Cluster and virial expansions for multi-species models

Sabine Jansen Ruhr-Universität Bochum

Yerevan, September 2016

Overview

- 1. Motivation: dynamic nucleation models
- 2. Statistical mechanics for mixtures of hard spheres
- 3. An inversion theorem via Lagrange-Good
- 4. Application to cluster and virial expansions
- 5. Explicit solution for Tonks gas in dimension 1

1 A dynamic nucleation model

System of coupled ODEs for variables $\rho_k(t)$, $k \in \mathbb{N}$.

Becker, Döring '35. Version Burton '77, Penrose, Lebowitz '79:

Given: coefficients $a_k, b_k > 0$, $k \in \mathbb{N}$, ODE

$$\begin{cases} \dot{\rho}_{k} &= -\left(a_{k}\rho_{k}\rho_{1} - b_{k+1}\rho_{k+1}\right) + \left(a_{k-1}\rho_{k-1}\rho_{1} - b_{k}\rho_{k}\right) & (k \geq 2) \\ \dot{\rho}_{1} &= -\left(a_{1}\rho_{1}^{2} - b_{2}\rho_{2}\right) - \sum_{k=1}^{\infty} \left(a_{k}\rho_{k}\rho_{1} - b_{k+1}\rho_{k+1}\right) \end{cases}$$

- ► Coagulation $(k) + (1) \rightarrow (k+1)$ at rate $a_k \rho_k \rho_1$
- ▶ Fragmentation $(k+1) \rightarrow (k) + (1)$ at rate $b_{k+1}\rho_{k+1}$.
- ▶ Choice of $\dot{\rho}_1$: Total density $\rho = \sum_k k \rho_k(t)$ time-independent.

Question: long time behavior? BALL, CARR, PENROSE '86

$$egin{align} fig((
ho_k)_{k\in\mathbb{N}}ig) &:= \sum_{k=1}^\infty
ho_k \Big(\lograc{
ho_k}{Q_k} - 1\Big) \ & rac{Q_{k+1}}{Q_k} = rac{a_k}{b_{k+1}}, \quad Q_1 = 1. \end{split}$$

Lyapunov function (decreases along solutions of ODE).

Wanted: minimizer at given density $\rho = \sum_{k=1}^{\infty} k \rho_k$.

Phase transition in Becker-Döring model

Minimizer Assumption: power series $\sum_k z^k Q_k$ has finite radius of convergence R and $\sum_k kR^k Q_k < \infty$. Then

- $\rho < \sum_k kR^kQ_k$: unique minimizer = equilibrium distribution.
- $\rho > \sum_k kR^kQ_k$: no minimizer with $\sum_k k\rho_k = \rho$. Long time behavior:

$$\sum_{k=1}^{\infty} \lim_{t \to \infty} k \rho_k(t) = \sum_{k=1}^{\infty} k R^k Q_k < \rho = \sum_{k=1}^{\infty} k \rho_k(t).$$

Mass escapes to very large droplets.

Interpretation: $\sum_{k} kR^{k}Q_{k}$ = density of saturated vapor.

Problem: What is the physically correct choice of coefficients a_k , b_k ? "Correct" free energy should be a Lyapunov function.

This talk: free energy $f((\rho_k)_{k \in \mathbb{N}})$ via statistical mechanics. Leads to power series in the ρ_k , $k \in \mathbb{N}$: virial expansion.

From here on, no dynamics anymore.

2 Mixture of hard spheres

Spheres of different sizes (radii $k^{1/3}$, $k \in \mathbb{N}$) in $\Lambda \subset \mathbb{R}^3$.

Multi-indices $(N_k) \in \mathbb{N}_0^{\mathbb{N}}$, finitely many non-zero.

