Sigma-model solitons from the Schrödinger representation

Giovanni Landi

Trieste

Stochastic and Analytic Methods in Mathematical Physics

Yerevan, Armenia, September 4-11, 2016
Sigma-model solitons on noncommutative spaces

L. Dabrowski, G.L. Franz Luef

and earlier work with L. Dabrowski and T. Krajewski
and more recent work by J. Rosenberg and Mathai V.

Abstract

Sigma-model solitons over the Moyal plane and noncommutative tori
(also known as Irrational Rotation Algebra),
as source spaces, with a target space made of two points

A natural action functional leads to self-duality equations for projections in
the source algebra

Solutions, having non-trivial topological content (instantons),
are constructed via suitable Morita duality bimodules
(obtained using the Schrödinger representation).

Inputs from time-frequency analysis and Gabor analysis
Non-linear σ-models:

field theories of maps X between the source space (Σ, g), and the target space (M, G). The action functional

$$S[X] = \frac{1}{2\pi} \int_{\Sigma} \sqrt{g} \, g^{\mu\nu} G_{ij}(X) \partial_\mu X^i \partial_\nu X^j,$$

The stationary points:

harmonic maps from Σ to M; describe minimal surfaces embedded in M.

Σ two dimensional, conformal invariance:

the action S is invariant for any rescaling of the metric $g \rightarrow e^\sigma g$.

Thus the action only depends on the conformal class of the metric and may be rewritten using a complex structure on Σ

$$S[X] = \frac{i}{\pi} \int_{\Sigma} G_{ij}(X) \partial X^i \wedge \bar{\partial} X^j,$$
Here ∂ and $\bar{\partial}$, a complex structure and $d = \partial + \bar{\partial}$.

In two dimensions

complex and conformal

are the same thing.

In two-dimensions, the conformal class of a general constant metric is parametrized by a complex number $\tau \in \mathbb{C}$, $\Im \tau > 0$.

Up to a conformal factor, the metric is

$$g = (g_{\mu \nu}) = \begin{pmatrix} 1 & \Re \tau \\ \Re \tau & |\tau|^2 \end{pmatrix}.$$
An algebraic generalization: by dualization and reformulation in terms of the ∗-algebras \(\mathcal{A} = C^\infty(\Sigma, \mathbb{C}) \) and \(\mathcal{B} = C^\infty(M, \mathbb{C}) \).

Embeddings \(X \) of \(\Sigma \) into \(M \) correspond to ∗-algebra morphisms \(\pi_X : \mathcal{B} \to \mathcal{A} \), with correspondence

\[
f \mapsto \pi_X(f) = f \circ X.
\]

∗-algebra morphisms make sense for general algebras \(\mathcal{A} \) and \(\mathcal{B} \).

The configuration space is all ∗-algebra morphisms from \(\mathcal{B} \) to \(\mathcal{A} \)

The definition of the action functional involves generalizations of the conformal and Riemannian geometries.
Connes: conformal is understood in the framework of positive Hochschild cohomology.

The tri-linear map $\phi : \mathcal{A}^3 \rightarrow \mathbb{R}$,

$$\phi(f_0, f_1, f_2) = \frac{i}{\pi} \int_\Sigma f_0 \partial f_1 \wedge \bar{\partial} f_2$$

is an extremal of positive Hochschild cocycles belonging to the Hochschild cohomology class of the cyclic cocycle ψ defined by

$$\psi(f_0, f_1, f_2) = \frac{i}{2\pi} \int_\Sigma f_0 d f_1 \wedge d f_2.$$

On the one hand ψ, the fundamental class, allows one to integrate 2-forms in dimension 2, so it is a metric independent object.

On the other hand, ϕ defines a suitable positive scalar product

$$\langle a_0 da_1, b_0 db_1 \rangle = \phi(b_0^* a_0, a_1, b_1^*)$$

on 1-forms and depends on the conformal class of the metric.
Expressions like ϕ and ψ make sense for a general algebra \mathcal{A}.

Compose the cocycle ϕ with a morphism $\pi : \mathcal{B} \to \mathcal{A}$ to obtain a positive cocycle on \mathcal{B}

$$\phi_\pi = \phi \circ (\pi \otimes \pi \otimes \pi)$$

Evaluate the cocycle ϕ_π on a suitably element of $\mathcal{B}^{\otimes 3}$ which provides the noncommutative analogue of the metric on the target;

Easiest choice for this metric: a positive element $G = \sum_i b^i_0 \delta b^i_1 \delta b^i_2$ of the space of universal 2-forms $\Omega^2(\mathcal{B})$.

