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Overview

1. Motivation: dynamic nucleation models

2. Statistical mechanics for mixtures of hard spheres

3. An inversion theorem via Lagrange-Good

4. Application to cluster and virial expansions

5. Explicit solution for Tonks gas in dimension 1



1 A dynamic nucleation model

System of coupled ODEs for variables ρk(t), k ∈ N.
Becker, Döring ’35. Version Burton ’77, Penrose, Lebowitz ’79:

Given: coefficients ak , bk > 0, k ∈ N, ODE{
ρ̇k = −

(
akρkρ1 − bk+1ρk+1

)
+
(
ak−1ρk−1ρ1 − bkρk

)
(k ≥ 2)

ρ̇1 = −
(
a1ρ

2
1 − b2ρ2)−

∑∞
k=1

(
akρkρ1 − bk+1ρk+1

)
I Coagulation (k) + (1)→ (k + 1) at rate akρkρ1

I Fragmentation (k + 1)→ (k) + (1) at rate bk+1ρk+1.

I Choice of ρ̇1: Total density ρ =
∑

k kρk(t) time-independent.

Question: long time behavior? Ball, Carr, Penrose ’86

f
(
(ρk)k∈N

)
:=

∞∑
k=1

ρk
(

log
ρk
Qk
− 1
)

Qk+1

Qk
=

ak
bk+1

, Q1 = 1.

Lyapunov function (decreases along solutions of ODE).
Wanted: minimizer at given density ρ =

∑∞
k=1 kρk .



Phase transition in Becker-Döring model

Minimizer Assumption: power series
∑

k z
kQk has finite radius of convergence

R and
∑

k kR
kQk <∞. Then

I ρ <
∑

k kR
kQk : unique minimizer = equilibrium distribution.

I ρ >
∑

k kR
kQk : no minimizer with

∑
k kρk = ρ. Long time behavior:

∞∑
k=1

lim
t→∞

kρk(t) =
∞∑
k=1

kRkQk < ρ =
∞∑
k=1

kρk(t).

Mass escapes to very large droplets.

Interpretation:
∑

k kR
kQk = density of saturated vapor.

Problem: What is the physically correct choice of coefficients ak , bk?
“Correct” free energy should be a Lyapunov function.

This talk: free energy f ((ρk)k∈N) via statistical mechanics. Leads to power
series in the ρk , k ∈ N: virial expansion.

From here on, no dynamics anymore.



2 Mixture of hard spheres

Spheres of different sizes (radii k1/3, k ∈ N) in Λ ⊂ R3.
Multi-indices (Nk) ∈ NN

0 , finitely many non-zero.
Canonical partition function and free energy:

ZΛ

(
(Nk)k∈N

)
:=

1∏
k Nk !

∫
ΛN1

dx11 · · ·dx1N1

∫
ΛN2

dx21 · · ·

× 1
(
∀k, `, i , j : B(xki , k

1/3) ∩ B(x`j , `
1/3) = ∅

)
f
(
(ρk)k∈N

)
:= − lim

1

|Λ| logZΛ

(
(Nk)k∈N

)
in the limit |Λ| → ∞, Nk →∞ along Nk/|Λ| → ρk .

Ideal mixture: neglect overlap of spheres.

Z ideal
Λ

(
(Nk)k∈N

)
=
∏
k

|Λ|Nk

Nk !
≈
∏
k

( |Λ|
Nk/e

)Nk

f ideal
(
(ρk)k∈N

)
=
∑
k

ρk(log ρk − 1).

Recognize Lyapunov function of Ball, Carr, Penrose.

Goal: f = f ideal+ convergent power series.



Pressure and grand-canonical ensemble
Given: parameters zk > 0 activities.
Grand-canonical partition function and pressure:

ΞΛ

(
(zk)k∈N

)
:= 1 +

∑
N∈I

(∏
k

zNk
k

Nk !

)∫
Λn1

dx11 · · ·dx1,n1

∫
Λn2

dxn1,1 · · ·

× 1
(
∀k, `, i , j : B(xki , k

!/3) ∩ B(x`j , `
1/3) = ∅

)
,

p
(
z

)
:= lim
|Λ|→∞

1

|Λ| log ΞΛ(z), z = (zk)k∈N.

Remark: associated Gibbs measure= “Poisson exclusion process”.

Ideal mixture = independent Poisson point processes

Ξideal
Λ = 1 +

∑
N

∏
k

(zk |Λ|Nk

Nk !

)
= exp(|Λ|

∑
k

zk), pideal =
∑
k

zk .

Equivalence of ensembles: free energy ↔ pressure via Legendre
transformation

f
(
(ρk)k∈N

)
= sup

(zk )

(∑
k

ρk log zk − p
(
(zk)k∈N

))
.

Density vs. activity:

ρk(z) = zk
∂p

∂zk
(z).



Cluster expansion
Overlap rare enough ⇒ small perturbation.

Known: suppose there is an a > 0 such that

∀` ∈ N :
∞∑
k=1

|zk | |B(0, `1/3 + k1/3)| exp(ak) < a`.

Poghosyan, Ueltschi ’09. Sufficient:
∑

k k|zk | exp(ak) < consta. Then

p(z) =
∑
m

b(m)
∏
k

zmk
k =

∑
k

zk + higher order terms,

absolutely convergent series. Also convergent: series ρk(z)

ρk(z) := zk
∂p

∂zk
(z) = zk + higher order terms.

Question: Inverse map z = z(ρ)? If exists, then

f (ρ) =
∑
k

ρk log zk(ρ)− p(z(ρ)).

