One-dimensional mean-field games with generic nonlinearity

D. Gomes¹ L. Nurbekyan² M. Prazeres³

 $^{1,2,3} {\sf CEMSE}$ Division King Abdullah University of Science and Technology

SAMMP 2016, Yerevan, Armenia

Outline

What are mean-field games (MFGs) and why are they useful?

Mathematical formulation of MFGs

State-of-the-art

Our problem of interest

Conclusion and further extensions

What are mean-field games (MFGs) and why are they useful?

Outline

What are mean-field games (MFGs) and why are they useful?

Mathematical formulation of MFGs

State-of-the-art

Our problem of interest

Conclusion and further extensions

What are mean-field games (MFGs) and why are they useful?

MFG models

- Introduced in 2006/07 by J. M. Lasry and P. L. Lions in the Mathematics community and P. Caines et. al. in Engineering community.
- Statistical physics: modeling of systems with a very large number of particles.
- Game theory: Nash equilibrium with a very large number of players.
- Economics: population dynamics according to their preferences.

Mathematical formulation of MFGs

Outline

What are mean-field games (MFGs) and why are they useful?

Mathematical formulation of MFGs

State-of-the-art

Our problem of interest

Conclusion and further extensions

Stationary MFGs

Given $H: \mathbb{T}^d \times \mathbb{R}^d \times X \to \mathbb{R}$ and $\sigma \geq 0$ find $u: \mathbb{T}^d \to \mathbb{R}$, $m \in \mathcal{P}(\mathbb{T}^d)$ and $\overline{H} \in \mathbb{R}$ such that the triplet (u, m, \overline{H}) solves the system

$$\begin{cases}
-\sigma\Delta u + H(x, Du, m) = \overline{H}, \\
-\sigma\Delta m - \operatorname{div}(mD_pH(x, Du, m)) = 0.
\end{cases} (1)$$

- H Hamiltonian of the system. Models cost function and interaction. Dependence in m is often called non-linearity.
- σ diffusion parameter, $\sigma > 0$ stochastic MFGs, $\sigma = 0$ deterministic MFGs.
- ▶ u value function.
- m distribution of the agents.
- $ightharpoonup \overline{H}$ effective Hamiltonian.
- ▶ $E = \mathbb{R}$ (local interaction) or E = functional space (global interaction).

Non-stationary MFGs

Given $H: \mathbb{T}^d \times \mathbb{R}^d \times E \to \mathbb{R}, \ u_T: \mathbb{T}^d \to \mathbb{R}, \ m_0 \in \mathcal{P}(\mathbb{T}^d)$ and $\sigma \geq 0$ find $u: \mathbb{T}^d \times [0, T] \to \mathbb{R}, \ m: \mathbb{T}^d \times [0, T] \to \mathbb{R}^+$ such that the pair (u, m) solves the system

$$\begin{cases}
-u_t - \sigma \Delta u + H(x, Du, m) = 0, \\
m_t - \sigma \Delta m - \operatorname{div}(mD_pH(x, Du, m)) = 0, \\
\int_{\mathbb{T}^d} m(x, t) dx = 1, \text{ for all } t \in [0, T], \\
m(x, 0) = m_0(x), \ u(x, T) = u_T(x), \ x \in \mathbb{T}^d.
\end{cases}$$
(2)

- $\triangleright u_{T}$ terminal cost function.
- $ightharpoonup m_0$ initial distribution of agents.

Mathematical formulation of MFGs

Mathematical structure of MFGs

- Hamilton-Jacobi (HJ) equation for u.
- ► Fokker-Planck (FP) equation for *m*.
- ► FP equation is the adjoint of the linearized Hamilton-Jacobi equation.

Interpretation of the structure

HJ equation: individual agent aims to minimize the action

$$u(x,t) = E_{xt} \int_{t}^{T} L(x,\dot{x},m) ds + u_{T}(x),$$

where L is the Lagrangian given by the Legendre transform

$$L(x, v, m) = \sup_{p} \left(-v \cdot p - H(x, p, m)\right),\,$$

so *u* solves corresponding HJ equation as a value function.

FP equation: optimal drift of an agent is given by

$$\dot{x}^* = -D_p H(x, Du, m),$$

so the distribution evolves according to corresponding FP equation.

