
spaces of function on R”, Q;,, Qe and I respectively.

We recall the basic definitions and some properties of traces and
layer operators related to the self-adjoint operator

A : H?(R") C L2(R™) — L2(R") and the hypersurface I'. The zero
and first-order traces on [ are defined on smooth functions as

You = ulp, yu=v-Vull,

v the unit normal to I, and extend to the bounded, surjective
linear operators

v € B(HA(R"),H3(1)), 1 € B(H3(R"), H3(T)).



Such trace maps can be equivalently defined as the means

1 : 1 :
70 =500"+). =500+,
of the one-sided traces
# 2 3 — =
Vi EB(H (Q#)vHQ (r))v # =inex, j=0,1.

By Green's formula and duality, such lateral traces extend to
~H# _l_j
A € B(Ha(Qy), H27/(I)),

where

HA(Q#) = {U# S Lz(Q#) : AU# S Lz(Q#)}



Setting HA(R"\I") := Ha(Qin) ® Ha(Qex), one has the bounded
maps
1 .
% € B(HA(R™I), H=27/(T),
(3] € B(Ha(R"\T), H=379(r)

where

~ 1 ~ex ~in .
G = (G (l) + AP (0100)), =01,

and .
[37]u = A5 (u|Qn) — 4" (u[Qex), j=0,1.

Notice that 4;|H?(R") = 7; and that u € Ha(R"\I") belongs to
H?(R™) if and only if [Jo]u = [$1]u = 0.



Finally, we define the bounded maps
7 € B(Ha(RMM), H=3(N) & H73(T)),

Ju = (Jou) © (fru),

and
[3] € B(HA(R™\I), H~3(T) & H~3(T)),

[Au = (=[F1]u) ® ([Fo]u) -



For z € p(A) = C\(—00,0], the single and double layer operators
SL, € B(H3(N),L2(R"), DL, € B(H (N, L*(R")
are defined by

SLe=(o(-A+2)7Y)*, DL =(n(-A+2)71)"
Considering the integral kernel of (—A + z)~! given by

n_q
4000) = 5 () KealEll) Re(v) >0,

2m||x =yl

one has

SL.o(x) = /r G(x,y)6(y) doly), x¢ T, éel(r),

DL.o(x) = /r VL, (% y)e(y) doly), x¢T. pe L3(D),



Then, given z € C\(—00,0], we define
G € B(H 2(N&H 2(N).2(R").  Gx(¢@¢) = SLzg+ Dlap.
By the definition of G,, it results
Gz € B(H2(N) ® H™2(1), Ha(R"\I)
and, by the well known jumps relations for the layer operators,

76z = L (NeH"3(r)



Laplacians with boundary conditions on hypersurfaces

Now we introduce the densely defined, closed and symmetric
operator in L?(R") given by Ar := A|ker(vy) and we look for the
whole family of its self-adjoint extensions. Such a family coincides
with the one describing the self-adjoint extensions of the
symmetric operator A} := A|CSS,,,(R"\I') and contains
self-adjoint realizations of the Laplacian with boundary conditions
on [ and on any ¥ C I'. The adjoint operator At identifies with

dom(Ar) = HA(R'\IN)  Aru= A(u|Qin) ® A(u|Qex) -
Setting G := Gi, an equivalent representation of A} is given by
dom(Ay)

~{u=w+60oy):we R, sopeHNaH N},

ru=Auy+ G(p® ) =Au— [1]udr — [foluv-Vir.



Given an orthogonal projection I1 in H%(r) ® H%(r), we denote
the dual orthogonal projector in H_%(r) ® H_%(F) by I, so that
ran(M") = ran(M)’. We say that the densely defined linear operator

© : dom(©) C ran(M)" — ran(M)

is self-adjoint whenever © = @', equivalently whenever the
operator

O =0NaAN), dom(®)=(A3®A)ldom(0),

is a self-adjoint operator in the Hilbert space ran(I1), where the
unitary maps A° = (—A;g + 1)° represent the duality mappings on
H*(T') onto H—*(T).



