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What are mean-field games (MFGs) and why are they useful?

MFG models

I Introduced in 2006/07 by J. M. Lasry and P. L. Lions in the
Mathematics community and P. Caines et. al. in
Engineering community.

I Statistical physics: modeling of systems with a very large
number of particles.

I Game theory: Nash equilibrium with a very large number
of players.

I Economics: population dynamics according to their
preferences.
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Mathematical formulation of MFGs

Stationary MFGs
Given H : Td × Rd × X → R and σ ≥ 0 find u : Td → R,
m ∈ P(Td ) and H ∈ R such that the triplet (u,m,H) solves the
system {

−σ∆u + H(x ,Du,m) = H,
−σ∆m − div(mDpH(x ,Du,m)) = 0.

(1)

I H - Hamiltonian of the system. Models cost function and
interaction. Dependence in m is often called non-linearity.

I σ - diffusion parameter, σ > 0 stochastic MFGs, σ = 0
deterministic MFGs.

I u - value function.
I m - distribution of the agents.
I H - effective Hamiltonian.
I E = R (local interaction) or E = functional space (global

interaction).
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Mathematical formulation of MFGs

Non-stationary MFGs

Given H : Td × Rd × E → R, uT : Td → R, m0 ∈ P(Td ) and
σ ≥ 0 find u : Td × [0,T ]→ R, m : Td × [0,T ]→ R+ such that
the pair (u,m) solves the system

−ut − σ∆u + H(x ,Du,m) = 0,
mt − σ∆m − div(mDpH(x ,Du,m)) = 0,∫
Td

m(x , t)dx = 1, for all t ∈ [0,T ],

m(x ,0) = m0(x), u(x ,T ) = uT (x), x ∈ Td .

(2)

I uT - terminal cost function.
I m0 - initial distribution of agents.
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Mathematical formulation of MFGs

Mathematical structure of MFGs

I Hamilton-Jacobi (HJ) equation for u.
I Fokker-Planck (FP) equation for m.
I FP equation is the adjoint of the linearized Hamilton-Jacobi

equation.
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Mathematical formulation of MFGs

Interpretation of the structure
I HJ equation: individual agent aims to minimize the action

u(x , t) = Ext

T∫
t

L(x , ẋ ,m)ds + uT (x),

where L is the Lagrangian given by the Legendre transform

L(x , v ,m) = sup
p

(−v · p − H(x ,p,m)) ,

so u solves corresponding HJ equation as a value function.
I FP equation: optimal drift of an agent is given by

ẋ∗ = −DpH(x ,Du,m),

so the distribution evolves according to corresponding FP
equation.
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State-of-the-art

Standard assumptions on Hamiltonian

Assumptions on Hamiltonian

I H(x ,p,m) is convex and coercive in p.
I H(x ,p,m) is "non-increasing" in m.
I Additional technical assumptions.

Dual assumptions on Lagrangian

I L(x , v ,m) is convex and coercive in p.
I L(x , v ,m) is "non-decreasing" in m.
I Additional technical assumptions.
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State-of-the-art

Interpretation of standard assumptions and
consequences

Interpretation

I Convexity is essential in minimization problems. It
guarantees existence, uniqueness and regularity of
minimizers.

I L(x , v ,m) "non-decreasing" in m means that agents prefer
sparsely populated areas.

Consequences

I Existence and uniqueness of solutions.
I Sparse areas attract agents, so m > 0.
I Construction of weak solutions via gradient type flow (D.

Gomes, R. Ferreira).
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Our problem of interest

Generic non-linearity
In general, we are interested in systems of the form{

−σ∆u + H(x ,Du) = g(m) + H,
−σ∆m − div(mDpH(x ,Du)) = 0,

(3)

and {
−ut − σ∆u + H(x ,Du) = g(m),

mt − σ∆m − div(mDpH(x ,Du)) = 0,
(4)

where g is not "non-decreasing" as it is usually assumed.
I g non-increasing means that agents prefer densely

populated areas.
I g decreasing and then increasing means that agents prefer

that are not too dense.