State-of-the-art

Outline

What are mean-field games (MFGs) and why are they useful?

Mathematical formulation of MFGs

State-of-the-art

Our problem of interest

Conclusion and further extensions

Standard assumptions on Hamiltonian

Assumptions on Hamiltonian

- \blacktriangleright H(x,p,m) is convex and coercive in p.
- \blacktriangleright H(x,p,m) is "non-increasing" in m.
- Additional technical assumptions.

Dual assumptions on Lagrangian

- ▶ L(x, v, m) is convex and coercive in p.
- \blacktriangleright L(x, v, m) is "non-decreasing" in m.
- Additional technical assumptions.

State-of-the-art

Interpretation of standard assumptions and consequences

Interpretation

- Convexity is essential in minimization problems. It guarantees existence, uniqueness and regularity of minimizers.
- L(x, v, m) "non-decreasing" in m means that agents prefer sparsely populated areas.

Consequences

- Existence and uniqueness of solutions.
- Sparse areas attract agents, so m > 0.
 - Construction of weak solutions via gradient type flow (D. Gomes, R. Ferreira).

Outline

What are mean-field games (MFGs) and why are they useful?

Mathematical formulation of MFGs

State-of-the-art

Our problem of interest

Conclusion and further extensions

Generic non-linearity

In general, we are interested in systems of the form

$$\begin{cases}
-\sigma\Delta u + H(x, Du) = g(m) + \overline{H}, \\
-\sigma\Delta m - \operatorname{div}(mD_pH(x, Du)) = 0,
\end{cases}$$
(3)

and

$$\begin{cases}
-u_t - \sigma \Delta u + H(x, Du) = g(m), \\
m_t - \sigma \Delta m - \operatorname{div}(mD_p H(x, Du)) = 0,
\end{cases}$$
(4)

where g is not "non-decreasing" as it is usually assumed.

- g non-increasing means that agents prefer densely populated areas.
- g decreasing and then increasing means that agents prefer that are not too dense.

Fundamental difficulty with generic non-linearity

By monotonicity and convexity one has that

$$\begin{split} &\int\limits_{\mathbb{T}^d} (g(m_2) - g(m_1))(m_2 - m_1) dx \\ &+ \int\limits_{\mathbb{T}^d} m_1 (H(x, Dv_2) - H(x, Dv_1) - D_p H(x, Dv_1)(v_2 - v_1)) dx \\ &+ \int\limits_{\mathbb{T}^d} m_2 (H(x, Dv_1) - H(x, Dv_2) - D_p H(x, Dv_2)(v_1 - v_2)) dx \geq 0, \end{split}$$

for arbitrary (u_i, m_i) , i = 1, 2.

If g is not "non-decreasing" the above inequality is not valid.

Natural questions that arise

- Do solutions exist in general? Are they unique?
- ► Are the solutions non-degenerate (*m* > 0) and how smooth are they?
- Is there any general mechanism to construct solutions?

First steps towards the general theory: explicit solutions

Consider 1-dimensional stationary deterministic MFG

$$\begin{cases} \frac{(u_x+p)^2}{2} + V(x) = g(m) + \overline{H}, \\ -(m(u_x+p))_x = 0. \end{cases}$$
 (5)

Current formulation, j > 0

From (5) we have $j = m(u_x + p) = \text{const}$, so for $j \neq 0$ (5) is equivalent to

$$\begin{cases} \frac{j^2}{2m^2} - g(m) = \overline{H} - V(x), \\ m > 0, \int_{\mathbb{T}} m dx = 1, \\ \int_{\mathbb{T}} \frac{1}{m} dx = \frac{p}{j}. \end{cases}$$

First steps towards the general theory: explicit solutions

Current formulation, j = 0

For j = 0, (5) is equivalent to

$$\begin{cases} \frac{(u_x+\rho)^2}{2} - g(m) = \overline{H} - V(x); \\ m \ge 0, \int_{\mathbb{T}} m dx = 1; \\ m(u_x + \rho) = 0, x \in \mathbb{T}. \end{cases}$$
 (7)

We begin with the standard monotone g as a reference case.