Thus, a well defined and positive quantity

$$S[\pi] = \phi_\pi(G)$$ \hspace{1cm} (1)

a noncommutative analogue of the action functional of the non linear σ-model.
Here:

π is the dynamical variable (the embedding)

whereas φ (the conformal structure on the source) and G (the metric on the target) are background structures that have been fixed.

The critical points of the σ-model for the action functional (1): generalizations of harmonic maps; “minimally embedded surfaces” in the (noncommutative) space associated with B.

The role of the other cocycle ψ is to give a topological ‘charge’.

More on this late on.
Two points as a target space \(M = \{1, 2\} \)

Any continuous map from a connected surface \(\Sigma \) to a discrete space is constant, a commutative theory would be trivial.

Not the case for a “noncommutative” source space: in general, not trivial such maps, ‘dually’, as \(\ast \)-algebra morphisms from the algebra of functions over \(M = \{1, 2\} \), that is \(\mathbb{C}^2 \), to the algebra \(A \) of the noncommutative source.

As a vector space \(\mathbb{C}^2 \) is generated by the projection function \(e \) defined by \(e(1) = 1 \) and \(e(2) = 0 \);

\[\Rightarrow \] any \(\ast \)-algebra morphism \(\pi : \mathbb{C}^2 \to A \) is the same as a projection \(p = \pi(e) \in A \).

The configuration space of a two point target space sigma-model is the collection of all projections \(P(A) \) in the algebra \(A \).

Choosing the metric \(G = \delta e \delta e \) on the space \(M = \{1, 2\} \), and a Hochschild cocycle \(\phi \) for the conformal structure, the action functional is simply

\[S[p] = \phi(1, p, p), \]

Positivity in Hochschild cohom implies it is bounded by a topological term
Noncommutative torus and Moyal plane as source space \mathcal{A}:

the action functional is

$$S[p] = \frac{1}{4\pi} \text{tr}(\partial p \bar{\partial} p).$$

with the natural complex structure on \mathcal{A} given by

$$\partial = \partial_1 - i \partial_2, \quad \bar{\partial} = \partial_1 + i \partial_2,$$

and derivations ∂_1 and ∂_2 infinitesimal generators of a \mathbb{T}^2-action

and tr an invariant trace.

All of above can be extended to more general metrics.

In two dimensions: Up to a conformal factor the general constant metric is parametrized by a complex number $\tau \in \mathbb{C}$, $\Im \tau > 0$.

The corresponding ‘complex torus’ $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z} + \tau \mathbb{Z}$ would act infinitesimally on \mathcal{A} with two complex derivations

$$\partial = \partial_1 + \bar{\tau} \partial_2, \quad \bar{\partial} = \partial_1 + \tau \partial_2.$$
As usual, the critical points of the action functional are obtained by equating to zero its first variation, that is the linear term in an infinitesimal variation

\[\delta S[p] = S[p + \delta p] - S[p], \quad \text{for} \quad \delta p \in T_p(P(A)). \]

One gets

\[p \Delta(p) (1 - p) = 0 \quad \text{and} \quad (1 - p) \Delta(p) p = 0, \]

or, equivalently the non-linear equations of the second order

\[p \Delta(p) - \Delta(p) p = 0. \quad (2) \]

with the Laplacian of the metric \(\Delta = \frac{1}{2}(\partial \overline{\partial} + \overline{\partial} \partial) \)
The cyclic 2-cocycle giving the fundamental class is
\[\psi(a_0, a_1, a_2) = \frac{1}{2\pi i} \text{tr} \left(a_0 (\partial_1 a_1 \partial_2 a_2 - \partial_2 a_1 \partial_1 a_2) \right), \]

For any projection \(p \in P(A) \), the quantity
\[c_1(p) := \psi(p, p, p) \]
is an integer: the index of a Fredholm operator.