Canonical partition function and free energy:

$$\begin{split} Z_{\Lambda}\Big((N_k)_{k\in\mathbb{N}}\Big) &:= \frac{1}{\prod_k N_k!} \int_{\Lambda^{N_1}} \mathrm{d}x_{11} \cdots \mathrm{d}x_{1N_1} \int_{\Lambda^{N_2}} \mathrm{d}x_{21} \cdots \\ &\qquad \qquad \times \mathbf{1}\Big(\forall k,\ell,i,j: \ B(x_{ki},k^{1/3}) \cap B(x_{\ell j},\ell^{1/3}) = \emptyset\Big) \\ f\Big((\rho_k)_{k\in\mathbb{N}}\Big) &:= -\lim \frac{1}{|\Lambda|} \log Z_{\Lambda}\Big((N_k)_{k\in\mathbb{N}}\Big) \end{split}$$

in the limit $|\Lambda| \to \infty$, $N_k \to \infty$ along $N_k/|\Lambda| \to \rho_k$.

Ideal mixture: neglect overlap of spheres.

$$egin{aligned} Z_{\Lambda}^{ ext{ideal}}\Big((N_k)_{k\in\mathbb{N}}\Big) &= \prod_k rac{|\Lambda|^{N_k}}{N_k!} pprox \prod_k \Big(rac{|\Lambda|}{N_k/e}\Big)^{N_k} \ f^{ ext{ideal}}ig((
ho_k)_{k\in\mathbb{N}}ig) &= \sum_k
ho_k(\log
ho_k-1). \end{aligned}$$

Recognize Lyapunov function of Ball, Carr, Penrose.

Goal: $f = f^{\text{ideal}} + \text{convergent power series}$.

Pressure and grand-canonical ensemble

Given: parameters $z_k > 0$ activities.

Grand-canonical partition function and pressure:

$$\begin{split} \Xi_{\Lambda}\big((z_k)_{k\in\mathbb{N}}\big) &:= 1 + \sum_{\pmb{N}\in\mathcal{I}} \Bigl(\prod_k \frac{z_k^{N_k}}{N_k!}\Bigr) \int_{\Lambda^{n_1}} \mathrm{d}x_{11} \cdots \mathrm{d}x_{1,n_1} \int_{\Lambda^{n_2}} \mathrm{d}x_{n_1,1} \cdots \\ & \times \mathbf{1}\Bigl(\forall k,\ell,i,j: \ B(x_{ki},k^{1/3}) \cap B(x_{\ell j},\ell^{1/3}) = \emptyset\Bigr), \\ \rho(\pmb{z}) &:= \lim_{|\Lambda| \to \infty} \frac{1}{|\Lambda|} \log \Xi_{\Lambda}(\pmb{z}), \quad \pmb{z} = (z_k)_{k\in\mathbb{N}}. \end{split}$$

Remark: associated Gibbs measure= "Poisson exclusion process".

Ideal mixture = independent Poisson point processes

$$\Xi_{\Lambda}^{\mathrm{ideal}} = 1 + \sum_{\textbf{\textit{N}}} \prod_{k} \left(\frac{z_{k} |\Lambda|^{N_{k}}}{N_{k}!} \right) = \exp(|\Lambda| \sum_{k} z_{k}), \quad \rho^{\mathrm{ideal}} = \sum_{k} z_{k}.$$

Equivalence of ensembles: free energy \leftrightarrow pressure via Legendre transformation

$$f((\rho_k)_{k\in\mathbb{N}}) = \sup_{(z_k)} \left(\sum_{k} \rho_k \log z_k - p((z_k)_{k\in\mathbb{N}})\right).$$

Density vs. activity:

$$\rho_k(\mathbf{z}) = z_k \frac{\partial \mathbf{p}}{\partial z_k}(\mathbf{z}).$$

Cluster expansion

Overlap rare enough \Rightarrow small perturbation.

Known: suppose there is an a > 0 such that

$$orall \ell \in \mathbb{N}: \ \sum_{k=1}^{\infty} |z_k| \, |B(0,\ell^{1/3}+k^{1/3})| \exp(ak) < a\ell.$$

Poghosyan, Ueltschi '09. Sufficient: $\sum_k k|z_k|\exp(ak) < \mathrm{const} a$. Then

$$p(z) = \sum_{m} b(m) \prod_{k} z_{k}^{m_{k}} = \sum_{k} z_{k} + \text{higher order terms},$$

absolutely convergent series. Also convergent: series $\rho_k(z)$

$$\rho_k(\mathbf{z}) := z_k \frac{\partial p}{\partial z_k}(\mathbf{z}) = z_k + \text{higher order terms.}$$

Question: Inverse map $z = z(\rho)$? If exists, then

$$f(\rho) = \sum_{k} \rho_k \log z_k(\rho) - p(z(\rho)).$$

Finitely many variables: inverse function theorem! $(D_z\rho)(0)=\mathrm{id}$ invertible. Infinitely many: bounds not good enough to prove Fréchet differentiability between natural Banach spaces.