Proposition

For every j > 0, (5) has a unique smooth solution, $(u_j, m_j, \overline{H}_j)$, with current j. This solution is given by

$$m_j(x) = F_j^{-1}(\overline{H}_j - V(x)), \quad u_j(x) = \int_0^x \frac{j}{m_j(y)} dy - p_j x,$$

where
$$p_j = \int\limits_{\mathbb{T}} \frac{j}{m_j(y)} dy$$
, $F_j(t) = \frac{j^2}{2t^2} - t$, and \overline{H}_j is such that $\int\limits_{\mathbb{T}} m_j(x) dx = 1$.

Explicit solutions for g(m) = m, j = 0

Proposition

Define $m(x) = (V(x) - \overline{H})^+$, where \overline{H} is such that $\int m = 1$.

Furthermore, let

$$u^{\pm}(x) = \pm \int_{0}^{x} \sqrt{2(\overline{H} - V(y))^{+}} dy - \rho x,$$

where $p=\pm\int\limits_{\mathbb{T}}\sqrt{2(\overline{H}-V(y))^+dy}$. Then triplets (u^\pm,m,\overline{H}) are solution of (5) with current i = 0.

Note

m can vanish at some sites. m > 0 if and only if $\int_{\mathbb{T}} V(x) dx \le 1 + \min_{\mathbb{T}} V$, that is V is a small perturbation.

Let $m=(V(x)-\overline{H})^+$ be as before. Let x_0 be such that $V(x_0)<\overline{H}$. Such a point exists if and only if $\int\limits_{\mathbb{T}}V(x)dx-1>\min\limits_{\mathbb{T}}V.$ Let

$$(u^{x_0}(x))_x = \sqrt{2(\overline{H} - V(x))^+ \cdot \chi_{x < x_0}} - \sqrt{2(\overline{H} - V(x))^+ \cdot \chi_{x > x_0}} - p^{x_0},$$

where
$$p^{x_0} = \int\limits_{y < x_0} \sqrt{2(\overline{H} - V(y))^+ dy} - \int\limits_{y > x_0} \sqrt{2(\overline{H} - V(y))^+ dy}$$
.

Then the triplet $(u^{x_0}, m, \overline{H})$ is a solution of (5) with current j = 0.

Note

u is no more a C^1 function.

Explicit solutions for g(m) = m, j = 0

m(x,2) (left) and two distinct solutions u(x,2) (right).

Conclusions and interpretation

- ▶ If *g* is increasing, (5) has unique smooth solution for nonzero current.
- If g is increasing, (5) has degenerate solutions (m=0) only with current 0, and only when $\int\limits_{\mathbb{T}} V(x) dx 1 > \min\limits_{\mathbb{T}} V$.
- ▶ If g is increasing, (5) has multiple solutions u only with current 0, and only when $\int_{\mathbb{T}} V(x) dx 1 > \min_{\mathbb{T}} V$.
- ▶ If g is increasing, (5) has singular solutions u only with current 0, and only when $\int_{\mathbb{T}} V(x)dx 1 > \min_{\mathbb{T}} V$.
- ► Hence, if *g* is increasing (5) degenerates in all directions at once!

Explicit solutions for g(m) = -m

Current formulation, j > 0

$$\begin{cases} \frac{j^2}{2m^2} + m = \overline{H} - V(x); \\ m > 0, \int_{\mathbb{T}} m dx = 1; \\ \int_{\mathbb{T}} \frac{1}{m} dx = \frac{p}{j}. \end{cases}$$
 (8)

Current formulation, j = 0

$$\begin{cases} \frac{(u_x+p)^2}{2}+m=\overline{H}-V(x);\\ m\geq 0, \ \int\limits_{\mathbb{T}} m dx=1;\\ m(u_x+p)=0, \ x\in\mathbb{T}. \end{cases}$$

Explicit solutions for g(m) = -m, j > 0

The minimum of $F_j(t)=t\mapsto j^2/2t^2+t$ is attained at $t_{min}=j^{2/3}$. Thus, $j^2/2t^2+t\geq 3j^{2/3}/2$ for t>0. Furthermore, $F_j(t)$ is decreasing on the interval $(0,t_{min})$ and increasing on the interval $(t_{min},+\infty)$.

