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C*-algebra generated by mapping

The starting point is a selfmapping ¢ : X — X on a countable set
X. The mapping generates an oriented graph (X, ) with the
elements of X as vertices and pairs (x, ¢(x)) as edges. We assume
the cardinality of the preimage set of each point is finite and a

number m exists such that m = sup card{p~1(x)} < oo.
xeX
The mapping ¢ induces the composition operator

T, 12(X) — I2(X):
T, f =foo.

Definition
C*-algebra C7,(X) generated by the mapping ¢ is the C*-algebra
generated by the operator T,.

In what follows 7, = T.
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The conjugate operator T* can be calculated by the formula

> f(x), el (y) #0;
(T*F)(y) = { xep1(y)

0, if o7 1(y) =0.

Using positive operators TT* and T*T we obtain an orthogonal
decompositions:

P(X) =@ oP(Xe), 1P(Xk)={f € P(X): T*Tf = kf};

P(X)=@®m o2, 12 ={fcP(X): TT*f = kf},

and
TT" =@ 1kQx, T'T =@y kPx,

where Py is the projection onto /2(X) and Qy is the projection
onto /2.

Projections Py and Qy are equivalent and mutually non permutable
in general.
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Family of partial isometries U

Uy is the respective partial isometry with the initial space /2(Xy)
and the final space /2 and

T=U1+V2Us+ -+ VmUp
(certain of summand-operators can be zero).
We denote by U the set of respective partial isometries.

Theorem
C;(X.) is generated by the set U of partial isometries satisfying the
equalities:

UtUr + U3 Uz + -+ Up U = Py,

UlUik + UzUé|< +---+ UmU;; = Q@
where P, and Q, are projections defined by the mapping .
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Some examples of C*-algebras generated by mappings
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In the report we suppose the mapping ¢ to be fixed satisfying the
following conditions:

» there is no cyclic element in X,
» the graph (X, ¢) is connected,

» the number of preimages is uniformly bounded i.e. a number m

exists such that m = sup card{yp~1(x)} < oco.
xeX

Definition
Elements of the set U | JU* we call elementary monomials.
Each finite product of elementary monomials we call a monomial.

The set of all monomials Mon(X) forms a semigroup with respect
to multiplication operation or, in other words, Mon(X) is an
involutive semigroup generated by the set U.

In general Mon(X) is not inverse and the semigroup of idempotents
is not commutative.
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For each a € U |JU* we define
inda=1, aeld, inda= -1, aclU”.

We consider ind V for V # 0 € Mon(X) as the sum of the indices
of the factors. We assume the index of zero operator to be 0.
Lemma

The index of monomial is well-defined, and for Vi, V, € Mon(X)

ind V4V =ind Vi +ind Vo, Vi1 Vo # 0.

Let C, n be an operator subspace generated by monomials of index
n. So C,p is a subalgebra generated by monomials of zero index.

We can equip C(X) with a circle action a : ST — Aut C5(X),
namely ‘
a (V) =2"VV VeMon(X), zecSh
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Grading and irreducibility

Then C,n = {A€ Ci(X): az(A) =z"A for ze S'}is the
n-th spectral subspace for the action «, and C, ¢ is a fixed point
subalgebra of C(X).

Theorem

Algebra C3(X) is Z-graded and the grading is generated by the
covariant system (Cz(X), St a).

The fixed point subalgebra C, ¢ is an AF-algebra, and hence
C5(X) is nuclear.

Theorem
The algebra C3(X) is irreducible if and only if the equality

(Wey, e) = (Wey, e,) for all W € Mon(X) implies
ex = ey.

Family {ex}xex (ex(y) = 6x.y) forms a natural basis in /2(X).



When Mon(X) is inverse

Mapping ¢ induces a partial order and an equivalence on X. We
write

x<yif dmst o™ (y) =x and x ~ y if Am s.t. " (x) = " (y).

Theorem

The semigroup Mon(X) is inverse if and only if for any pair x ~ 'y
there is a bijection x : X — X such that x o p = ¢ o x and
X(x) =y.

Using the criterion of irreducibility we can determine another
equivalence on X,

xRy if (Wey, ) = (Wey, e,) for all W € Mon(X).
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Structure of C3(X) if Mon(X) is inverse

Let I/ be a tame set i.e. generates an inverse semigroup.

Theorem

The fixed point subalgebra C, o is commutative if and only if the
semigroup Mon(X) is inverse. If this is the case, the subsemigroup
Mon(X)o of monomials of zero index is a commutative
subsemigroup of idempotents.

Let E(x) ={y e X:x <y}, and &(x) ={y e X : x ~ y}.
Definition

We call X p-tame if the corresponding family of partial isometries
U is a tame set.
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Structure of X if Mon(X) is inverse

Proposition
Let X be a p-tame set. Let at list one x € X be such that €(x) is
finite. Then &(x) is finite for all x € X.

Proposition

Let X be a p-tame set. Let x be such that there exists an y € £(x)
such that x % y. Then this is true for all x € X.