3 An inversion theorem

Given: Power series $\rho_k(\mathbf{z}) = z_k(1 + \text{higher order terms})$, $k \in \mathbb{N}$. Other power series $\Phi(\mathbf{z})$, e.g. $\Phi(\mathbf{z}) = z_k$.

Lemma: inversion $z_k = z_k(\rho)$ well defined as formal power series.

Question: convergence?

Theorem (J., TATE, TSAGKAROGIANNIS, UELTSCHI '14)

Let D be a polydisk $D = \{ \mathbf{z} \in \mathbb{C}^{\mathbb{N}} \mid \forall k : |z_k| < R_k \}$. Assume:

- 1. The series $\rho_k(z)$, $\Phi(z)$ are abs. conv. and uniformly bounded in D.
- 2. $\rho_k(\mathbf{z}) = z_k \exp(A_k(\mathbf{z}))$ with $a_k := \sup_{\mathbf{z} \in D} |A_k(\mathbf{z})| < \infty$.

Choose $0 < r_k < R_k$ so that $\sum_k \sqrt{r_k/R_k} < \infty$, $\sum_k r_k a_k^2/R_k < \infty$. Then:

$$\exists C > 0 \ \forall \mathbf{n} : \ \left| [\boldsymbol{\rho}^{\mathbf{n}}] \Phi(\mathbf{z}(\boldsymbol{\rho})) \right| \leq C \sup_{\mathbf{z} \in D} |\Phi(\mathbf{z})| \prod_{k} \left(\frac{\exp(a_{k})}{r_{k}} \right)^{n_{k}}.$$

Consequence: sufficient for convergence of $\Phi(z(\rho))$ as series of ρ :

$$\forall k: \ |
ho_k| < r_k \exp(-a_k), \quad \sum_k |
ho_k| \exp(a_k)/r_k < \infty.$$

Typical situation: $|z_k| \le R_k \approx \exp(-ak)$, $|A_k(z)| \le ak$, $|\rho_k| < \exp(-2ak)/k^p$.

Proof idea: Lagrange-Good inversion

$$\begin{split} [\rho^n] \Phi(\mathbf{z}(\rho)) &= \Big(\prod_k \frac{1}{2\pi \mathrm{i}} \oint \frac{\mathrm{d}\rho_k}{\rho_k^{n_k+1}} \Big) \Phi(\mathbf{z}(\rho)) \\ &= \Big(\prod_k \frac{1}{2\pi \mathrm{i}} \oint \frac{\mathrm{d}z_k}{\rho_k(\mathbf{z})^{n_k+1}} \Big) \Phi(\mathbf{z}) \det \Big[\Big(\frac{\partial \rho_\ell}{\partial z_j}(\mathbf{z}) \Big)_{j,\ell} \Big], \quad \rho_\ell = z_\ell \exp(A_\ell(\mathbf{z})) \\ &= \Big(\prod_k \frac{1}{2\pi \mathrm{i}} \oint \frac{\mathrm{d}z_k}{z_k^{n_k+1}} \Big) \Phi(\mathbf{z}) \mathrm{e}^{-\sum_\ell n_\ell A_\ell(\mathbf{z})} \det \Big[\Big(\delta_{\ell j} + z_\ell \frac{\partial A_\ell}{\partial z_j}(\mathbf{z}) \Big)_{j,\ell} \Big]. \end{split}$$

$$[\rho^n]\Phi(\mathbf{z}(\rho)) = [\mathbf{z}^n]\Phi(\mathbf{z})e^{-\sum_{\ell} n_{\ell}A_{\ell}(\mathbf{z})} \det \left[\left(\delta_{\ell j} + \mathbf{z}_{\ell} \frac{\partial A_{\ell}}{\partial z_j}(\mathbf{z})\right)_{j,\ell \in \text{supp } n} \right].$$

- Analytic proof (convergent series, finitely many variables): GOOD '60: Generalization to several variables of Lagrange's expansion, with applications to stochastic processes.
- Combinatorial proof (formal series, finitely many variables): GESSEL '87: A combinatorial proof of the multivariable Lagrange inversion formula.
- Combinatorial proof for infinitely many variables: EHRENBORG, MÉNDEZ '94: A bijective proof of infinite variated Good's inversion.