Finitely many variables: inverse function theorem! (Dzρ)(0) = id invertible.
Infinitely many: bounds not good enough to prove Fréchet differentiability
between natural Banach spaces.



3 An inversion theorem

Given: Power series ρk(z) = zk(1 + higher order terms), k ∈ N. Other power
series Φ(z), e.g. Φ(z) = zk .
Lemma: inversion zk = zk(ρ) well defined as formal power series.
Question: convergence?

Theorem (J., Tate, Tsagkarogiannis, Ueltschi ’14)

Let D be a polydisk D = {z ∈ CN | ∀k : |zk | < Rk}. Assume:

1. The series ρk(z), Φ(z) are abs. conv. and uniformly bounded in D.

2. ρk(z) = zk exp(Ak(z)) with ak := sup
z∈D |Ak(z)| <∞.

Choose 0 < rk < Rk so that
∑

k

√
rk/Rk <∞,

∑
k rka

2
k/Rk <∞. Then:

∃C > 0 ∀n :
∣∣∣[ρn]Φ

(
z(ρ)

)∣∣∣ ≤ C sup
z∈D
|Φ(z)|

∏
k

(exp(ak)

rk

)nk
.

Consequence: sufficient for convergence of Φ(z(ρ)) as series of ρ:

∀k : |ρk | < rk exp(−ak),
∑
k

|ρk | exp(ak)/rk <∞.

Typical situation: |zk | ≤ Rk ≈ exp(−ak), |Ak(z)| ≤ ak, |ρk | < exp(−2ak)/kp.



Proof idea: Lagrange-Good inversion

[ρn]Φ(z(ρ)) =
(∏

k

1

2πi

∮
dρk

ρ
nk+1
k

)
Φ(z(ρ))

=
(∏

k

1

2πi

∮
dzk

ρk(z)nk+1

)
Φ(z) det

[(∂ρ`
∂zj

(z)
)
j,`

]
, ρ` = z` exp(A`(z))

=
(∏

k

1

2πi

∮
dzk

z
nk+1
k

)
Φ(z)e−

∑
` n`A`(z) det

[(
δ`j + z`

∂A`

∂zj
(z)
)
j,`

]
.

[ρn]Φ(z(ρ)) = [zn]Φ(z)e−
∑

` n`A`(z) det
[(
δ`j + z`

∂A`

∂zj
(z)
)
j,`∈supp n

]
.

I Analytic proof (convergent series, finitely many variables):
Good ’60: Generalization to several variables of Lagrange’s expansion,
with applications to stochastic processes.

I Combinatorial proof (formal series, finitely many variables):
Gessel ’87: A combinatorial proof of the multivariable Lagrange
inversion formula.

I Combinatorial proof for infinitely many variables:
Ehrenborg, Méndez ’94: A bijective proof of infinite variated Good’s
inversion.



4 Application to cluster and virial expansions

... for non-overlapping spheres of radii k1/3, k ∈ N in R3.

Theorem (J., Tate, Tsagkarogiannis, Ueltschi ’14)

We have

f
(
(ρk)k∈N

)
=
∑
k

ρk(log ρk − 1) +
∑

n:
∑

k nk≥2

d(m)
∏
k

ρ
mk
k

Sufficient for absolute convergence:

∀k ∈ N : |ρk | < ε(a)k−7 exp(−2ak)

a > 0 arbitrary, ε(a) > 0 sufficiently small.

Proof: Theory of cluster expansions ⇒ conditions of inversion theorem are
fulfilled.

Similar results for more general models:

I different shapes

I different interactions – not only hard core.

More difficult: object with internal degrees of freedom, “flexible” shapes.



Discussion

Previously known:

1. Bounds for convergence of single-species virial expansion Penrose,
Lebowitz ’60s: proof via Lagrange inversion.

2. Formulas for expansion coefficients d(m) as sums over doubly connected
graphs – formal expansion for several variables (without convergence)
Mayer 40’s.

3. Polymers (“lattice animals”) on lattices: expansion in monomer density ρ1

without control of the individual ρk ’s Gruber, Kunz ’75.

New:
Existence of a non-trivial convergence domain for infinitely many variables.

Observation:
our theorems works only for exponentially decaying densities
ρk ≤ exp(−2ak)→ 0.

Open:
Convergence without exponential decay?



5 Explicit solution in dimension 1
Non-overlapping rods of lengths `k , k ∈ N on the real line (Tonks gas).

Theorem (J.’ 15)

p(z) =
∑
n

z
n

n!

(
−
∑
k

`knk
)∑

k nk−1

Absolutely convergent if and only if

∃a > 0 :
∑
k

|zk | exp(a`k) ≤ a.

Remark: generating function of colored labelled weighted trees. Generalizes
well-known single-species result.

Theorem (J. ’15)

f (ρ) =
∑
k

ρk
(

log
ρk

1−
∑

j `jρj
− 1
)

zk(ρ) =
ρk

1−
∑

j `jρj
exp
( `kρk

1−
∑

j `jρj

)
.

Virial expansion converges ⇔
∑

k `kρk < 1.

Virial expansion converges in domain bigger than activity expansion.



Summary

Existence of a non-trivial domain of convergence for many-species virial
expansion.

Proof ingredients:
Lagrange-Good inversion – contour integrals – cluster expansions.
Condition

exp(−ak) ≤ |ρk(z)/zk | ≤ exp(ak)

instead of invertibility of Dzρ in neighborhood of 0.
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