For any \(p \in P(A) \) it holds that
\[S[p] \geq |c_1(p)|. \]

The equality for projection \(p \) satisfying self-duality or anti-self duality eqns
\[p(\partial_1 \pm i \partial_2)(p) = 0 \quad (3) \]
These equation imply the EOM (2).
Projection from Morita equivalence (Rieffel)

A Morita equivalence between (pre C^*-algebras) \mathcal{A} and \mathcal{B}:

a $\mathcal{A}–\mathcal{B}$-bimodule \mathcal{E}

with a left-linear \mathcal{A}-valued $h\mathcal{p} \langle \cdot, \cdot \rangle$ and a right-linear \mathcal{B}-valued $h\mathcal{p} \langle \cdot, \cdot \rangle$.

There is an associativity condition:

$$\mathcal{p}\langle \xi, \eta \rangle \zeta = \xi \langle \eta, \zeta \rangle$$

It follows an identification $\mathcal{B} \simeq \mathcal{K}_A(\mathcal{E})$ (compact endomorphisms).

In particular, there exist elements $\{\eta_1, ..., \eta_n\}$ in \mathcal{E} such that

$$\sum_j \langle \eta_j, \eta_j \rangle = 1_B.$$

Then, the associativity condition gives that the matrix $p = (p_{jk})$

$$p_{jk} = \mathcal{p}\langle \eta_j, \eta_k \rangle$$

is a projection in the matrix algebra $M_n(\mathcal{A})$.
Both algebras \mathcal{A} and \mathcal{B} are in the joint smooth domain of two commuting derivations ∂_1 and ∂_2; and have faithful invariant tracial states, which are compatible in the sense that:

$$\text{tr} \langle \xi, \eta \rangle = \text{tr} \langle \eta, \xi \rangle.$$

Derivations are lifted to \mathcal{E} as (left and right) **covariant derivatives**:

$$\nabla_j : \mathcal{E} \to \mathcal{E}, \quad j = 1, 2,$$

$$\nabla_j(a\xi) = (\partial_j a)\xi + a(\nabla_j \xi) \quad \text{and} \quad \nabla_j(\xi b) = (\nabla_j \xi)b + \xi(\partial_j b)$$

compatible with both the \mathcal{A}-valued hermitian structure $\langle \cdot, \cdot \rangle$; the \mathcal{B}-valued hermitian structure $\langle \cdot, \cdot \rangle$.

\[\partial_j(\langle \xi, \eta \rangle) = \langle \nabla_j \xi, \eta \rangle + \langle \xi, \nabla_j \eta \rangle\]

and

\[\partial_j(\langle \xi, \eta \rangle) = \langle \nabla_j \xi, \eta \rangle + \langle \xi, \nabla_j \eta \rangle\]
Lifting self-duality equations: solitons

The holomorphic/anti-holomorphic, connection on \mathcal{E},

$$\nabla = \nabla_1 - i \nabla_2, \quad \bar{\nabla} = \nabla_1 + i \nabla_2,$$

lift to \mathcal{E} the complex derivations $\partial = \partial_1 - i \partial_2$ or $\bar{\partial} = \partial_1 + i \partial_2$.

The ‘rank’ one case:

Seek solutions of the s-d eqs (3) of the form

$$p_\psi := \langle \psi, \psi \rangle \in \mathcal{A} \quad \text{with} \quad \psi \in \mathcal{E} \quad \text{such that} \quad \langle \psi, \psi \rangle = 1_\mathcal{B}.$$

The projection p_ψ is a solution of the s-d eqs:

$$p_\psi \partial (p_\psi) = 0,$$

if and only if the vector ψ is a generalized eigenvector of $\bar{\nabla}$ i.e. there exists $\lambda \in \mathcal{B}$ such that

$$\bar{\nabla} \psi = \psi \lambda.$$
How to compute the topological charge:

The curvature of the covariant derivatives is defined as

\[F_{12} := \nabla_1 \nabla_2 - \nabla_2 \nabla_1 \]

Let \(\psi \in \mathcal{E} \) be such that \(\langle \psi, \psi \rangle \rho = 1_B \) and \(p_\psi := \rho \langle \psi, \psi \rangle \in \mathcal{A} \) the corresponding projection. Then, its topological charge is:

\[c_1(p_\psi) = -\frac{1}{2\pi i} \text{tr} \langle \psi, F_{12} \psi \rangle \rho. \]