Then we define the operator-valued Weyl function
C\(=00,0] 3 z+— M, € B(H2(I) & H™2(T"), H3(T) & H2 ("))
M, = M3, by

._ ~ ~v_ [(SL—5SL;) ~y(DL— DL;)
Mz - rY(G Gz) — 71(5L _ SLZ) ’Yl(DI— _ DLZ) 9

and, given © : dom(©) C ran(M)" — ran(N) self-adjoint, the set

Zne = {z € C\(~00,0] : (© + NM,M")~* € B(ran(M), ran(M)")}.



Theorem

Any self-adjoint extension of Ar = Al ker(7) is of the kind
Ane = Af|dom(An,e), where I is an orthogonal projection in
H3(F) & Hz(T), © : dom(©) C ran(M)’ — ran(N) is self-adjoint
and

dom(Ane) = {u=u+ G(p @ p) : up € H*(R"),
®® e dom(0), Myug=0(dd)}.

Moreover, C\R C Zn o C p(An,e), and, for any z € Zn g the
resolvent of the self-adjoint extension An g is given by the Kréin
type formula

(—Ane+z) = (—A+2) -GN (O©+NM ) Ny(-A+2)"t.



Corollary

If dom(©) C H%(r) ® H%(r) then one has an alternative
description of An e:

dom(Ane) ={u € H*(R™\I') : [y]u € dom(®), Myu = Be[y]u},
and

(—Ane+z) ' —(~A+z) "t = 6N (Be—T G M) ' My(~Atz)
where the boundary operator Bg is related to © by

Bo = © + MNyGN' : dom(©) C ran(M) — ran(MN).



Examples.

1) Dirichlet boundary conditions on T
MN=160, Bo=0,ie ©=—ySL:H2(")C H () = H(I)
2) Neumann boundary conditions on I
N=001, Be=0,ie ©=—yDL:H3(I)CH () — H2(T)

3) Robin boundary conditions on T, fyféu = b#yfu, # =in,ex :
N=1&1,

Bo : HA(N) @ HA(T) C H3(N) @ H3(1) = HA(N) © HA(T),

L 1 1 <b> L bex + bin L _
T [<b> bexbin]’ (b i= =5 [B:= bec = bin.



4) é-interactions on I', with strength «, i.e. [y]u =0 and

avo=[n]u: N=160, Bg =—1,ie

NIw

0=— G +705L> L H2 () C H3(T) — H2(T)

5) §’-interactions on I, with strength 3, i.e. [y1]Ju =0 and
B =holu: M=001, Beg =4, ie

Niw

0=- (% +71DL> L H2(F) € H2(T) — Hz(T).



To obtain the same kind of boundary conditions on a (relatively
open) piece ¥ C I with Lipschitz boundary, one need to compress
the previous parametrizing self-adjoint operators © onto subspaces
of H*(I"). To do that one introduces the orthogonal projectors

1
Ny : H5(MN) — H(N), ran(N$) = HE (Nt s= >

N W

One has identifications
s 1 s SN\ ~ =S ~ S /
Hec(M)™~H(X),  ran(y’) ~ H3(T) ~ H*(X)

and the orthogonal projection I3 can be identified with the
restriction map

Ry : HS(N) = H(Z), Ry :=¢[T.



6) Dirichlet boundary conditions on © C I':

3 3
N=N;e0, ©:dom(®)C H*(N) — Hi(E).00 = —(10SLe)|
_3
dom(®) = {# € HZ*(1) : (105L0)[X € H3(X)}
7) Neumann boundary conditions on ¥ C I':

M=00NZ, ©:dom(O)C H_*(I) — H}(E),06 = — (11 DLe)|E

M=

1
dom(©) = {¢ € H_?(T) : (11 DLo)|T € HZ(X)}
8) Robin boundary boundary conditions on X C I :

3 1
NM=N2&MNE andsoon ........



Theorem
Suppose
dom(©) C H*(I") & H*=(I")

{ 3 1}
Ss:=min<sy+=,99+=< -

and define

2 2
1) If s > 0 then
(—Ane+2) ' — (—A+2)7" € 6 (L*(R).
2) If s > 2, then, for any integer k > 1 and for any p > 72(k”__1§+5,

(—Ano +2) K= (—A+2)7F € &,(L*(R").



Theorem

Let fg be the sesquilinear form in the Hilbert space ran(I)
associated with the self-adjoint operator © := (A3 @ A),
A= (=Arp + 1)Y/2. Define

~ . 3 1
S = Imin 51—5752—5 .