In this case we will say that X satisfies the w-property.

Let wlx] = {y € &(x) : x%y}. For all y € w[x] we have

¢*(y) = x, for some k,,. The minimal of such {k,} we call the
period of the set w[x].

Proposition
Let X be a p-tame set satisfying the w-property. Then for all
x € X the sets w[x] have the same period.
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Invariant subspaces

Theorem (1)

Let U be a tame set and the mapping ¢ be not surjective. Let &(x)
be countable for all x € X. Then
+00 .
» 2(X)~ @ (@ H,), where I, is countable;
n=1"iel,
» subspaces H; are only invariant subspaces for the algebra
C;(X), they are finite dimensional and mutually isomorphic for
n fixed;

» every A € C5(X) can be represented in the form
A= (629/\1) @ Ao, where Ao = A|( o HyL’ Al = A|H1,'

i€y

» C5(X) is isomorphic to a subalgebra of k% M, (C).
=1
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Invariant subspaces

Theorem (2)

Let U be a tame set and the mapping @ be not surjective. Let €(x)
be finite for all x € X. Then

> P(X)~ P(Zy) @ ( (& H )) where I, is finite;

fin “i€l,

» subspaces H; (as well as I>(Z..)) are only invariant subspaces
for the algebra C(X), all H; are finite dimensional and
mutually isomorphic for n fixed;

» every A € C5(X) can be represented in the form
A= (@ Al) D AO, where AO = A| A1 = A|H1;

/E/n

> Ci(X) is isomorphic to the direct sum T ® (& My, ), where T
k
is the Toeplitz algebra.
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Invariant subspaces

Theorem (3)

Let U be a tame set and the mapping ¢ be surjective. Let €(x) be
countable for all x € X. Then
+oo
» P(X)~ @ (EBI H;), where I, is countable;
n=—o0 jel,

> Hi ~ I*(Zy.) are only invariant subspaces for C}(X);

» every A € C5(X) can be represented in the form
A= (% A1) ® Ao, where Ag = A|(8 s A1 = Ay

» the restriction of C3(X) to H; is isomorphic to a C*-algebra
generated by a weighted shift (w.s.). If Hiy (H(m)) is one of

the summands in & H; (corr. © H;), n > m, then the
i€l i€lm
respective operators of w.s. have the coefficients (a1, az, . ..)

and (ﬁly o '/Bn—ma a1, 00, .. )
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Invariant subspaces

Theorem (4)

Let U be a tame set and the mapping ¢ be surjective. Let €(x) be
finite for all x € X. Then
> (X))~ (Z) @ (Eo(,-g} H;)), where |, is finite;
» subspaces H; (as well as I(Z)) are only invariant subspaces of
the algebra C}(X), each H; is isomorphic to I*(Z.);
» every A € C5(X) can be represented in the form
A= (GZB Al) @ Ag, where Ag = A| A1 = A|

lEIn

Hy’

» the restriction of C3(X) to H; (Iz(Z)) is isomorphic to the
C*-algebra generated by a w.s. (corr. bilateral w.s.). If H(,

(H(m)) is one of the summands in & H; (EB Hi), n > m,
i€lp i€l

then the respective w.s. have the coefficients (a1, g, ...) and

(B1, - Baem, o1, 2, . . .).
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Theorem (5)

Let U be a tame set and let X has the w -property. Then in
Theorem 3 the last statement is replaced by the following one: the
restriction of C3(X) to each invariant subspace is isomorphic to the
C*-algebra generated by a periodic weighted shift. The algebra

C;(X) is isomorphic to M,(T') where n is the period of the set
w[x].
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Example to Theorem 2

o «—eo
R gl ]

N
P(X) = I*(Z,)® H,,

C,(X) = TeM,y(C),
C,o0~ C*0Gy(Z,)+ClI.

e ot— 0 ——0 <——o

A. Kuznetsova Yerevan, 4.09-11.09 2016



Example to Theorem 3

/ PX)=aF(Zy),

Z

\, N

N

N

/ ' CX)p@zy =T,
C*(X) ~ T,

Coo =~ Go(Z1) + Cl.

/
\

A
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Example to Theorem 4

P(X) = P(2) & (2.,
C;(X)|p(z) is the Toeplitz type algebra,
CXNepEzy =T,
C,(X) is the Toeplitz type algebra,
Coo~ Go(Z) +ClI.
0 — K1 — C5(X)

Pt
e

2@y C(s') —o.
0 — Ki®bKy — C5(X) — C(SY) —o.

0— K1 — C;(X) — T —0.

oo e fE—o0oC—o0<C——0

0— Kr — Ci(X) — C(SH)+K1 — 0.
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Example to Theorem 5

l\/l l\/l P(X) = @ P(Zy),

l l C;(X)|/2(Z+) ~ MQ(T),
: . Co(X) = My(T),
o Coo = C22(Go(Z4)+CI).
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Thank you!
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