Constant curvature: \(F_{12} = -2\pi i q \text{id}_\mathcal{E} \)

the projection \(p_\psi = \rho \langle \psi, \psi \rangle \) has then topological charge

\[c_1(p) = q \text{tr}(1_B) \in \mathbb{Z} \]

note that neither \(q \) nor \(\text{tr}(1_B) \) need be an integer
Moyal plane from Schrödinger representation

The projective representation of \mathbb{R}^2 on $L^2(\mathbb{R})$ defined for $\xi \in L^2(\mathbb{R})$ by

$$(\pi(z)\xi)(t) = e^{2\pi it\omega}\xi(t-x), \quad \text{for } z = (x, \omega).$$

(4)

$\Rightarrow \pi(z)\pi(z') = e^{-2\pi ix\omega'}\pi(z + z').$

The map $c : \mathbb{R} \times \mathbb{R} \to T, c(z, z') = e^{-2\pi i(x\omega')} \text{ is a 2-cocycle.}$

Its matrix-coefficients are defined for $\xi, \eta \in L^2(\mathbb{R})$ by

$$V_{\eta}\xi(z) := \langle \xi, \pi(z)\eta \rangle_{L^2(\mathbb{R})} = \int_{\mathbb{R}} \xi(t)\overline{\eta}(t-x)e^{-2\pi it\omega}dt$$

In signal analysis $V_{\eta}\xi$ is known as the short time Fourier transform.
Moyal’s identity: \[\langle V_\eta \xi, V_\psi \varphi \rangle_{L^2(\mathbb{R}^2)} = \langle \xi, \varphi \rangle_{L^2(\mathbb{R})} \overline{\langle \eta, \psi \rangle_{L^2(\mathbb{R})}} \]

An additional important consequence of this identity: is a reconstruction formula for \(\xi \in L^2(\mathbb{R}) \) in terms of \(\{ \pi(z) \eta : z \in \mathbb{R}^2 \} \).

Let \(\eta \) and \(\psi \) be in \(L^2(\mathbb{R}) \) such that \(\langle \psi, \eta \rangle \neq 0 \). Then for any \(\xi \in L^2(\mathbb{R}) \),

\[
\xi = \langle \psi, \eta \rangle^{-1} \iint_{\mathbb{R}^2} \langle \xi, \pi(z) \eta \rangle \pi(z) \psi \, dz = \langle \psi, \eta \rangle^{-1} \iint_{\mathbb{R}^2} V_\eta \xi(z) \pi(z) \psi \, dz.
\]

The twisted group algebra \(L^1(\mathbb{R}^2, c) \) of \(\mathbb{R}^2 \) associated to the cocycle \(c \).

For \(k \) and \(l \) in \(L^1(\mathbb{R}^2) \), the twisted convolution \((k \natural l) \):

\[
(k \natural l)(z) = \iint k(z')l(z - z')c(z', z - z') \, dz'
\]

and twisted involution of \(k \in L^1(\mathbb{R}^2) \):

\[
k^*(z) = c(z, z) \overline{k(-z)} = e^{-2\pi ix\omega} \overline{k(-z)}
\]
The integrated representation

\[K = \pi(k) = \int_{\mathbb{R}} \int_{\mathbb{R}^2} k(z)\pi(z)dz \]

for \(k \in L^1(\mathbb{R}^2) \), is a non-degenerate bounded representation of the twisted convolution algebra \(L^1(\mathbb{R}, c) \) on \(L^2(\mathbb{R}^2) \).

The adjoint of \(K = \pi(k) \) is given by \(K^* = \pi(k^*) \) and the composition of \(K = \pi(k) \) and \(L = \pi(l) \) corresponds to \((k \natural l) \):

\[KL = \int_{\mathbb{R}} \int_{\mathbb{R}^2} (k \natural l)(z)\pi(z)dz.\]

Denote by \(\mathcal{A} \) the class of all operators \(K = \pi(k) \) for \(k \in S(\mathbb{R}^2) \); they are all trace-class. Its norm closure is all compact operators.