If § > 1, then, for any integer k > 1 and for any p > 2(I<Z;1)1+2§

(—Ano +2) K~ (—A+2)7F € &,(L*(R").



Corollary
1) Suppose

1
dom(©) C H(N) @ H2(T), s > —; 2> -5

Then
Uess(Aﬂ,@) = (_OO, O] .
Suppose either
dom(©) C H2(I) @ H2(I).
( equivalently dom(8) C H%(F) D H%(r) )

or
dom(fs) C H3(I) & H2(I),

hold, then



the wave operators

Wy :=s lim e tAnegitA
t—+o0

Wy :=s lim e tAeltAnep,
t—+o0

exist and are complete, i.e. the limits exists everywhere w.r.t.
strong convergence,

ran(Wy) = [2(R")ae, ran(Wi) = L3(R"), W] =W,

where L2(R"),. denotes the absolutely continuous subspace of
L?(R") with respect to An,e and Py is the corresponding
orthogonal projector. That implies

0ac(Bne) = (—00,0].



The previous results do not exclude the presence of negative
eigenvalues embedded in the essential spectrum, an information
that is relevant for the issues to be treated later. Let us pose

Ene ={r€(-20,0): A ¢ 0p(Ane)},
so that absence of negative eigenvalues is equivalent to

Eqe = (-00,0).

Theorem

Let Ty C T be a closed set such that supp(¢) U supp(y) C Iy for
any ¢ @ ¢ € dom(©) C ran(M)’. If the open set R"\[ is
connected, then Eq o = (—00,0).



Obviously, in the case Iy =T, one has that R"\I' = Q;, U Qey is
not connected. However, if Qg is connected then, by similar
reasonings, one gets uy|Qex = 0. Thus, if the boundary conditions
appearing in dom(An g) are such that

UQex =0, (Au—Au)|Qin =0, u € dom(Aneg) = ulQ,=0,

then E o = (—00,0).

For example, two cases where that hypotheses hold are the /- and
d’-interactions on .



The limiting absorption principle

We introduce the family of weighted spaces L2(R") and H2(R"),
defined, for any o € R, by

(R = {u € BulR") - ulliygery < +o0
HA(R") = {u € HRo(R") g sy < oo}
ol ey = [ 1 (14 12" o

2
||U||Hg([Rn = ||U||/_2 rRry T Z ||8X,u||L2 rRr) T Z [ x,x,“||/_2([R" .

1<i<n 1<i,j<n



The spaces L2(Q24) and H2(Q24), # = in, ex, are defined in a
similar way. Since Q is bounded, one has

Lgr(Qin) = L2(Qin)a Hg(Qin) = H2(Qin)

and so
Lg([R”) = Lz(Qin) @ Lg(QeX)

and
H2RM\T) o= H2(n) & HE(Rer) = H2(n) & HE(r).
The trace operators are extended to H2(R™\I'), o < 0, by
Y6 Uex = 70 (XUex), VT Uex := V1 (X Uex),

where x € C5,,,(2°), x = 1 on a neighborhood of T.

comp



From now on we assume that —Ap g > ¢, > —o0 and
(—Ane +2) ' — (A +2)7t € G (L2(R™)).

Theorem
The limits

Rio i :_|.In( Ane) — (K £ie)™

exist in B(L2(R"), L2 ,(R™)) for all o« > L and for all real k such
that —k? € Eq o

Corollary

An e has empty singular continuous spectrum:

L(R") = L2(R")pp & LA(R")ac

The previous theorem give no answer to the obvious question:
"does Krein's formula survive in the limit € | 0?" This is provided
by the next



Theorem
1) For any k € R\{0} and for any a > %, the limits

G = LT& G_jetics M*, = L'ig M_2sje
exist in B(H_%(r) ® H_%(F), L2 _(R™) and

B(H_%(r) @ H_%(r), H%(r) D H%(F)) respectively.
Moreover

G =G+ (z+k)RE,G,, zeC\(—0,0],
(G_ik2), = 7Rfk2 )

M*, =M, — (z+ k*)yR*,G,, z€ C\(—,0],



2) For any k € R\{0} such that —k? € Ej o, the limits

Lo i = Lifg(@ +NM_ ey )71

exist in B(ran(M),ran(M)’). Moreover

Lo e = (©+0M:,M)"

and so

R:I:

No. ke~ R*, =GX,IV(© + NM=,,I) My RE,,

( —G*,M(Bo — I_I')/G_ik2|'|')_1|_l'nyk2> .