$$F_i(t) = \frac{j^2}{2t^2} + t$$
, $t_{min} = j^{2/3}$

Therefore, a lower bound for \overline{H} is

$$\overline{H} \geq \overline{H}_j^{cr} = \max_{\mathbb{T}} V + \frac{3j^{2/3}}{2},$$
 (10)

where the superscript cr stands for critical. For any \overline{H} satisfying (10), let $m_{\overline{H}}^-$ and $m_{\overline{H}}^+$ be the solutions of

$$\frac{j^2}{2(m_{\overline{U}}^{\pm}(x))^2} + m_{\overline{H}}^{\pm}(x) = \overline{H} - V(x),$$

with $0 \le m_{\overline{H}}^-(x) \le t_{min} \le m_{\overline{H}}^+(x)$.

Let $m_j^-:=m_{\overline{H}_j^{cr}}^-$ and $m_j^+:=m_{\overline{H}_j^{cr}}^+$. Note that $m_j^-(x)\leq m_j^+(x)$ for all $x\in\mathbb{T}$, and the equality holds only at the maximum points of V.

The two fundamental quantities for our analysis are

$$\begin{cases} \alpha^{+}(j) = \int_{0}^{1} m_{j}^{+}(x) dx, \\ \alpha^{-}(j) = \int_{0}^{1} m_{j}^{-}(x) dx, j > 0. \end{cases}$$
 (11)

If *V* is not constant, we have

$$\alpha^{-}(j) < \alpha^{+}(j), \quad j > 0.$$

Suppose that x=0 is the single of maximum of V. Then, for every j>0, there exists a unique number, p_j , such that (5) has a unique solution with a current level j. Moreover, the solution, $(u_j, m_j, \overline{H}_j)$, is given as follows. If $\alpha^+(j) \leq 1$,

$$m_j(x) = m_{\overline{H}_j}^+(x), \quad u_j(x) = \int_0^x \frac{jdy}{m_j(y)} - p_j x,$$
 (12)

where $p_j=\int\limits_{\mathbb{T}} rac{jdy}{m_j(y)}$ and \overline{H}_j is such that $\int\limits_{\mathbb{T}} m_j(x)dx=1$.

If $\alpha^-(j) \geq 1$,

$$m_j(x) = m_{\overline{H}_j}^-(x), \quad u_j(x) = \int_0^2 \frac{j dy}{m_j(y)} - p_j x,$$
 (13)

where $p_j = \int_{\mathbb{T}} \frac{jdy}{m_j(y)}$ and \overline{H}_j is such that $\int_{\mathbb{T}} m_j(x) dx = 1$.

If $\alpha^-(j) < 1 < \alpha^+(j)$, we have that $\overline{H}_j = \overline{H}_j^{cr}$, and

$$m_{j}(x) = m_{j}^{-}(x)\chi_{[0,d_{j})} + m_{j}^{+}(x)\chi_{[d_{j},1)}, \ u_{j}(x) = \int_{0}^{x} \frac{jdy}{m_{j}(y)} - \rho_{j}x,$$
(14)

where $p_j = \int_{\mathbb{T}} \frac{j dy}{m_j(y)}$ and d_j is such that

$$\int_{0}^{1} m_{j}(x) dx = \int_{0}^{d_{j}} m_{j}^{-}(x) dx + \int_{d_{j}}^{1} m_{j}^{+}(x) dx = 1.$$

Explicit solutions for g(m) = -m, j > 0

Solution *m* for j = 0.001 and $V(x) = \frac{1}{2} \sin(2\pi(x + 1/4))$.

Explicit solutions for g(m) = -m, j > 0

Solution *m* for j = 10 and $V(x) = \frac{1}{2} \sin(2\pi(x + 1/4))$.

Solution m_j for j = 0.5 and $V(x) = \frac{1}{2} \sin(2\pi(x + 1/4))$.

Explicit solutions for g(m) = -m, j > 0

Non-uniqueness of solutions for V with multiple maxima Suppose that V attains a maximum at x = 0 and at $x = x_0 \in (0, 1)$. Let j be such that $\alpha^-(j) < 1 < \alpha^+(j)$. Then, there exist infinitely many numbers, p, and pairs, (u, m), such that $(u, m, \overline{H}_j^{cr})$ solves (8).