\(\mathcal{A} \) is a model of the Moyal plane: the Fourier transforms of the symbols defining elements of \(\mathcal{A} \) yield the Moyal product:

\[k \star l = \mathcal{F}^{-1}(\mathcal{F}(k)\natural\mathcal{F}(l)) \quad \text{for} \quad k, l \in S(\mathbb{R}^2).\]
Rieffel:
(a result equivalent to the uniqueness of the Schroëdinger representation of
the CCR (for the two-dimensional quantum phase space of a free particle):

The space $\mathcal{E} = \mathcal{S}(\mathbb{R})$ is an equivalence bimodule between \mathcal{A} and \mathbb{C}

with respect to the actions:

$$K \cdot \xi = \iiint k(z) \pi(z) \xi \, dz,$$

$$\xi \cdot \lambda = \xi \bar{\lambda}$$

and \mathcal{A} and \mathbb{C}-valued hermitian products:

$$\langle \xi, \eta \rangle = \iiint \langle \xi, \pi(z) \eta \rangle_{L^2(\mathbb{R})} \pi(z) \, dz = \iiint V_\eta \xi(z) \pi(z) \, dz = \pi(V_\eta \xi)$$

$$\langle \xi, \eta \rangle^* = \langle \eta, \xi \rangle_{L^2(\mathbb{R})}.$$
A two dimensional spectral geometry

Commuting derivations (an infinitesimal action of \mathbb{T}^2) ∂_1, ∂_2:

$$\partial_1 K = 2\pi i \int \int_{\mathbb{R}^2} xk(x, \omega)\pi(x, \omega) \, dx \, d\omega,$$

$$\partial_2 K = 2\pi i \int \int_{\mathbb{R}^2} \omega k(x, \omega)\pi(x, \omega) \, dx \, d\omega.$$

They lift to covariant derivatives on the equivalence bimodule \mathcal{E}:

$$(\nabla_1 \xi)(t) = 2\pi i t \xi(t) \quad \text{and} \quad (\nabla_2 \xi)(t) = \xi'(t)$$

They are compatible with both left and right hermitian structures.

The connection has constant curvature:

$$F_{1,2} := [\nabla_1, \nabla_2] = -2\pi i \text{id}_{\mathcal{E}}$$
For $\psi \in S(\mathbb{R})$ normalized as $\langle \psi, \psi \rangle \bullet = \| \psi \|_2 = 1$,
\Rightarrow a non-trivial projection $p_\psi = \bullet \langle \psi, \psi \rangle$ in A.

The projection p_ψ is a solution of the self-duality equations,
$$p_\psi (\partial p_\psi) = 0$$
if and only if, for some $\lambda \in \mathbb{C}$, the element ψ satisfies
$$\overrightarrow{\nabla} \psi = \psi \lambda.$$

Eigenfunction equations for $\overrightarrow{\nabla}$; solutions are generalized Gaussians:
$$\psi_\lambda (t) = c e^{-\pi t^2 - i \lambda t}.$$

Explicitly,
$$p_\psi = \bullet \langle \psi, \psi \rangle = \int \int_{\mathbb{R}^2} V_\psi \psi(z) \pi(z) \, dz$$
$$V_\psi \psi(x, \omega) = e^{-\frac{x^2}{2} (x^2 + \omega^2)} e^{-\pi i x \omega - \frac{1}{2} (\bar{\lambda} + \lambda) x + \frac{1}{2} (\bar{\lambda} - \lambda) \omega}.$$

For its topological charge:
$$c_1(p_\psi) = \text{tr}(p_\psi) = V_\psi \psi(0) = 1.$$
The constant curvature is none other than the Heisenberg commutation relations (in the Schrödinger representation).

The anti-holomorphic connection $\nabla = \nabla_1 + i\nabla_2$ is the annihilation operator; the holomorphic $\nabla = \nabla_1 - i\nabla_2$ is the creation operator.

The self-duality equation for the projections is the equation for the minimizers of the Heisenberg uncertainty relation, which explains why they are Gaussian ψ_λ.
The irrational rotation algebra (aka the noncommutative torus).

For $\theta \in \mathbb{R}$, the C^*-algebra A_θ of the noncommutative torus is the norm closure of the span of $\{\pi(\theta k, l) : k, l \in \mathbb{Z}\}$: the restriction of the Schrödinger rep (4) of \mathbb{R}^2 on $L^2(\mathbb{R})$ to $\theta \mathbb{Z} \times \mathbb{Z} \subset \mathbb{R}^2$.