Generalized eigenfunction and scattering

We introduce the following extension of Ap g to the larger space
L2 (R"), a > 0:

Ane : dom(Ang) C L2, (R") — L2 (R"),
dom(Ane) = {u=uo+ G(¢ B ¢) : up € H2,(R"),
¢ @ p € dom(©), Myug = (¢ ® )}
( ={ue H? (R"\I) : [y]u € dom(®), Myu = B@['y]u}) :

An@u = Aug + G(qb@ QO) = Au— [’l)\/l]U(Sr — [ﬁo]u v-Vor.

By definitions one has

graph(Ane) N (L2(R") & L*(R")) = graph(Ane).



Theorem
Let u # 0 be a generalized eigenfunction of Ap g with eigenvalue
—k? € Eq . i.e. u belongs to dom(An e) and solves the equation

(An,@ + kz)u =0.

Then either u = u,'f or u= u,, where
Uil = u + GELM(© + NME M) Ny .

and uy € H? (R") is a generalized eigenfunction of the free
Laplacian with the same eigenvalue —k?.



proof. Let us set u = ug + G(¢ D ), with up € H2(R") and
¢ ® p € dom(O) such that Myuy = O(¢ & ). Then

(Ane+ kK)u=0 < (A+Kk)uy=(1+k>)G(pD ).
By applying Rsz to both sides of the relation on the right one gets
u=ux+ (1+k)RE,G(6 B ¢),

where vy, € H?_(R") is any solution of the equation
(A + k?)ui = 0. Imposing the boundary conditions one then
obtains

My = yue + (L+ K*)YR™,.G (¢ & )
=Myu — M= (6 & ¢) = O(¢ @ ),

¢ ®p=(0+NME, M) Myu.



We recall the following definition: we say that a solution u of the
Helmholtz equation (A + k?)u(x) = 0, x € Qe, satisfies the (&)
Sommerfeld radiation condition whenever

lim  ||x||(""D/2(2-V £ ik)u(x) = 0

l[x[| =00

holds uniformly in X = x/||x||. The plus sign corresponds to an
inward wave and the minus one corresponds to a outward wave.

Lemma
1) Gsz (¢ @ ) satisfies the (+) Sommerfeld radiation condition.

2) If u € ker(An o + k?), satisfies the Sommerfeld radiation
condition, then u = 0.



Considering the usual family of generalized eigenfunctions

ue € H? (R"), a > 3, of A : H*(R") C L?(R") — L2(R") given by
ug(x) := e/ one obtains the family of generalized eigenfunctions
of An e defined by

ug = w4 G (O+NMT M) Mg, k= l¢]l, —k* € B g

Since
A 4+ _
162 = ILH‘%(F)@H‘z(r) :

and [V]Ug =0, one gets
[l = (© + M7, M) M

and so the functions ugc € dom(An ) solve the
Lippmann-Schwinger type equation

+ At
ug = u + GT,[4] ug -



Let us now define, for any u € L2(R"),

1 1

Fru(€) = @n)y2 (ug u) = on)2 /[Rn uF (x)u(x) dx

Theorem
1) Fi extend to isometries Fy : L2(R™),c — L2(R™).
2)Vu € dom(Ane), (FiPacAneu)(§) = —[&|*Fru(§).
3) Suppose W exist. Then
Wi =FF,

where F denotes Fourier transform.



sketch of the proof. 3) We equivalently show that F Wyu = Fu
for any u in the Schwartz space of rapidly decreasing functions.
We define WL (t) := P,c e~ tAneeltA

+oco
FiWeu= lim FiWa(t)u= li R W,
+ Wiu t_:i‘loo + i(t)u 6_I)rgie/o e + i(t)udt

+o0
d
o —et
_el—%]:l:/o e —thiWi(t)udt-FFiu.