One-dimensional mean-field games with generic nonlinearity

Our problem of interest

Fundamental difficulty with generic non-linearity

By monotonicity and convexity one has that∫
Td

(g(m2)− g(m1))(m2 −m1)dx

+

∫
Td

m1(H(x ,Dv2)− H(x ,Dv1)− DpH(x ,Dv1)(v2 − v1))dx

+

∫
Td

m2(H(x ,Dv1)− H(x ,Dv2)− DpH(x ,Dv2)(v1 − v2))dx ≥ 0,

for arbitrary (ui ,mi), i = 1,2.
If g is not "non-decreasing" the above inequality is not valid.
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Our problem of interest

Natural questions that arise

I Do solutions exist in general? Are they unique?
I Are the solutions non-degenerate (m > 0) and how smooth

are they?
I Is there any general mechanism to construct solutions?
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Our problem of interest

First steps towards the general theory: explicit
solutions

Consider 1-dimensional stationary deterministic MFG{
(ux+p)2

2 + V (x) = g(m) + H,
−(m(ux + p))x = 0.

(5)

Current formulation, j > 0
From (5) we have j = m(ux + p) = const, so for j 6= 0 (5) is
equivalent to 

j2

2m2 − g(m) = H − V (x),

m > 0,
∫
T

mdx = 1,∫
T

1
m dx = p

j .

(6)
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Our problem of interest

First steps towards the general theory: explicit
solutions

Current formulation, j = 0
For j = 0, (5) is equivalent to

(ux+p)2

2 − g(m) = H − V (x);

m ≥ 0,
∫
T

mdx = 1;

m(ux + p) = 0, x ∈ T.

(7)
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Our problem of interest

Explicit solutions for g(m) = m, j > 0

We begin with the standard monotone g as a reference case.

Proposition
For every j > 0, (5) has a unique smooth solution, (uj ,mj ,H j),
with current j . This solution is given by

mj(x) = F−1
j (H j − V (x)), uj(x) =

x∫
0

j
mj(y)

dy − pjx ,

where pj =
∫
T

j
mj (y)

dy , Fj(t) = j2

2t2 − t , and H j is such that∫
T

mj(x)dx = 1.
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Our problem of interest

Explicit solutions for g(m) = m, j = 0
Proposition
Define m(x) = (V (x)− H)+, where H is such that

∫
T

m = 1.

Furthermore, let

u±(x) = ±
x∫

0

√
2(H − V (y))+dy − px ,

where p = ±
∫
T

√
2(H − V (y))+dy . Then triplets (u±,m,H) are

solution of (5) with current j = 0.

Note
m can vanish at some sites. m > 0 if and only if∫
T

V (x)dx ≤ 1 + min
T

V , that is V is a small perturbation.
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Our problem of interest

Explicit solutions for g(m) = m, j = 0

Let m = (V (x)− H)+ be as before. Let x0 be such that
V (x0) < H. Such a point exists if and only if∫
T

V (x)dx − 1 > min
T

V . Let

(ux0(x))x =

√
2(H − V (x))+·χx<x0−

√
2(H − V (x))+·χx>x0−px0 ,

where px0 =
∫

y<x0

√
2(H − V (y))+dy −

∫
y>x0

√
2(H − V (y))+dy .

Then the triplet (ux0 ,m,H) is a solution of (5) with current j = 0.

Note
u is no more a C1 function.
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Our problem of interest

Explicit solutions for g(m) = m, j = 0
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0.5

u(x,2)

m(x ,2) (left) and two distinct solutions u(x ,2) (right).
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Our problem of interest

Conclusions and interpretation

I If g is increasing, (5) has unique smooth solution for
nonzero current.

I If g is increasing, (5) has degenerate solutions (m = 0)
only with current 0, and only when

∫
T

V (x)dx − 1 > min
T

V .

I If g is increasing, (5) has multiple solutions u only with
current 0, and only when

∫
T

V (x)dx − 1 > min
T

V .

I If g is increasing, (5) has singular solutions u only with
current 0, and only when

∫
T

V (x)dx − 1 > min
T

V .

I Hence, if g is increasing (5) degenerates in all directions at
once!
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Our problem of interest

Explicit solutions for g(m) = −m
Current formulation, j > 0

j2

2m2 + m = H − V (x);

m > 0,
∫
T

mdx = 1;∫
T

1
m dx = p

j .