Denoting $\pi(0, 1) = M_1$ and $\pi(\theta, 0) = T_\theta$ they satisfy:

$$M_1 T_\theta = e^{2\pi i \theta} T_\theta M_1.$$

The smooth torus: subalgebra A_θ of A_θ consisting of operators

$$\pi(a) = \sum_{k,l \in \mathbb{Z}} a_{kl} \pi(\theta k, l), \quad \text{for} \quad a = (a_{kl}) \in \mathcal{S}(\mathbb{Z}^2).$$

With a and b in $\mathcal{S}(\mathbb{R})$ we have for their product

$$\pi(a) \pi(b) = \pi(a \natural b)$$

where $a \natural b$ is the twisted convolution

$$(a \natural b)(k, l) = \sum_{m,n \in \mathbb{Z}} a_{mn} b_{k-m,n-l} e^{-2\pi i \theta n(k-m)}.$$
while $\pi(a)^* = \pi(a^*)$, where a^* is the twisted involution of a:

$$(a_{kl})^* = e^{-2\pi i\theta kl} a_{-k,-l}.$$

Operators commuting with $\pi(\theta k, l)$ are associated with the lattice $\mathbb{Z} \times \theta^{-1}\mathbb{Z}$. They make up the algebra $A_{1/\theta}$ of elements

$$b = \sum_{k,l \in \mathbb{Z}} b_{kl} \pi(k, \theta^{-1}l), \quad \text{for} \quad b = (b_{kl}) \in \mathcal{S}(\mathbb{Z}^2)$$

Take $A = A_\theta$ and $B = (A_{1/\theta})^{\text{op}} \simeq A_{-1/\theta}$ (this acts from the right)
The space $\mathcal{E} = S(\mathbb{R})$ is an equivalence bimodule between the noncommutative tori A and B with respect to the actions:

$$a \cdot \xi = \sum_{k,l \in \mathbb{Z}} a_{kl} \pi(\theta k, l) \xi,$$

and

$$\xi \cdot b = \sum_{k,l \in \mathbb{Z}} b_{kl} \pi(k, \theta^{-1} l)^* \xi,$$

and with hermitian products

$$\langle \xi, \eta \rangle = \theta \sum_{k,l \in \mathbb{Z}} V_{\eta} \xi(\theta k, l) \pi(\theta k, l),$$

and

$$\langle \xi, \eta \rangle^* = \sum_{k,l \in \mathbb{Z}} V_{\xi} \eta(k, l \theta^{-1}) \pi(k, \theta^{-1} l).$$
A two dimensional spectral geometry

The infinitesimal action of an ordinary torus \mathbb{T}^2 on both algebras A_θ and $A_{-1/\theta}$, are derivations. On A_θ they are

$$\partial_1(a) = 2\pi i \sum_{k,l} ka_{k,l} \pi(\theta k, l)$$

and

$$\partial_2(a) = 2\pi i \sum_{k,l} la_{k,l} \pi(\theta k, l),$$

and the dual ones on $A_{-1/\theta}$ are then

$$\partial_1(b) = -2\pi i \theta^{-1} \sum_{k,l} b_{k,l} \pi(k, \theta^{-1} l)^*$$

and

$$\partial_2(b) = -2\pi i \theta^{-1} \sum_{k,l} l b_{k,l} \pi(k, \theta^{-1} l)^*.$$

Lift to covariant derivatives ∇_1, ∇_2 on the bimodules $\mathcal{E} = \mathcal{S}(\mathbb{R})$:

$$(\nabla_1 \xi)(t) = 2\pi i \theta^{-1} t \xi(t) \quad \text{and} \quad (\nabla_2 \xi)(t) = \frac{d\xi(t)}{dt} =: \xi'(t).$$

The curvature is constant:

$$F_{1,2} := [\nabla_1, \nabla_2] = -2\pi i \theta^{-1} \text{id}_\mathcal{E}.$$
Frames

As a module over A_θ, the space $E = S(\mathbb{R})$ is of finite rank and projective and it admits a standard module Parseval frame $\{\eta_1, ..., \eta_n\}$ for $S(\mathbb{R})$, that is each $\xi \in S(\mathbb{R})$ has an expansion,

$$\xi = \langle \xi, \eta_1 \rangle \eta_1 + \cdots + \langle \xi, \eta_n \rangle \eta_n.$$