Then, since F diagonalize P,c An e,

1

(FEWL(t)u)(€) = IR (uF, BTN )

and, since (A + H§H2)ug =0and ugt = ug + GT||§|\2[7]U§E'

o G (FAWL(00)©) = o (U2 (A + €)1

= (G = it(A+€]P+ie)
=Gy (Clige e (A + [€1P)e )



1

)Ll 24ie
= Gy gt (G I (AR pie) eI i)

Therefore
(F+ W1 u)(§)

+oo d
:ei%‘i/o et & (FL W (t)u)(€) it + Fau(s)

:(—2;)1n/2 im (6T cP1uf, (A + 1E]P)(A + 1IEN? + ie) " u)+ Fru(€)
- (27r1)n/2 (6T jgppDlug’s u) + Fru()

=Fu(§).



Let us now introduce the scattering operator S := W{W_, so
that, by W3 = FIF, one gets

FSF* = FLF*.
Using the isomorphism
L2(R") ~ L2(Ry) ® L2(S" 1) ~ L2(Ry; L2(S"1)), S the unit

sphere in R", given by uk(f) = u(ké), the on-shell scattering
operator (scattering matrix)

Sk 25" = 12(8"Y), k>0,
is then defined by the relation Si(Fu)x = (FSu)y, i.e.

Si(F-u)k = (Fru)k.-



Theorem
For any k > 0 such that —k% e Eﬁ’@ ,

SF©) = A~ [ 568 FE)du(d).

(Myupe, (© + MM, M) " hyupe)
<(e + I_IMi_k2 n/)_lnryugé‘n H’YU25>
(Myupg, (B — nvG:kQH’)‘lﬂvu25>>

(B = T GT M) Myug,, nvui@) :



Proof.

By the definition of Sk we only need to show that

(Frael® = (F-un@- | s€€) (Fun(@)du(@) vu e L2(R").

Let
Vei=U ,—ut, — Sk(g é,) u g d/i(g,)'
KT TRE TRE Jgea T K

By Lippman-Schwinger,

Vig :G:Lk2 ['y]uk_é -G 2] U:—é - /S"—l (€, &) Gj—k2 [7]“;:@ du(€)

_ﬁ <%>"_2 /sn e Dl e ().

By integrating the plane waves ug over 5" one gets

n—2

[ ey = ami ()" (97— 9) -t ),



This gives

o (2';)/8 (e ) % du(@) = (62, — 6,2 Bluy

and so

Vig = Gj'kQ [7] Vig -
Therefore Vi satisfies the Sommerfeld radiation condition. Since
ur. € ker(An e + k?), one has Vié € ker(Ane + k?). Thus

k&
Vig = 0 and so

+ _ - _ E o, — £
ukf_ uké /S"1 Sk(§7§)uké/ d:“‘(f)

Integrating both the left and right sides with respect to
u € L2(R™) one gets the result.



Dirichlet boundary conditions on I.

Let us consider the self-adjoint extension Ap = AB DAY
corresponding to the direct sum of Dirichlet Laplacian in L2(Qi,)
and L2(Qex). We know that such a self-adjoint extension
correspond to M =1@ 0 and © = —SL, i.e. Bo =0. Since

(n0SLz) "t = P — P,

where PI" and P$* denote the Dirichlet-to-Neumann operators for
Qin and Q;, respectively, one has

(—(AB & AZ) + 2) L =(=A + 2) 71+ SL(P¥ — PM)yo(—A + 2)7L.

and, for any k > 0 such that —k2 ¢ o(AlD),

Ay i k "2 in
Sk(§7§,) = <%> <( _k2 P_k2)+’YOU 6/7/)/0uk£>



Dirichlet boundary conditions on > C I.

By taking M=NY?>@©0and © = Op 5, Op 56 = —(10SLH)|T,
one gets the self-adjoint operator

AD’):U =Au— [’71]U (Sf,

dOIIl(ADQ:) =
={u € H*(R") N HA(R™I) : [f1]u € dom(O©p5), (you)|X = 0}

(—AD; + Z)_1
=(—A+z)7' = SL.N5(Rey0oSLMN5) " Revo(—A + 2) 7+

and, for any k > 0,

A, k n_2 — [e) (o]
sk(&:€) =—— <§> ((RenoSLT,.M5) le’Yo“kgm Reouye) -