(8)

Current formulation, j = 0
(ux+p)2

2 + m = H − V (x);

m ≥ 0,
∫
T

mdx = 1;

m(ux + p) = 0, x ∈ T.

(9)
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Our problem of interest

Explicit solutions for g(m) = −m, j > 0
The minimum of Fj(t) = t 7→ j2/2t2 + t is attained at tmin = j2/3.
Thus, j2/2t2 + t ≥ 3j2/3/2 for t > 0. Furthermore, Fj(t) is
decreasing on the interval (0, tmin) and increasing on the
interval (tmin,+∞).
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Fj (t) = j2

2t2 + t , tmin = j2/3
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Our problem of interest

Explicit solutions for g(m) = −m, j > 0

Therefore, a lower bound for H is

H ≥ H
cr
j = max

T
V +

3j2/3

2
, (10)

where the superscript cr stands for critical. For any H satisfying
(10), let m−

H
and m+

H
be the solutions of

j2

2(m±
H

(x))2
+ m±

H
(x) = H − V (x),

with 0 ≤ m−
H

(x) ≤ tmin ≤ m+
H

(x).



One-dimensional mean-field games with generic nonlinearity

Our problem of interest

Explicit solutions for g(m) = −m, j > 0
Let m−

j := m−
H

cr
j

and m+
j := m+

H
cr
j

. Note that m−
j (x) ≤ m+

j (x) for

all x ∈ T, and the equality holds only at the maximum points of
V .
The two fundamental quantities for our analysis are

α+(j) =
1∫
0

m+
j (x)dx ,

α−(j) =
1∫
0

m−
j (x)dx , j > 0.

(11)

If V is not constant, we have

α−(j) < α+(j), j > 0.
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Our problem of interest

Explicit solutions for g(m) = −m, j > 0

Suppose that x = 0 is the single of maximum of V . Then, for
every j > 0, there exists a unique number, pj , such that (5) has
a unique solution with a current level j . Moreover, the solution,
(uj ,mj ,H j), is given as follows.
If α+(j) ≤ 1,

mj(x) = m+
H j

(x), uj(x) =

x∫
0

jdy
mj(y)

− pjx , (12)

where pj =
∫
T

jdy
mj (y)

and H j is such that
∫
T

mj(x)dx = 1.
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Our problem of interest

Explicit solutions for g(m) = −m, j > 0

If α−(j) ≥ 1,

mj(x) = m−
H j

(x), uj(x) =

x∫
0

jdy
mj(y)

− pjx , (13)

where pj =
∫
T

jdy
mj (y)

and H j is such that
∫
T

mj(x)dx = 1.
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Our problem of interest

Explicit solutions for g(m) = −m, j > 0

If α−(j) < 1 < α+(j), we have that H j = H
cr
j , and

mj(x) = m−
j (x)χ[0,dj ) + m+

j (x)χ[dj ,1), uj(x) =

x∫
0

jdy
mj(y)

− pjx ,

(14)
where pj =

∫
T

jdy
mj (y)

and dj is such that

1∫
0

mj(x)dx =

dj∫
0

m−
j (x)dx +

1∫
dj

m+
j (x)dx = 1.
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Our problem of interest

Explicit solutions for g(m) = −m, j > 0

0.0 0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

2.0
m(x)

m j
+

Solution m for j = 0.001 and V (x) = 1
2 sin(2π(x + 1/4)).
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Our problem of interest

Explicit solutions for g(m) = −m, j > 0

0.2 0.4 0.6 0.8 1.0
x

0.996
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1.000

1.002

1.004

m(x)

m j
-

Solution m for j = 10 and V (x) = 1
2 sin(2π(x + 1/4)).