For $0 < \theta < 1$, the module $S(\mathbb{R})$, is given by a projection in A_{θ} itself: one can use a one-element Parseval frame η

From a standard module frame η one gets a Parseval frame $\tilde{\eta}$ by taking the element $\tilde{\eta} := \eta(\langle \eta, \eta \rangle \cdot)^{-1/2}$

Then $\langle \tilde{\eta}, \tilde{\eta} \rangle \cdot = 1$ and $\langle \tilde{\eta}, \tilde{\eta} \rangle$ is a projection in A_{θ}.
Frames and projections:

• The Hermite function

\[\eta = \psi_k(t) = c_k e^{\pi t^2} \frac{d^k}{dt^k} e^{-2\pi t^2} \]

gives a projection \(p_k = \langle \tilde{\eta}, \tilde{\eta} \rangle \in A_\theta \), if \(0 < \theta < (k + 1)^{-1} \).

• Let \(\eta \in S(\mathbb{R}) \) be a totally positive function of finite type greater than 2. Then, \(p_{\tilde{\eta}} = \langle \tilde{\eta}, \tilde{\eta} \rangle \) is a projection in \(A_\theta \) for \(0 < \theta < 1 \).

All of these projections have topological charge equal to 1. From

\[c_1(p) = q \text{ tr}(1_B) \]

with now \(q = \theta^{-1} \) (the curvature) and \(\text{tr}(1_B) = \text{tr}(A_{-1/\theta}) = \theta \).
Duality and Gabor frames

For a Parseval frame, the duality principle (Wexler-Raz identity), reads as an expansion of each \(\xi \) in \(S(\mathbb{R}) \) both over \(A \) and \(B \),

\[
\xi = \langle \xi, \tilde{\eta} \rangle \tilde{\eta} = \tilde{\eta} \langle \tilde{\eta}, \xi \rangle, \]

with \(\langle \xi, \tilde{\eta} \rangle \in A \) and \(\langle \tilde{\eta}, \xi \rangle \in B \) which are uniquely determined.
This helps for the soliton equation.

As before, the s-d eqs for the projection p_ψ obeys $p_\psi \partial (p_\psi) = 0$ translate to a generalized eigenvector equation

$$\overline{\nabla} \psi = \psi \lambda,$$

with now $\lambda = \langle \psi, \overline{\nabla} \psi \rangle \in A_{-1/\theta}$.

Using the duality principle we have that

$$\text{with } \psi := \eta (\langle \eta, \eta \rangle^{-1/2})$$

the projection $p_\psi = \langle \psi, \psi \rangle \in A_\theta$

satisfies the s-d eqs:

- For $0 < \theta < (k + 1)^{-1}$, if η is the k-th Hermite functions ψ_k.
- For $0 < \theta < 1$, if η is a tot pos fun in $S(\mathbb{R})$ of finite type greater than 2.
In particular, the Gaussian function
\[\psi_\lambda(t) = c e^{-\frac{\pi}{\theta} t^2 - i \lambda t}, \quad \text{for } \lambda \in \mathbb{C}, \]
obey the equation \(\nabla \psi_\lambda = \psi_\lambda \lambda \).

The right hermitian product \(\langle \psi_\lambda, \psi_\lambda \rangle \) is invertible in \(\mathcal{A}_{-1/\theta} \) for all \(0 < \theta < 1 \), so that the projections \(p_\lambda = \langle \widetilde{\psi}_\lambda, \widetilde{\psi}_\lambda \rangle \), with \(\widetilde{\psi}_\lambda := \psi_\lambda (\langle \psi_\lambda, \psi_\lambda \rangle \bullet)^{-1/2} \)
are solutions of the self-duality equations

The moduli space of such Gaussian solutions, is parametrised by possible \(\lambda \)'s modulo gauge transformations

(implemented by invertible elements in \(\mathcal{A}_{-1/\theta} \))

is a copy of the complex torus.
More examples and applications
Sigma-model solitons over the Moyal plane and noncommutative tori, as source spaces, with a target space made of two points

A natural action functional leads to self-duality equations for projections in the source algebra

Solutions, having non-trivial topological content, are constructed via suitable Morita duality bimodules,

Inputs from time-frequency analysis and Gabor analysis

More interesting cases

Uses in time-frequency analysis and Gabor analysis coming up
Thank you