Explicit solutions for g(m) = -m, j > 0

Two distinct solutions for j=0.5 and $V(x)=\frac{1}{2}\sin(4\pi(x+1/8))$.

If $1+\int\limits_{\mathbb{T}}V\geq\max_{\mathbb{T}}V,$ then the triplet (u_0,m_0,\overline{H}_0) with

$$m_0(x) = \overline{H}_0 - V(x), \ u_0(x) = 0,$$
 (15)

solves (9) in the classical sense for $p_0 = 0$.

If $\max_{\mathbb{T}} V > 1 + \int_{\mathbb{T}} V$, define

$$m_0^{d_1,d_2}(x) = \begin{cases} \overline{H}_0 - V(x), & x \in [d_1, d_2], \\ 0, & x \in \mathbb{T} \setminus [d_1, d_2], \end{cases}$$
(16)

and

$$(u_0^{d_1,d_2})_x(x) = \begin{cases} \sqrt{2(\overline{H}_0 - V(x))} - p_0^{d_1,d_2}, \ x \in [0,d_1), \\ -p_0^{d_1,d_2}, \ x \in [d_1,d_2], \\ -\sqrt{2(\overline{H}_0 - V(x))} - p_0^{d_1,d_2}, \ x \in (d_2,1], \end{cases}$$

where $p_0^{d_1,d_2}$ and (d_1,d_2) are such that u is periodic and m is probability. Then the triplet $(u_0^{d_1,d_2},m_0^{d_1,d_2},\overline{H}_0)$ solves (9)

Explicit solutions for g(m) = -m, j = 0

 m_0 as defined in (16) for $V(x) = 3\cos(2\pi x)$ with $d_2 = 0.7$ and d_1 such that m_0 is a probability measure.

Explicit solutions for g(m) = -m, j = 0

 u_0 (left) and $(u_0)_x$ (right)as defined in (16) for $V(x)=3\cos(2\pi x)$ with $d_2=0.7$ and d_1 such that m_0 is a probability measure.

"Unhappiness traps"

- ▶ Our solutions suggest that when g(m) = -m agents prefer to stick together, rather than be at better place.
- ▶ It is not the case for g(m) = m.
- ▶ Results are coherent with the intuition that *g* models the crowd preference of the agents.

Regularity regimes

Next, we define

$$j_{lower} = \inf\{j > 0 \text{ s.t. } \alpha^+(j) > 1\},$$
 (17)

and

$$j_{upper} = \inf\{j > 0 \text{ s.t. } \alpha^{-}(j) > 1\}.$$
 (18)

These two numbers characterize the regularity regimes of (8). We have

- i. $0 \leq j_{lower} < j_{upper} < \infty$;
- ii. for $j \ge j_{upper}$ the system (5) has smooth solutions;
- iii. for $j_{lower} < j < j_{upper}$ the system (5) has only discontinuous solutions;
- iv. if $j_{lower} > 0$, the system (5) has smooth solutions for $0 < j < j_{lower}$.

Regularity regimes

$$\alpha^+$$
 and α^- for $V(x) = A \sin(2\pi(x+1/4))$. $j_{lower} = 0.218$, $j_{upper} = 1.750$ ($A = 0.5$); $j_{lower} = 0$, $j_{upper} = 3.203$ ($A = 5$).

$$\overline{H}_j$$
 for $g(m) = -m$

 $ar{H}_j$ for $V(x)=rac{1}{2}\sin(2\pi(x+rac{1}{4}))$.

$$p_j$$
 for $g(m) = -m$

$$p_{j}$$
 for $V(x) = \frac{1}{2} \sin(2\pi(x + \frac{1}{4}))$.

Conclusion and further extensions

Outline

What are mean-field games (MFGs) and why are they useful?

Mathematical formulation of MFGs

State-of-the-art

Our problem of interest

Conclusion and further extensions

Conclusion and further extensions

- Qualitative properties of the solutions are dramatically different.
- Agents prefer densely populated areas even if they are not happy with these areas on the individual level.
- What happens in the time dependent case?
- What happens in the stochastic case?
- What about higher dimensions?

Conclusion and further extensions

Thank you!