4 Application to cluster and virial expansions

... for non-overlapping spheres of radii $k^{1/3}$, $k \in \mathbb{N}$ in \mathbb{R}^3 .

Theorem (J., Tate, Tsagkarogiannis, Ueltschi '14)

We have

$$f\left((\rho_k)_{k\in\mathbb{N}}\right) = \sum_k \rho_k(\log \rho_k - 1) + \sum_{\boldsymbol{n}: \sum_k n_k \geq 2} d(\boldsymbol{m}) \prod_k \rho_k^{m_k}$$

Sufficient for absolute convergence:

$$\forall k \in \mathbb{N}: \quad |\rho_k| < \varepsilon(a)k^{-7} \exp(-2ak)$$

a > 0 arbitrary, $\varepsilon(a) > 0$ sufficiently small.

Proof: Theory of cluster expansions \Rightarrow conditions of inversion theorem are fulfilled.

Similar results for more general models:

- different shapes
- different interactions not only hard core.

More difficult: object with internal degrees of freedom, "flexible" shapes.

Discussion

Previously known:

- 1. Bounds for convergence of single-species virial expansion Penrose, Lebowitz '60s: proof via Lagrange inversion.
- Formulas for expansion coefficients d(m) as sums over doubly connected graphs – formal expansion for several variables (without convergence) MAYER 40's.
- 3. Polymers ("lattice animals") on lattices: expansion in monomer density ρ_1 without control of the individual ρ_k 's GRUBER, KUNZ '75.

New:

Existence of a non-trivial convergence domain for infinitely many variables.

Observation:

our theorems works only for exponentially decaying densities $\rho_k \leq \exp(-2ak) \to 0$.

Open:

Convergence without exponential decay?

5 Explicit solution in dimension 1

Non-overlapping rods of lengths ℓ_k , $k \in \mathbb{N}$ on the real line (Tonks gas).

Theorem (J.' 15)

$$p(z) = \sum_{n} \frac{z^{n}}{n!} \left(-\sum_{k} \ell_{k} n_{k} \right)^{\sum_{k} n_{k} - 1}$$

Absolutely convergent if and only if

$$\exists a > 0: \sum_{k} |z_k| \exp(a\ell_k) \leq a.$$

Remark: generating function of colored labelled weighted trees. Generalizes well-known single-species result.

Theorem (J. '15)

$$f(\boldsymbol{\rho}) = \sum_{k} \rho_{k} \left(\log \frac{\rho_{k}}{1 - \sum_{j} \ell_{j} \rho_{j}} - 1 \right)$$

$$z_{k}(\boldsymbol{\rho}) = \frac{\rho_{k}}{1 - \sum_{i} \ell_{j} \rho_{i}} \exp \left(\frac{\ell_{k} \rho_{k}}{1 - \sum_{i} \ell_{i} \rho_{i}} \right).$$

Virial expansion converges $\Leftrightarrow \sum_{k} \ell_k \rho_k < 1$.

Virial expansion converges in domain bigger than activity expansion.

Summary

Existence of a non-trivial domain of convergence for many-species virial expansion.

Proof ingredients:

Lagrange-Good inversion – contour integrals – cluster expansions.

Condition

$$\exp(-ak) \le |\rho_k(\mathbf{z})/z_k| \le \exp(ak)$$

instead of invertibility of $D_z \rho$ in neighborhood of $\mathbf{0}$.

References:

- S. Jansen, S. J. Tate, D. Tsagkarogiannis, D. Ueltschi: *Multispecies virial expansions*.
 Comm. Math. Phys. 330, 801–817 (2014).
- S. Jansen: Cluster and virial expansions for the multi-species Tonks gas.
 J. Stat. Phys. 161, 1299–1323 (2015).