One-dimensional mean-field games with generic nonlinearity

Our problem of interest

Explicit solutions for g(m) = −m, j > 0

0.0 0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

m(x)

m j
+

m j
-

Solution mj for j = 0.5 and V (x) = 1
2 sin(2π(x + 1/4)).
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Our problem of interest

Explicit solutions for g(m) = −m, j > 0

Non-uniqueness of solutions for V with multiple maxima
Suppose that V attains a maximum at x = 0 and at
x = x0 ∈ (0,1). Let j be such that α−(j) < 1 < α+(j). Then,
there exist infinitely many numbers, p, and pairs, (u,m), such
that (u,m,H

cr
j ) solves (8).
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Our problem of interest

Explicit solutions for g(m) = −m, j > 0
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m j
-

m j
+

m j
-

Two distinct solutions for j = 0.5 and V (x) = 1
2 sin(4π(x + 1/8)).
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Our problem of interest

Explicit solutions for g(m) = −m, j = 0

If 1 +
∫
T

V ≥ max
T

V , then the triplet (u0,m0,H0) with

m0(x) = H0 − V (x), u0(x) = 0, (15)

solves (9) in the classical sense for p0 = 0.
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Our problem of interest

Explicit solutions for g(m) = −m, j = 0
If max

T
V > 1 +

∫
T

V , define

md1,d2
0 (x) =

{
H0 − V (x), x ∈ [d1,d2],

0, x ∈ T \ [d1,d2],
(16)

and

(ud1,d2
0 )x (x) =


√

2(H0 − V (x))− pd1,d2
0 , x ∈ [0,d1),

−pd1,d2
0 , x ∈ [d1,d2],

−
√

2(H0 − V (x))− pd1,d2
0 , x ∈ (d2,1],

where pd1,d2
0 and (d1,d2) are such that u is periodic and m is

probability. Then the triplet (ud1,d2
0 ,md1,d2

0 ,H0) solves (9)
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Our problem of interest

Explicit solutions for g(m) = −m, j = 0

0.2 0.4 0.6 0.8 1.0
x
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m0[x]

m0 as defined in (16) for V (x) = 3 cos(2πx) with d2 = 0.7 and d1
such that m0 is a probability measure.
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Our problem of interest

Explicit solutions for g(m) = −m, j = 0
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u0 (left) and (u0)x (right)as defined in (16) for V (x) = 3 cos(2πx) with
d2 = 0.7 and d1 such that m0 is a probability measure.
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Our problem of interest

"Unhappiness traps"

I Our solutions suggest that when g(m) = −m agents prefer
to stick together, rather than be at better place.

I It is not the case for g(m) = m.
I Results are coherent with the intuition that g models the

crowd preference of the agents.
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Our problem of interest

Regularity regimes
Next, we define

jlower = inf{j > 0 s.t. α+(j) > 1}, (17)

and
jupper = inf{j > 0 s.t. α−(j) > 1}. (18)

These two numbers characterize the regularity regimes of (8).
We have

i. 0 ≤ jlower < jupper <∞;
ii. for j ≥ jupper the system (5) has smooth solutions;
iii. for jlower < j < jupper the system (5) has only discontinuous

solutions;
iv. if jlower > 0, the system (5) has smooth solutions for

0 < j ≤ jlower .



One-dimensional mean-field games with generic nonlinearity

Our problem of interest

Regularity regimes

1 2 3 4 5
j

1

2

3

4

α

A=0.5

α+

α-

5 10 15 20
j

5

10

15

α

A=5

α+

α-

α+ and α− for V (x) = A sin(2π(x + 1/4)). jlower = 0.218, jupper =
1.750 (A = 0.5); jlower = 0, jupper = 3.203 (A = 5).
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Our problem of interest

H j for g(m) = −m

0.5 1.0 1.5 2.0 2.5 3.0
j

2

3

4

5

Hj

jlower

jupper

H̄j for V (x) = 1
2 sin(2π(x + 1

4 )).
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Our problem of interest

pj for g(m) = −m

0.5 1.0 1.5 2.0 2.5 3.0
j
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pj

jlower

jupper

pj for V (x) = 1
2 sin(2π(x + 1

4 )).
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Conclusion and further extensions

Conclusion and further extensions

I Qualitative properties of the solutions are dramatically
different.

I Agents prefer densely populated areas even if they are not
happy with these areas on the individual level.

I What happens in the time dependent case?
I What happens in the stochastic case?
I What about higher dimensions?
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Conclusion and further extensions

Thank you!


